
RT Level Power Analysis y

Jianwen Zhu, Poonam Agrawal, Daniel D. Gajski

Department of Information and Computer Science

University of California, Irvine, CA 92717-3425

Abstract

Elevating power estimation to architectural and behavioral

level is essential for design exploration beyond logic level. In
contrast with purely statistical approach, an analytical model

is presented to estimate the power consumption in datapath
and controller for a given RT level design. Experimental result

shows that order of magnitude speed-up over low level tools as
well as satisfactory accuracy can be achieved. This work can

also serve as the basis for behavioral level estimation tool.

1 Introduction
With the increasing demand of low power applications, there

is a growing interest in power estimation techniques. It is
essential for the power optimization tools in that

� it provides the evaluation of the cost function,

� it helps to identify the \hot-spots" { the candidates for
further optimization.

Power estimation tools can operate on di�erent levels of ab-
straction. A lot of interesting work has been done on circuit
and gate level [Na94]. While these tools can often achieve very
high accuracy, they are prohibitively expensive in architecture
exploration, which is believed to be able to bring most of the
power reduction. It is thus desirable to have estimator operat-
ing on RT level in order to provide fast evaluation of the power
metric without sacri�cing too much accuracy.

Some related work at this level include [La94] [Me94]. In
contrast with those purely statistical approach, we present in
this paper a power analysis technique which is analytical in
nature.

The rest of the paper is organized in a bottom-up fashion.
In Section 2, the power model of datapath components as well
as interconnections is discussed. Then we present the power
analysis techniques at the RT level in Section 3. We conclude
the paper with some experimental results.

2 Component Level Power Analysis
In this section, we try to identify the sources of power con-

sumption for the components in the datapath library as well
as the interconnections such as buses and clock trees.

Power Model of Static CMOS Gates

Three main sources of power dissipation in static CMOS
circuit are dynamic switching, leakage current and short circuit

current respectively. The dominant factor is the �rst one due
to the charging or discharging of circuit capacitances.

Power Model of Datapath Components

yThis work is partially supported by Toshiba Inc.

Having identi�ed the sources of power dissipation for the
gates, we need to investigate the power consumption model
at the component level. In other words, we need to know
the capacitance switched during each access of the functional
units, registers, and bus drivers.

Ideally, the energy consumed for each access of a component
should be a function of its (1) bitwidth, (2) its previous data,
which determine the previous states of all the internal circuit
nodes, (3) the current data, which determine the current states
of all the circuit nodes and in turn their switching activities.
This is not practical since the data is not available until run
time. However, statistics measures such as mean, variance,
and correlation on the input data are relatively easy to obtain
through functional simulation. It is reasonable to expect that
the energy of the component is a function of the statistics of
the data and the bitwidth. Based on this idea, Component
characterization techniques such as Dual Bit Model (DBT)
are proposed to model the power consumption of datapath
components [La94].

An alternative is to assume uniform white noise inputs for
each component. Based on this assumption, the power con-
sumption of a component depends solely on its size. Statisti-
cal methods can be applied to obtain an average value for each
component in the library. We adopt this approach because of
its simplicity.

In the discussions that follow, we assume each component c
in the datapath library is associated with a capacitance C, the
value of which is de�ned as the average capacitance switched
for each access of the component.

Power Model of Interconnections

Strictly speaking, the power model for the bus and clock
tree belongs to the subject of next section because they all
depends on the RT level netlist. However, we advance it here
for ease of discussion.

Register

C (reg)i

Output Bus

+*+

C (+)
i

C ()
i C (drv)o wC

Input Bus
*

Register

Register Register

Figure 1: Capacitances of Multiplexed Bus

There are two factors that contribute to the capacitance of
the bus:

� wire capacitance, as indicated by Cw in Figure 1.

The wire capacitance is determined by the length of the
wire and in turn the result of routing. Estimation of wire
length can be one of the following:

1. performing detailed placement and routing;

2. performing rough oorplaning, and then use the
square root of the resultant chip area as an approx-
imation of the wire length;

3. summing up the area of all the components as an
approximation of the chip area (assume the oor-
planer is perfect), and then use the square root of
the chip area.

While 1 is too expensive to be practical and 2 needs an
additional oorplaner, 3 is adopted for its simplicity.

� component load: the component load refers to the ca-
pacitances contributed by the units attached to the bus.

There are two types of buses:

1. Multiplexed Bus: As shown in Figure 1, bus drivers
are used for multiplexed bus. For every data trans-
fer bound to the bus, the capacitances introduced
are: (1) the output capacitance of the bus driver
(Co(Drv)), (2) the input capacitance of the func-
tional units for input buses (like Ci(+); Ci(�)), or
the input capacitance of the register for output
buses (Ci(Reg)).

2. Direct Connection:

C (reg)o Input Bus

C ()i +

C (+)o
Output Bus

C (reg)i C (reg)i

Register Register

Register

Figure 2: Capacitances of Direct Connection Bus

As shown in Figure 2, for direct connection bus,
there is no need for bus drivers. For every data
transfer bound to the bus, the capacitance intro-
duced are: (1) the output capacitance of the source
functional unit or register (like Co(+) or Co(Reg)),
(2) the input capacitance of the sink functional unit
or register (Ci(+) and Ci(Reg)).

Similarly, the capacitance of the clock tree is the wire ca-
pacitance plus the capacitance of the clock input Cclk(Reg) of
each register. Same technique can be applied:

C(Clock) = (Cw + Cclk(Reg)) � jRegj

where Reg is the set of registers in the design.

3 RT Level Power Analysis

3.1 Overview

Problem Statement

This section addresses the problem of estimating power at
the RT level, which implies that the following is known:

1. RT Level Description

A register transfer level design can be conveniently spec-
i�ed by a state action table (SAT), each row of which
indicates that at a particular state, under a particular
condition, the system will evolve to another given state,
and the datpath will perform some given computation. A
formal de�nition of the state action table will be given in
Section 3.2.

2. Branching Probability:

Given a state action table, the execution sequence of the
system is still not known due to the unavailability of the
conditions. We assume some pro�ling techniques are ap-
plied prior to the power analysis so that for each pair of
rows (i; j) in the state action table, a branching proba-
bility Prob(i; j) is obtained. A more detailed treatment
will be presented in Section 3.4.

3. Component Capacitance:

Based on discussions in Section 2, for every component in
the datapath library, we assume that the average capaci-
tance switched for each access is known. In other words,
the average capacitance of each bus driver can be written
as C(Drv), each register can be written as C(Reg), and
each functional unit FUi can be written as C(FUi). We
also assume the input and output capacitances of each
component are known.

For interconnections such as bus and clock tree, although
accurate information is not known until the layout stage,
we assume some area estimation techniques discussed in
Section 2 are applied such that for each bus Busi, we
know the average capacitance switched for each access,
denoted as C(Busi). Similarly, the capacitance of the
clock tree can be denoted as C(Clock).

With the above information given, we need to estimate the
power consumption of the hardware, which is de�ned as

Power =
Energy

Cycles � Clock Period
(1)

where Cycles is the total number of clock cycles.

Architectural Model

In general, digital hardware can be modeled as an FSMD
(Finite State Machine with a Datapath), where the datapath is
responsible for the computation, and the controller determines
when and what computation will be performed [Ga92].

Datapath

A typical datapath is shown in Figure 3. The datapath
consists of functional units, registers, and buses (intercon-
nections). The bus may or may not be attached with a bus
driver depending upon whether it has di�erent sources.
We omit the case of multiplexers since they can be treated
as bus drivers.

Functional
Unit

Bus
Driver

Bus

Register
* +

Figure 3: Datapath Model

Because the applications concerned in this work are of-
ten power critical, we assume another design style called
dynamic power management, which is frequently adopted
by designers (Figure 4): we assume each functional unit
has an enable input in order to shut down the unit during
its inactivity. The enable circuitry can be implemented
simply as a switch which separates the bus and the func-
tional unit. The enable controls the on/o� of the switch.
Note that in order for this technique to take e�ect, design
care has to be exercised to ensure that the enable signal
is asserted before the change of register output.

Functional Unit

Register Register

Enable Enable

Register

Figure 4: Functional Unit with Enable Input

Controller

Controller implements a �nite state machine. In general,
it contains a state register, which stores the current state,
as well as some control logic to compute the next state
and output signals.

Control logic can be implemented either as (a)ROM, or
(b)PLA, or (c)2-level random logic, or (d)multi-level ran-
dom logic.

While multi-level logic implementation is very di�cult to
predict, the analysis of the rest is similar and relatively
simple. We take (c) as a representative of (a), (b), (c)
and an approximation of (d) in this paper.

A typical 2-level logic controller implementation is shown
in Figure 5.

As shown in Figure 5, A typical controller is composed
of four parts, namely, the state register, the decoder, next
state logic and output logic.

The decoder is implemented as a set of AND-gates. It
takes as inputs each bit of the state register and the status
signals as well as their complements.

The next state logic and output logic is implemented as a
set of OR-gates. It take as input the output of the state
decoder. There are three types of control lines in the
output logic: (1) control lines for loading registers, (2)
control lines for enabling (shutting down) the functional
units, (3) control lines for the bus drivers.

Based on the structure of the hardware, computation of the
energy consumption can be decomposed into

Energy = E(Datapath)+ E(Controller) + E(Clock)

where

E(Datapath) = E(FU) + E(Reg) + E(Bus)

and

E(Controller)=E(SR) + E(NS) + E(Decoder) +

E(OutputLogic)

3.2 Formal De�nition of State Action Table

In this section we introduce some notations as well as a
formal de�nition of the state action table.

An activity vector ~V = (v1; v2; :::) is de�ned as a boolean
vector with vi 2 f0; 1g.

At a particular state, the state of the hardware can be char-
acterized by a set of activity vectors, namely, the current state
vector ~S, the status vector ~C , the next state vector ~NS, the
function unit vector ~FU , the the register vector ~Reg, the the

bus vector ~Bus, the the bus driver vector ~Drv. While ~S; ~C; ~NS

indicates the value of the state register, status signals and next
state signals, the value of ~FU; ~Reg; ~Bus; ~Drv indicates the ac-
tiveness of corresponding datapath components.

The cardinality of the vector ~V is de�ned as the total
number of 1's of the vector:

j~V j =

nX

i=1

vi

For ~V = (v1; v2; :::; vn) and ~W = (w1; w2; :::; wn), their ex-
clusive or is de�ned as

~V � ~W = (v1 � w1; v2 � w2; :::)

their concatenation is de�ned as
~V# ~W = (v1; v2; :::; vn; w1; w2; :::;wn)

The state tuple ~t can then be de�ned as the concatenation
of the above activity vectors.

~t = ~S#~C# ~NS# ~FU# ~Reg# ~Bus# ~Drv

The behavior of a RT level design can be speci�ed by the
state action table SAT , de�ned as a set of distinct state
tuples:

SAT = f~tig

A state trace ST of SAT is de�ned as a sequence of state
tuples in SAT :

ST = [~t1;~t2; :::;~tn]

such that the next state vector of ~ti equals to the current state
vector of ~ti+1.

Note that the state action table de�nes the behavior of the
hardware, whereas the state trace de�nes an actual execution
scenario of the hardware. In the next two sections, we �rst dis-
cuss the computation of power consumption for an execution
sequence in Section 3.3, based on which we derive estimation
techniques for power consumption directly from the state ac-
tion table in Section 3.4.

3.3 Power Estimation from State Trace

This section presents the analysis of power if a state trace
ST = [~t1;~t2; :::;~tn] of the state action table SAT is given.

3.3.1 Cycles

The number of cycles of the state trace ST is simply the
number of state tuples in ST :

Cycles = jST j = n (2)

It follows that

E(Clock)=2� C(Clock) � V 2
DD

� Cycles

=2� C(Clock) � V 2
DD

� jST j (3)

where the factor 2 accounts for the switches of both the falling
and rising edges of the clock.

3.3.2 Datapath

The activity of the datapath at state ~ti can be characterized
by the corresponding activity vectors: ~FU i, ~Reg

i
, ~Busi, and

~Drvi. We denote their concatenation as ~DP i:

~DP i = ~FUi# ~Regi#
~Busi# ~Drvi

The capacitances of all the functional units in the datap-
ath forms a capacitance vector ~CFU = (C(FU1); C(FU2); :::).
Similarly, we can de�ne the capacitance vectors for registers,
buses, and bus drivers as ~CReg; ~CBus and ~CDrv respectively.

We denote their concatenation as ~CDP :

~CDP = ~CFU#~CReg#~CBus#~CDrv

So the energy consumed at state ~ti is

E(~ti) = (~DP i � ~CDP)� V 2
DD

where j:j stands for the dot product of two vectors.
It follows that the total energy consumed on the execution

sequence can be computed as

E(Datapath) =
X

~ti2ST

(~DP i � ~CDP)� V 2
DD

(4)

3.3.3 Controller

General Model

Figure 5 shows the controller implementation. The con-
troller falls naturally into four parts, namely, the state regis-

ter, the decoder, the next state logic, and the output logic. The
decoder is essentially a set of AND-gates, inputs of which are
connected to the output of the state register and the status
signals. Note that each input is indicated as a dot in Figure 5
and introduces a capacitance load (CAnd) for the state register
output. The next state logic and the output logic are essen-
tially a set of OR-gates, inputs of which are outputs of the
decoder. Again, each input is indicated as a dot in Figure 5
and will introduce a capacitance load (COr) for the AND-gates
of the decoder.

The dots in next state logic and output logic forms two
matrices: next state matrix and output logic matrix. The rows
of the matrices correspond to the decoder outputs, which in
turn correspond to a state tuple in the state action table. The

~t ~S ~C ~NS ~D ~O

~t1 00 0 00 10000000 110000000
~t2 00 1 01 01000000 100101001
~t3 01 0 10 00100000 001100101
~t4 01 1 10 00010000 010001001
~t5 10 0 11 00001000 001000010
~t6 10 1 11 00000100 000000010
~t7 11 0 00 00000010 000010000
~t8 11 1 01 00000001 000000001

Figure 6: The Activity Vectors

columns of the matrices correspond to the next state signals
and output signals respectively. The role of the dots in power
analysis of the controller is two-fold: (1) Since each dot in-
troduces a capacitance of size COr , the number of dots along
each row gives the total load of corresponding state decoder
AND-gate. (2) The dots along each column indicates a true
value of the corresponding signal. Note that distribution of
the dots at each row correspond exactly to the value of the
state tuple in the state action table.

The activity of the controller at state ~ti can be characterized

by a set of activity vectors, namely the current state vector ~Si,
the next state vector ~NSi; the decoder vector ~Di; and the out-

put vector ~Oi. Each activity vector correspond to the output
of state register, status signals, next state logic, decoder and
output logic respectively. Figure 6 shows the values of these
vectors at each state for the example shown in Figure 5. It is
obvious that

~O = ~FU# ~Reg# ~Drv

Each bit of the activity vector ~V (could be one of
~S; ~NS; ~D; ~O) is associated with a capacitance. The capaci-
tances for all the bits also form a capacitance vector, denoted
as ~CL = (CL0; CL1; :::). The energy consumed at state i can

then be measured as (~Vi � ~Vi+1) � ~CL � V 2
DD The total en-

ergy consumed for the entire state trace on this vector can be
computed as X

~ti2ST

(~Vi � ~Vi+1) � ~CL � V 2
DD

Based on this model, we will identify the capacitance vector
as well as activity vector for each part of the controller.

State Register and Next State Logic

Since for ~ti;~ti+1 2 ST , we always have ~NSi = ~Si+1. The
switching activities of the state vector and next state vector
are the same, so we treat them together.

The capacitance of each bit of the state register consists of
its (1) internal capacitances and (2) the output loads due to
its fanout to the state decoder. The capacitance of each bit of
the next state logic is the input capacitance of the state regis-
ter. The capacitances mentioned above are the same for each
bit, so we denote their sum as CReg, and the corresponding
capacitance vector becomes CReg � ~I, where ~I = (1; 1; :::;1) is
the unit vector.

the total energy consumption of the state register and next
state logic can then be computed as

E(SR) + E(NS)=CReg � V 2
DD

�

X

8~ti2ST

((~Si � ~NSi) � ~I)

Next State Logic
Output Logic

LoadRegs EnableFUs EnableDrivers

CAnd

COr

COr

dot

O

D

S

NS

S0S0S1S
1 0C C0

Decoder

CState
Register

Figure 5: Controller

=CReg � V 2
DD

�

X

8~ti2ST

j~Si � ~NSij (5)

Decoder

The switching activity of the decoder is elegantly simple
to analyze. At every state ~ti 2 ST , only the output of cor-
responding AND-gate is 1. In other words, at every state,
exactly two AND-gates will switch: The gate corresponds to
previous state will switch from 1 to 0; the gate corresponds to
current state will switch from 0 to 1, and the rest of the gates
will remain unchanged.

The capacitance of each AND-gate in the state decoder is
determined by its fanout, that is, how many dots along the
row in Figure 5. If we assume each input of the OR-gates

introduces the same capacitances as COr , the ith bit of the
capacitance vector ~CL can be computed as #dots(rowi)�COr ,
where #dots(rowi) can be computed as j ~NSi# ~Oij.

Due to the \one-hot" property of the activity vector D, the
energy consumed on the decoder can then be computed by
counting the number of dots along the rows.

E(Decoder) = 2� COr � V 2
DD

�

X

8~ti2ST

j ~NSi#~Oij (6)

Output Logic

The activity vector of the output logic is ~O =
~FU i# ~Reg

i
~Drvi. If we denote the capacitance vector as ~CO,

then the energy consumed on the output logic is:

Energy(OutputLogic) = V 2
DD

�

X

~ti2ST

(~Oi � ~Oi+1) � ~CO (7)

3.4 RT Level Power Estimation

Branching Probability and Execution Frequency

In the previous section, we develop a set of formula for
power estimation of a state trace. However, the state trace
information is not available in general. We resort to pro�ling
techniques to obtain branching probability function Prob(i; j)
de�ned for every pair of tuples (~ti;~tj) in the state action table
SAT .

The execution frequency of a state tuple in SAT is de�ned
as the expected number of times the state tuple will be exe-
cuted. The execution frequency can be obtained either from
the pro�ling tool or directly from the branching probability
function. Given the branching probability function, the de-
termination of execution frequency of each state tuple can be
formulated as solving a set of linear equations with the form

Freq(~tj) =
X

8~ti2SAT

Freq(~ti)� Prob(i; j)

for 8~tj 2 SAT . Solution can then be obtained through stan-
dard procedures such as Gaussian elimination or LU factoriza-
tion.

Formula

The formula developed in the previous section can then be
rewritten by inspecting the state tuples in SAT one by one.
In other words, the power metrics can be measured as the sum
of the corresponding metrics of all the state tuples weighted
by their execution frequencies.

Cycles=
X

~ti2SAT

Freq(~ti) (8)

E(Clock)=2� C(Clock) � V 2
DD

� Cycles (9)

E(Datapath)=V 2
DD

�

X

~ti2SAT

Freq(~ti)�

(~DP i � ~CDP) (10)

E(SR) + E(NS)=CReg � V 2
DD

�

X

~ti2SAT

Freq(~ti)�

X

~tj2SAT

Prob(i; j)� j~Si � ~Sj j (11)

E(Decoder)=2� COr � V 2
DD

�
X

~ti2SAT

Freq(~ti)� j ~NSi#~Oij (12)

E(OutputLogic)=V 2
DD

�

X

~ti2SAT

Freq(~ti)�
X

~tj2SAT

Prob(i; j)�

((~Oi � ~Oj) � ~CO) (13)

4 Experimental Results

Behavioral
VHDL

Description
VHDL Description

of Components

Compass
Synthesizer

Chip Compiler

Extractor

Manual
Comparison

RT Netlist

netlist

total power

total power

Manual Design

Architectural
Power Analyzer

netlist

power profile

netlist annotated
with capacitances

Componet
Power Profiler

RT
Comp.
Library

Logic Simulator

Figure 7: Block Diagram of the Experiment

In order to evaluate the estimation tool, we applied it to
a set of well known benchmarks [HW92]. Figure 7 shows the
block diagram of the experiment.

The component library was built by feeding functional
VHDL description of each component to COMPASS ASIC
Synthesizer. The synthesized components were then fed into
the component power pro�ler [Ag95] to obtain an average
power for each component. The average component power was
stored in the library. The RT level design of each benchmark
was manually synthesized from behavioral VHDL description.
Assuming architectural model in Section 3.1, the power esti-
mation of each benchmark was obtained by applying equations
8-13 in Section 3.4. We are able to obtain the average power
of each benchmark in a couple of seconds on a Sparc 5 station.

The RT level VHDL description of each benchmark instan-
tiating the components in the same library was also fed into
the COMPASS chip compiler to obtain the layout. Netlists an-
notated with node capacitances were then extracted from the
layout. Logic simulation assuming random input was invoked
to obtain the total switched capacitances.

We compare the estimated results of datapath and con-
troller with the measured results obtained from the layout
in Table 1 and Table 2 respectively. The columns of the

tables show the estimated switched capacitance for di�erent
classes of components (such as the functional units (FU), reg-
isters (Reg), buses (Bus), bus drivers (Drv), clock (Clk), state
register (SR), next state logic (NS), decoder (Dec), output
logic (Output)), the total estimated switched capacitance,
the measured switched capacitance, and the error computed
as jmeasured�estimatedj

measured
. The rows of the tables correspond to

di�erent benchmarks.

5 Conclusions
The described power estimation technique which is statis-

tical in nature at the component level, and analytical at the
RT level, o�ers fast feedback for high level exploration tools.
Experiments on standard benchmarks show that the average
error of the datapath is 5% and the controller is 7%. Our
future work will extend this technique to the behavioral level.

FU Reg Bus Drv Clk Total Measured Err

HAL 27.14 11.40 37.64 6.24 19.2 101.62 100.5 1%

DCT 49312 3108 1372 846 16452 71091 67834 4%

SRA 116.1 16.7 36.2 9.9 23.3 202.2 208.4 -2%

ELL 517.7 51.6 121.14 28.1 328.4 1046.9 933.4 12%

Table 1: Switched Capacitance of the Datapath

SR,NS Dec Output Clk Total Measured Err

HAL 3.86 2.71 21.28 17.92 45.77 49.00 -6%

DCT 8707.2 1212.5 10148.9 17699.0 37767.5 39273.2 -3%

SRA 10.0 4.3 25.7 29.4 69.8 76.0 -8%

ELL 42.3 13.068 95.85 185.6 336.8 384.2 -12%

Table 2: Switched Capacitance of the Controller

6 References
[Ag95] P. Agrawal, D. Gajski, F. Kurdahi, \Component

Power Pro�ler (CPP)", TR-ICS-95-x, UC, Irvine
[Ga92] D. Gajski, N. Dutt, A. Wu, S. Lin, High Level

Synthesis: Introduction to Chip and System De-

sign, Kluwer, 1992
[Ga94] D. Gajski, F. Vahid, S. Narayan, J. Gong, Speci�-

cation and Design of Embedded Systems, Prentice
Hall, 1994

[Go93] J. Gong, D. Gajski, S. Narayan, \Software Esti-
mation from Executable Speci�cations", TR-ICS-
93-5, UC, Irvine

[HW92] Benchmarks for the Sixth InternationalWorkshop

on High-Level Synthesis, 1992.
[La94] P. Landman, J. Rabaey, \Black-Box Capacitance

Models for Architectural Power Analysis", Inter-
national Workshop on Low Power Design, Napa
Valley, CA, April 1994

[Me94] R. Mehra, J. Rabaey, \Behavioral Level
Power Estimation and Exploration", Interna-

tional Workshop on Low Power Design, Napa
Valley, CA, April 1994

[Na94] F. Najm, \A Survey of Power Estimation Tech-
niques in VLSI Circuits", IEEE Transaction on

VLSI Systems, pp.446-455, Dec., 1994,
[Na95] F. Najm, \Feedback, Correlation, and Delay Con-

cerns in the Power Estimation of VLSI Circuits",
Proceedings of the Design Automation Confer-

ence, pp. 612-617, 1995
[We93] N. H.E. Weste, K. Eshraghian, Principles of

CMOS VLSI Design: A System Perspective, Sec-
ond Edition, Addison-Wesley, 1993

