
i

Topic: Network and communication system

Automatic Generation of
Communication Architectures

Dongwan Shin, Andreas Gerstlauer,
Rainer Dömer and Daniel Gajski

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8919

{dongwans,gerstl,doemer,gajski}@cecs.uci.edu

AUTOMATIC GENERATION OF
COMMUNICATION ARCHITECTURES

Dongwan Shin
Andreas Gerstlauer
Rainer Dömer
Daniel D. Gajski
Center for Embedded Computer Systems
Information and Computer Science
University of California, Irvine

{dongwans,gerstl, deomer, gajski}@ics.uci.edu

Abstract In this paper, we propose automatic generation of bus-based commu-
nication architectures from an abstract model reflecting only the com-
munication topology. Tasks include protocol selection for each bus,
master/slave assignment for each component, interrupt handling and
addressing for synchronization between components, and arbitration to
resolve multiple accesses on a bus. We present a set of experimen-
tal results demonstrating how the proposed approach works on typical
system designs. Experimental results show the benefits of our method-
ology and demonstrate the effectiveness of automatic model generation
for communication design.

1. Introduction

With ever increasing SoC complexities, design of system communi-
cation structures is becoming an in increasingly important factor and
bottleneck. Together with time-to-market pressures, communication de-
sign requires extensive design space exploration in a short amount of
time. Typically, designers use models of a system to validate and evalu-
ate different designs. Traditionally, these models are manually written,
which is a tedious, error-prone task, and time-consuming task, severely
limiting exploration opportunities.

In order to tackle these problems, we propose a communication design
flow with automatic generation of communication models from a virtual
architecture model. Figure 1 shows the communication design flow [5].
Design starts with the architecture model which reflects the structure

2

GUI

Link design

Network design

Architecturemodel

Linkmodel

Network
protocol

database

Media
protocol

database

DMA

B2

CPU

B3

SRAM

v1

C2

C3

HW

B1
C1

B1 B2

SRAM

L2

MCtrl

DMACPU

C1

v1

C2

v1

C2

C3C3

L1
A

T1

L1B
B2

HW

C1

CPUBus

CPU
B2

DMA
B3

SRAM

A
rb

ite
r

MCtrl

SRAMBus

Interrupts

T1
 SlaveBus

HW

B1

C1 v1C2 C3 v1C2 C3

C1

bus allocation
protocol selection

connectivity
channel mapping

address mapping
interrupt mapping

arbitration

Communication models
(pin-accurate or

transaction-level)

Figure 1. Communication design flow.

of processing components/elements (PEs), but where communication is
done abstractly on a message-passing level. Communication design is
then divided into two tasks: network design and link design.

During network design, the topology of the communication architec-
ture is defined and abstract message passing channels between proces-
sors are mapped into communication between adjacent stations of the
communication architecture. The network topology of communication
stations connected by logical link channels is defined, bridges and other
communication elements are allocated as necessary, and abstract mes-
sage passing channels are routed over sets of logical link channels. The
result of the network design step is a link model of the system which
represents the topology of the communication architecture and in which
stations communicate via untyped, logical links.

During link design, logical links between adjacent stations are then
grouped and implemented over an actual communication medium (e.g.
system busses). For each group of links to be implemented over a single,
shared medium, a communication protocol is selected and parameters
such as addresses and interrupts for synchronization are assigned to each
logical link.

As a result of the communication design process, a pin-accurate or
transaction-level communication model of the system is generated. Com-
munication models are fully structural where components are connected
via busses and communicate in a timing-accurate manner based on me-
dia protocol timing specifications.

Automatic Generation of Communication Architectures 3

In this paper, we concentrate on the link design task and we will
present our approach to speeding up the link design process by enabling
automatic model refinement. The rest of the paper is organized as fol-
lows. Section 2 gives an overview of related work. Section 3 shows our
refinement-based link design flow and Section 4 looks at the individ-
ual tasks of link refinement. Finally, we present experimental results in
Section 5 and wind up with a summary and conclusion.

2. Related work

Recently, system-level design languages have been proposed as vehi-
cles for so-called transaction-level modeling (TLM) for communication
abstraction [4] [7]. However, TLM proposals so far focus on simula-
tion only and they lack the path to vertical integration of models for
implementation and synthesis.

There are several approaches dealing with automatic generation of
communication architectures [2] [3]. These approaches, however, are
usually based on target architecture templates and limited in their sup-
port for general architectures and applications. Furthermore, most of
the work has been done in optimizing communication architectures for
specific designs [6] [8]. Finally, approaches that deal with optimization
and automatic decision making for communication synthesis [11] [9] are
usually lacking support for generating implementations for those deci-
sions.

In previous work [1], we proposed an automatic communication refine-
ment flow. In this paper we extend this work to support more general
architectures with networks of interconnected busses, realistic commu-
nication mechanisms and advanced synchronization primitives.

3. Link design

Link design implements the functionality of link layer, media access
layer and protocol layer and inlines them into corresponding compo-
nents. The link layer defines the type of a communication station (e.g.
master/slave on a bus) for each of its incoming or outgoing links. It
is also responsible for implementing synchronization between commu-
nication stations, e.g. vai interrupts or by polling in case of interrupt
sharing.

The media access layer is responsible for slicing blocks of bytes into
bus words. Furthermore, it resolves simultaneous bus accesses of compo-
nents through arbitration. Depending on the arbitration scheme chosen,
additional arbitrater components are introduced into the system as part
of the media access layer.

4

Finally, the protocol layer is responsible for driving and sampling the
external pins according to the protocol timing diagrams and thereby
matching the transmission timing on the sender and receiver sides.

3.1 Inputs and Outputs

Link design starts from a link model, which represents the topology
of the communication architecture. Components on the top level of
the design communicate with each other via logical link channels. Each
channel provides send/receive methods for enable data transactions with
message passing semantics.

During the design process, the user provides a set of design deci-
sions such as protocol selection for each bus, master/slave assignment
for components, address and interrupt assignment for logical links, and
arbitration scheme and bus access priorities.

With these inputs, the link refinement tool produces an output com-
munication model that reflects the bus architecture of the system. In the
output model, the top level of the design consists of system components
connected by wires of the system busses. The components themselves
are refined down to bus-functional models that communicate via ports.

3.2 Databases

Link design is supported by a media database that consists of a
database of bus protocols and a database of associated bus-functional
compoment models.

3.2.1 Bus database. The bus database contains models of
busses including associated protocols. Bus models in the bus database
consist of a stack of two layers: protocol layer and media access layer.
At the bottom of the stack, the protocol layer is connected to the actual
bus wires and it implements the primitives defined by the bus protocol
for data transfers, synchronization and arbitration. On top of the pro-
tocol layer, the media access layer provides an abstraction of external
communication into data links and memory accesses by using and com-
bining bus primitives to regulate media accesses and slice abstract data
into bus words.

Each protocol layer can have two separate sides with different im-
plementations for bus masters and bus slaves. Each layer provides a
protocol implementation for one single component connected to the bus.
Protocol layer models connect to the bus wires through ports of the
model and pins of the component. Layers are stacked on top of each

Automatic Generation of Communication Architectures 5

other and connect via interfaces where the media access layer calls the
methods of the protocol layer beneath it.

3.2.2 Bus-functional component database. For components
with fixed, pre-defined interfaces and communication functionality, the
component database has to contain a bus functional model of the com-
ponent. A bus functional component model accurately describes the
component interface at the pin level and it provides a simulation model
of communication aspects of the component.

For programmable components with flexible computation behavior
but fixed, pre-defined interfaces and communication functionality, a bus
functional model with at least two layers has to be provided in the
database: a top level bus functional layer describing the component pin
interface on the outside and an internal, empty hardware abstraction
layer (HAL) describing the interface for accessing the bus medium from
the software on the inside. In addition, the HAL has to provide templates
of interrupt handlers for each external interrupt line of the processor.

4. Link refinement

Link refinement is the process of transforming the input link model
into a communication model based on the user-supplied decisions. The
refinement process can be divided into five major steps, namely, channel
grouping, bus functional model instantiation, synchronziation synthesis,
arbiter/interrupt controller insertion, and bus wiring. be further divided
into sub-steps.

In the following, we will outline transformations for link refinement.
More details about this process can be found in [10]. We will use a simple
example (Figure 2(a)) where 2 PEs (PE1 and PE2 OS), 1 IP (IP1), a
shared memory (M1 LK) and a bridge (Bridge) are allocated. They are
communicating using message passing channels L1 and L2. The design
decision for link design are made as shown in Figure 2(b). For example,
the channel L1 is assigned to interrupt intA and address 0x00020000.

4.1 Channel grouping

The first task of link refinement is channel grouping which combines
different links mapped onto a bus. Message passing channels between
components will be grouped into transactions over a single, shared bus
and unique bus addresses will be assigned to each link and each memory
interface or slave register mapped onto the bus.

6

M1Ctrl

Bridge

IP_TX

MAC

intprotocol

IP1M1_LK

B2
.
.

PE2_OS

B3

OS Model

PE1

B1

L1 L2

Mem

char[512]

(a) Link model.

PE1
(M/S: Bus1)

PE2
(M: Bus2)

L1 L2

B
ridge

0x0002000x
intA

Bus2

M1
(S: M1Bus)

IP1
(S: IP1Bus)

M1Bus IP1Bus

0x0001000 + 64k

M1Ctrl
(M: M1Bus
S: Bus1)

IP_TX
(M: IP1Bus

S: Bus2)

0x0002001x
intB

Bus1
0x0002000x

intA

(b) Design decisions

Figure 2. An example of link model and design decision.

4.2 Bus-functional component instantiation

As a next step, bus functional models for components with fixed,
predefined bus interfaces (e.g. programmable processors, IPs, bridges
and system memories) are taken out of the bus-functional component
database and instantiated in the design.

Bus functional models for programmable components have to include
a definition of the interrupt capabilities of the component. The top level
bus functional shell defines the interrupt pins available at the physical
component interface and the hardware abstraction layer (HAL) model
provides corresponding empty interrupt handler templates. During link
refinement, interrupt lines from slaves are connected to the interrupt
pins of programmable components and interrupt handlers in the HAL
are generated by filling the templates. Finally, interrupt tasks triggered
by the HAL interrupt handlers are generated in the operating system of
the processors.

4.3 Synchronization synthesis

In order to preserve the semantics of the original input model, syn-
chronization between components has to be introduced whenever nec-
essary. The link layer is responsible for implementing synchronization
through interrupts and/or polling. Link layers have different implemen-
tations depending on the type of station (master/slave). Methods on
the master side wait for interrupt from slaves before invoking media ac-
cess layer methods to perform the actual data transfer. On the slave
side, a slave will send an interrupt to notify the master about any data
transfer request. In case of memory or register (memory-mapped I/O)
accesses, slave components are assumed to be always ready and no extra
synchronization is necessary.

Automatic Generation of Communication Architectures 7

PE2_BF

TX_BF

M
 a s te rP

 ro to

S
la

ve
P

ro
to

M1Ctrl

IP1M1_BF

B2
.
.

Mem

B3

OSModel

PE1

B1

SlaveProto

SlaveProto

MasterProto

A0
I2

A2
L2

A1
M2

ISR

intA

mem mac intA intB

MasterProtoArbitration

IP_TX
SlaveProto

SlaveProto

Arbiter1

PIC

A2
L1

A3
M1

A4
I1

mem mac

Arbitration M/SProto

Arbiter2

char[512]

Bus2Bus1

IP1BusM1Bus

m
 a c m

a
c

Figure 3. Communication model example.

4.4 Arbiter/Interrupt controller insertion

If multiple master components are connected to a bus, arbitration
becomes necessary to resolve conflicting accesses of bus masters. The
arbitration mechanism will be instantiated from the bus database as part
of the bus protocol master implementation. All masters are assigned
additional arbitration ports connected to the arbiter on the bus. The
arbiter will be instantiated at the top level of a design together with
the arbitration wires. Based on design decisions, we generate a priority-
based or round-robin arbitrater component.

If a master communicates with more than one slave, it will require
an interrupt controller to handle synchronization requests from multi-
ple slaves. For each slave on a bus, an interrupt port is created and
connected to the corresponding interrupt wire on the bus. Finally, an
interrupt controller is generated and inserted into the bus master com-
ponent.

4.5 Bus wiring

After all bus-functional models of processing and communication ele-
ments are generated and/or inserted from the database, components at
the top of the design need to be connected to each other through bus
wires. Bus-functional component models define the bus ports of each
station. Connections between port and busses are defined through the

8

Table 1. Design decisions for link design.

Examples
Traffic Channel Medium
(bytes) (num.) (master/slave)

JPEG A1 2244 6 DSP Bus (DSP/IP)
A2 3420 13 DSP Bus (DSP/(IP,HW))

Vocoder

A1 46944 12 DSP Bus (DSP/HW)
A2 140832 36 DSP Bus (DSP/(2 HWs)
A3 154524 42 DSP Bus (DSP/(3 HWs)
A4 57160 29 2 DSP Bus (2 DSPs/2 HWs)

MP3
A1 0 0 CF Bus (CF)

A2 169747 66
CF Bus (CF/4 HWs)

4 Handshake Bus (4 HWs)

Baseband A1 178500 19
CF Bus ((CF,DMA)/(IP,DMA,MEM)

DSP Bus (DSP/(5 HWs)

port mapping. Finally, interrupt and arbitration lines are connected
based on the priorities selected by the user.

As a result, the final communication model of the design is gener-
ated. Figure 3 shows the communication model for the example from
Figure 2. Logical link channels from the link model have been inlined
into the connected components. Media access and protocol layer chan-
nel adapters are taken out of the bus database, inserted into the bus
functional model of the corresponding components and connected to the
logical link adapters. Additional communication elements such as inter-
rupt controllers (PIC) and arbiters (Arbiter1 and Arbiter2) are inserted
into the design. Inside programmable components (PE2), interrupt ser-
vice routines (ISR) and interrupt handling methods (intA and intB) are
generated and inserted for synchronization with other system compo-
nents (PE1 and IP1).

5. Experimental results

Based on the described methodology and algorithms, we developed a
link refinement tool for automatic generation of communication models.
We performed experiments using four industrial strength examples: a
JPEG encoder (JPEG), a voice codec (vocoder), an MP3 decoder (MP3)
and a baseband platform (Baseband) which combines a JPEG encoder
with a voice codec. For each example, we implemented several different
architectures. Table 1 shows the total traffic, the number of logical link
channels and the allocated architecture each.

Automatic Generation of Communication Architectures 9

Table 2. Experiment results of link refinement.

Examples
Lines of Code Tool Man. Gain

Link BF Mod. (ins. + del. − DB) (sec) (hr)

JPEG
A1 3464 5250 351 (1867 − 1618 + 102) 0.10 35.1 421
A2 3755 5655 303 (1975 − 1768 + 96) 0.10 30.3 364

Vocoder

A1 10980 11740 341 (794 − 487 + 34) 0.31 34.1 409
A2 11415 12205 405 (841 − 487 + 51) 0.33 40.5 486
A3 12276 13096 489 (897 − 487 + 77) 0.39 48.9 587
A4 14033 15220 757 (1309 − 674 + 122) 0.84 75.7 908

MP3
A1 29959 31666 375 (1822 − 1584 + 137) 0.44 37.5 450
A2 33905 36361 1198 (2724 − 1818 + 292) 1.06 119.8 1437

Baseband A1 20227 23027 1288 (3150 − 2212 + 350) 1.02 128.8 1545

Table 2 shows the results of link refinement. Overall model com-
plexities are given in terms of code size using lines of code (LOC) as a
metric. Results show significant differences in complexity between input
and generated output models due to extra implementation detail added
between abstraction levels. To quantify the actual refinement effort, the
number of modified lines is calculated as the sum of lines inserted and
lines deleted whereas code coming from database models is excluded. We
assume that a person can modify 10 LOC/hour. Thus, manual refine-
ment would require several hundred man-hours for reasonably complex
designs. Automatic refinement, on the other hand, completes in the or-
der of seconds. In order to compute the productivity gain, we assume
that design decisions (address/interrupt assignment, arbitration) for link
refinement can be done in 5 minutes. Results show that a productivity
gain of around 1000 times can be expected using the presented approach
and automatic model refinement.

6. Conclusions

In this paper, we presented a methodology to automatically gener-
ate communication models from a representation of the communication
topology and abstract communication channels going across. During
this link design process, logical links between adjacent components are
grouped and implemented over a system bus and link, MAC and protocol
layers are implemented at the interfaces of components.

Using several industrial-strength examples, the feasibility and benefits
of the approach have been demonstrated. Huge productivity gains can
be obtained using automatic link refinement. Our main contribution
in the paper is the automation of a time consuming and error prone

10

process to achieve better designer productivity, thus enabling designers
to explore a large part of the design space in a shorter amount of time.

References

[1] S. Abdi, D. Shin, and D. D. Gajski. Automatic communication refinement in
system-level design. In Proceedings of the Design Automation Conference, pages
300–305, June 2003.

[2] I. Bolsens, H. D. Man, B. Lin, K. V. Rompay, S. Vercauteren, and D. Verkest.
Hardware/Software co-design of the digital telecommunication systems. Pro-

ceedings of the IEEE, March 1997.

[3] W. O. Cesario, A. Baghdadi, L. Gauthier, D. Lyonnard, G. Nicolescu, Y. Paviot,
S. Yoo, A. A. Jerraya, and M. Diaz-Nava. Component-baed design approach
for multicore SoCs. In Proceedings of the Design Automation Conference, pages
789–794, June 2002.

[4] M. Coppola, S. Curaba, M. Grammatikakis, and G. Maruccia. IPSIM: SystemC
3.0 enhancements for communication refinement. In Proceedings of the Design

Automation and Test Conference in Europe, pages 106–111, March 2003.

[5] A. Gerstlauer, D. Shin, R. Dömer, and D. D. Gajski. System-level communi-
cation modeling for Network-on-Chip synthesis. In Proceedings of Asian South

Pacific Design Automation Conference, pages 45–48, January 2005.

[6] G. Gogniat, M. Auguin, L. Bianco, and A. Pegatoquet. Communication synthe-
sis and HW/SW integration for embedded system design. In Proceedings of the

International Workshop on Hardware-Software Codesign, pages 49–53, March
1998.

[7] T. Grötker, S. Liao, G. Martin, and S. Swan. System Design with SystemC.
Kluwer Academic Publishers, March 2002.

[8] P. Knudsen and J. Madsen. Integrating communication protocol selection with
partitioning Hardware/Software codesign. In Proceedings of the International

Symposium on System Synthesis, pages 111–116, December 1998.

[9] R. B. Ortega and G. Borriello. Communication synthesis for distributed embed-
ded systems. In Proceedings of the International Conference on Computer-Aided

Design, pages 437–444, November 1998.

[10] D. Shin, A. Gerstlauer, and D. D. Gajski. Communication link synthesis for SoC.
Technical Report CECS-TR-04-16, Center for Embedded Computer Systems,
University of California, Irvine, June 2004.

[11] T.-Y. Yen and W. Wolf. Communication synthesis for distributed embedded
systems. In Proceedings of the International Conference on Computer-Aided

Design, pages 288–294, November 1995.

