
Automatic Generation of Hardware dependent Software

for MPSoCs from Abstract System Specifications

Gunar Schirner, Andreas Gerstlauer and Rainer Dömer

Center for Embedded Computer Systems

University of California, Irvine, USA

{hschirne,gerstl,doemer}@uci.edu

Abstract— Increasing software content in embed-
ded systems and SoCs drives the demand to automat-
ically synthesize software binaries from abstract mod-
els. This is especially critical for Hardware dependent
Software (HdS) due to the tight coupling.

In this paper, we present our approach to automat-
ically synthesize HdS from an abstract system model.
We synthesize driver code, interrupt handlers and
startup code. We furthermore automatically adjust
the application to use RTOS services. We target tradi-
tional RTOS-based multi-tasking solutions, as well as
a pure interrupt-based implementation (without any
RTOS).

Our experimental results show the automatic gen-
eration of final binary images for six real-life target
applications and demonstrate significant productivity
gains due to automation. Our HdS synthesis is an
enabler for efficient MPSoC development and rapid
design space exploration.

I. Introduction

With the high degree of implementation freedom, design-
ing a modern complex MPSoC is challenging. Traditional
development flows inadequately address the vast exploration
space offered by the current manufacturing capabilities. Sys-
tem-Level-Design is accepted as one approach to address the
complexity challenges. Transaction Level Models (TLM) are
widely used for design space exploration and early develop-
ment. However, such TLMs typically are written manually
[15]. Moreover, mostly a TLM is not reused to generate the
final implementation [13]. This gap hinders industry from tak-
ing full advantage of Electronic System Level (ESL) design. To
increase productivity a design flow is needed that spans from
an abstract, untimed, and platform-agnostic specification down
to an actual implementation on real hardware [13].

In this paper, we present our ESL flow [3] that addresses
these issues by using a two-step approach as shown in Figure 1.
It first generates a TLM for design space exploration and then
uses the same TLM to automatically synthesize the software.
Our flow establishes a seamless solution from abstract specifi-
cation to final software implementation for a MPSoC.

Our design flow allows the user to describe the application
independent of the actual implementation (e.g. HW/SW split,
implementation of communication). Then, the user can ex-
plore the design space by entering architecture decisions into
the design flow. The flow automatically generates a TLM that
reflects the designers choices [11]. The generated TLM allows
for a fast and accurate validation, performance evaluation, pro-
totyping, and debugging of the complete system. Based on the

TLM

Designer’s
Architecture
DecisionsComp.

DB System Compiler
Specification

SW Synth.

CPU_3.binCPU_3.binCPU_3.bin
HW_3.vHW_2.vHW_1.v

HW Synth.

Exploration

Fig. 1. System Design Flow Overview.

performance results, the designer can then iteratively update
the architecture decisions.

Once the designer has determined a suitable platform using
the TLM, the same TLM then serves as an input to back-
end SW generation. Since the TLM is synthesis-complete, SW
generation can produce a final binary for each processor in
the system fully automatically. It extracts information to gen-
erate processor internal communication, external communica-
tion, and synchronization from the TLM, and it adjusts for
selected choice of multi-tasking.

The two-step approach of first generating the TLM exposes
all designer decisions in an early stage of the design. Automat-
ically generating the final binaries avoids a break in the design
flow, enables rapid implementation and avoids errors through
manual implementation. This makes intermediate TLM criti-
cal for exploration, since it reflects all decisions. In this paper,
we focus on the synthesis of hardware dependent software from
the generated intermediate TLM (highlighted by dotted line).

A. Related Work

System level modeling is important as a means to improve
the SoC design process. System Level Design Languages
(SLDLs) for capturing systems, jointly with HW and SW, have
been developed (e.g. SystemC [12], SpecC [8]). They have
been extensively used for modeling software (SW) and its exe-
cution in abstract form [17, 10] and in ISS-based co-simulation
[2, 5]. However, these approaches focus on simulation without
providing an automated path to implementation.

Traditionally, SW synthesis has been addressed from very
specific input models and with limited target architecture
support, e.g. POLIS [1] (Co-Design Finite State Machine),
DESCARTES [20] (ADF and an extended SDF), Cortadella
et al. [4] (petri nets). With the input choice, these solutions
clearly favor a particular application type. These approaches
do not provide an intermediate model for exploration that is
as versatile as our TLM. Instead, our solution uses a flexible
generic C-programming model as an input, produces a TLM
for prototyping and provides a path to the final binaries.

Cust. HW,
100MHz

Cust. HW,
100MHz

AMBA AHB

ARM7TDMI,
100MHz

B2 B3C1
C2

B1

B5

C3 B4

C4

Sp
ec

ific
ati

on
Pla

tfo
rm

Fig. 2. Example specification with architecture mapping.

Herrara et al. [14] describe SW generation from SystemC
by overloading SystemC library elements in order to reuse the
same model for specification and target execution. However,
the approach partly replicates the simulation engine on the
target and imposes strict input requirements. Our proposed
solution shows neither limitation. Krause et al. [18] generate
source code from SystemC mapped onto an RTOS. In addition
to RTOS mapping, our approach generates detailed communi-
cation and synchronization code, and the final target binary.

Gauthier et al. [9] describe a method for generating
application-specific operating systems and the corresponding
application SW. Their work focuses on the OS portion and
does not address external hardware (HW). Our solution, on
the other hand, explicitly includes heterogeneous external HW.
Yu et al. [25] show generation of application C code from
an SLDL, however without showing the final target binary.
Our approach includes the communication synthesis, multi-
task adaptation and the generation of the final binary image.

The Phantom Serializing Compiler [19] translates multi-
tasking POSIX C code input into flat C code by grouping
blocks to Atomic Execution Blocks and custom scheduling
them. It is oriented toward a pure SW solution. In contrast, we
address SW synthesis in a system context, specifically taking
HdS and external communication into account.

II. Software enabled Design Flow

We provide a two-step design flow that generates a system
TLM for performance estimation and early MPSoC develop-
ment. Furthermore, the TLM is used to automatically generate
SW binaries for all processors in a heterogeneous MPSoC.

The input to the flow is captured in an untimed, platform
agnostic algorithmic form using the SLDL SpecC1 [8]. We as-
sume computation to be grouped in behaviors (or processes).
Behaviors are connected via point-to-point channels, selected
from a feature-rich set of standardized channel types. These
channels allow for synchronous and asynchronous, blocking and
non-blocking communication (e.g. FIFO), as well as for syn-
chronization only (e.g. semaphore, mutex, barrier). The upper
portion of Figure 2 shows a simple specification example. It
contains sequential and parallel executing behaviors. Behavior
B2 and B3 communicate through channels C1 and C2. C1 and
C2 are of type ”double handshake” (blocking, synchronous,
non-buffered). C3 and C4 are finite depth FIFO channels.

As a second input, we require the architecture decisions from
the designer by an intuitive GUI. Architecture decisions include
allocation of processing elements (PEs) (e.g. processors, HW
components), mapping of behaviors to PEs. For behaviors
on a processor, we require mapping information to tasks and
their parameters (e.g. priority). The designer specifies also
the mapping of communication to busses. Example mapping
decisions are visualized in the bottom portion of Figure 2.

Based on this two inputs, the system compiler [3] automati-
cally generates a system TLM that reflects the architecture de-

1We use the SpecC SLDL for our experiments. The concepts
however, are applicable to other SLDLs such as SystemC as well.

Cross Compile and Link

Software Synthesis

TLM

C Code Build,Config.

Target Binary

SW DB
- RTOS
- Wrapper
- HAL

TLM (- SW)

+

ISS +
Wrapper

TLM (- SW +ISS)

Virtual Platform Exec.Hardware Platform Exec.

Code Gen. HdS Synth.

Fig. 3. Software synthesis flow.

cisions. The TLM allows for system exploration, performance
analysis and debugging (see example in Figure 4). The TLM
simulates multiple orders of magnitude faster than a ISS-based
model with few percent timing inaccuracy [21].

The same TLM serves as input for the back-end HW and
SW synthesis. The SW synthesis produces the final SW bina-
ries, executable on a set of processors composing the platform.
It generates the application code, and all drivers for communi-
cation in a heterogeneous system. Interrupt and polling-based
synchronization is supported, as selected by the designer. The
SW application executes on an off-the-shelf RTOS or by using
an interrupt driven system for small applications. The genera-
tion of the TLM has been described in [11]. This paper focuses
on SW synthesis from the generated TLM.

III. Software Synthesis Overview

The SW synthesis, Figure 3, uses the TLM as an input. The
TLM reflects all architecture decisions: allocation of computa-
tion to processing elements, selection of the scheduling policy
and mapping to tasks. Communication is mapped to a set of
busses and protocols, and its parameters are defined (e.g. ad-
dresses, synchronization type and interrupt allocation). There-
fore, the input TLM contains all structural and functional in-
formation needed for the target implementation.

Our software synthesis is divided into C code generation
and HdS synthesis. Our C code generation, similar to [25],
translates the hierarchical model in SpecC SLDL to C code,
resolving structural hierarchy, port and channel connectivity.

HdS synthesis generates code for processor internal and ex-
ternal communication, including drivers and synchronization
(polling or interrupt). It also generates code for multi-tasking
execution. To create the complete binary SW image, it finally
generates configuration and build files (e.g Makefile) which se-
lect and configure database components (e.g. RTOS, RTOS-
port). Using a cross compiler, the final target binary (or bina-
ries) is created, which can execute on the target processor(s) or
alternatively on a virtual platform. Our SW synthesis also cre-
ates the virtual platform by removing all SW running on each
processor from the TLM and replacing it with an Instruction
Set Simulator (ISS) model.

IV. Hardware dependent Software Synthesis

The HdS synthesis uses the system TLM as an input (see
example Figure 4). It was generated by the system compiler
based on the architecture decisions. The behaviors B1, B2
and B3 execute on the processor, while B4 and B5 are each
mapped to a HW accelerator. The TLM contains hierarchical
behaviors, channels and additional HW to reflect the platform.

The HdS synthesis parses the input TLM into an abstract
syntax tree and then operates on this tree for code genera-
tion. We distinguish three synthesis aspects: communication
synthesis, multi-task synthesis and the generation of the final
target image. The following sections describe each aspect.

CoreHALOS
CPU

Task
B2 Ne

t

C1

B1

Task
B3C2

RTOS MODEL TLM

M
AC

HW
Int

Timer

PIC

Source
Status
Mask

Control
Load
Value

INT

INTA INTB INTC

UsrInt1

SysInt

Dr
ive

r
Dr

ive
r

INTC
INTB
INTA

Sem2
Sem1UsrInt2

Ne
t

HW1

HW2

B4

B5

Net

MAC

Link

Net

MAC

Link

Fig. 4. Processor and application TLM.

A. Communication Synthesis

The communication synthesis deals with processor inter-
nal and external communication. In particular, it creates the
driver code for communication between the software and exter-
nal HW. It also generates the code for synchronization, inserts
stubs in the application code, and generates interrupt handlers
and/or polling code.

Internal Communication. Internal communication takes
place between tasks on the same processor. The channels C1,
C2, Sem1 and Sem2 are used for internal communication in
Figure 4. These are instances of our standard channels as also
used in the specification. To realize the particular communica-
tion on the target system, the abstract standard channels are
replaced with a target-specific implementation2. For example,
a blocking synchronous communication channel is realized on
an RTOS-based system with a semaphore, two events and a
memcopy using the services of our RTOS Abstraction Layer
(RAL), see Section B.

External Communication. To support heterogeneous
systems, we follow the ISO/OSI layering model [16] for our ex-
ternal communication. The channels C3 and C4 in the initial
specification (Figure 2), which perform external communica-
tion are refined by our system compiler to stacks of half chan-
nels (Net, Driver, and MAC in Figure 4). Also, corresponding
counterparts are inserted in the HW components (HW1 and
HW2). At the top of the stack, the typed data of the initially
abstract channel is marshalled into a flat untyped stream, a
common representation that can be interpreted regardless of a
node’s endianness and padding rules. The type information is
extracted from the user type definition captured in the SpecC
SLDL and marshalling code using standard conversion func-
tions is generated.

The next half channel Driver contains information about
the channel’s system-wide addressing and maps the end-to-end
channel to a set of point-to-point links. The slave in our exam-
ple is connected to the processor bus, allowing a direct com-
munication. However, complex communication schemes span-
ning multiple bus hierarchies are possible. Then, user messages
are packetized to minimize buffer requirements of intermediate
communication partners. Depending on the information in the
Driver channel, the corresponding source code is generated.

The driver also implements a channel-specific synchroniza-
tion mechanism, which will be explained in the next section.
The Driver transfers the data using Media Access Control
(MAC) layer services. According to the platform definition, the
HdS synthesis includes a processor-specific MAC implementa-
tion, which in a simple case may use the processor’s memory
interface.

2Note, the simulation environment is not recreated on the target.

HW2HW1 PIC Processor Core
INT B2 B3

IntC 1
2
3
4

Which Int.?
Int. Source?

Data Transfertim
e

t0
t1 t2

t5
t4 t5

Preemption by Int.Int

regB5regB4

Sem1.send()

Fig. 5. Events in external communication.

Synchronization. For a typical master/slave bus, external
synchronization is required for a slave to indicate it being ready
for a data transfer (e.g required data is available). The designer
choses the type of synchronization for each channel to be either
polling- or interrupt-based, and may share interrupts between
sources. These choices are reflected in the TLM.

If polling was chosen, polling code is synthesized as part
of the driver code. It accesses the slave’s polling flag using
MAC services analogous to external communication. Our HdS
synthesis generates polling code that uses RTOS services to
maintain the user selected polling period.

In case of interrupt synchronization, the TLM contains a set
of channels and behaviors modeling this synchronization. See
the set of behaviors an channels UsrInt1, UsrInt2, INTC, and
SysInt of Figure 4. IntC is shared between HW1 and HW2.
A semaphore channel (Sem1, Sem2) connects the interrupt
handlers with the driver code. To implement interrupt-based
synchronization, our HdS synthesis generates a chain of cor-
related code, which we describe using a event sequence when
sending a message from B5 to B2 (Figure 5).

At t0, B2 expects the message, waits on the semaphore Sem1

and yields execution to B3. At t1, B5 starts sending and signals
INTC. Hence, the Programmable Interrupt Controller (PIC)
sets Int, which triggers the interrupt chain in the processor
(labeled 1 through 4).

1. The low-level assembly interrupt handler (part of the
RTOS port stored in database) preempts B3, stores the
current context and calls the system interrupt handler.

2. The System Interrupt Handler (SysInt in the TLM) com-
municates with the PIC, determines the highest prior-
ity pending interrupt, and then invokes the appli- cation-
specific interrupt handler (INTC in the TLM). The SysInt

code is one element of the Hardware Abstraction Layer
(HAL) stored in the database.

3. The application-specific INTC determines the source of
the shared interrupt by reading a status register in HW1

and HW2. It then calls the corresponding User Interrupt
Handler (UsrInt2).

4. UsrInt2 calls the semaphore Sem1 to release the driver
code execution in B2. The semaphore channel uses inter-
nal communication services (Section A).

After releasing semaphore Sem1, the interrupt handler ter-
minates, B2 is scheduled and reads the data from HW2.

For HdS synthesis, we implement this chain on the processor.
The code for 1+2 is taken from the database, 3+4 are gener-
ated (3 based on INTC and 4 on UsrInt2). Our HdS synthesis
generates startup code to register INTC to the system inter-
rupt handler using the TLM’s architectural information. It
also generates code to instantiate the semaphore channel and
inserts proper calls into the driver code.

B. Multi-Task Synthesis

In order to execute multiple tasks on the same processor,
multi-task synthesis generates code that uses the underlying

multi-task engine. We support the traditional execution on
top of an off-the-shelf RTOS and furthermore provide an alter-
native of interrupt-based multi-tasking on a naked processor
without an OS.

HALInterrupts
RTOS

RTOS Abstraction Layer
Drivers

SW Application

(a) RTOS-based

HALInterrupts

RTOS Abstraction Layer
(emulation)

Drivers
SW Application

(b) Interrupt-based

Fig. 6. Software stack.

RTOS-based Multi-Tasking. Our multi-task synthesis

makes use of a canonical OS interface, which we call the RTOS
Abstraction Layer (RAL), see Figure 6(a). The very thin RAL
(few hundred lines), abstracts from the particular OS’s func-
tion names and parameters. We have chosen the RAL ap-
proach to limit the interdependency between synthesis and
target RTOS. Also, the processor internal communication uses
RAL services to implement our standard channels. To ensure
a generic API, we investigated different RTOS APIs (uCOS-II,
vxWorks, eCos, ITRON, POSIX).

The input TLM contains mapping of behaviors to tasks
(Task B2, Task B3) and their scheduling parameters. For
RTOS-based multi-tasking, the HdS synthesis extracts the task
control information from the TLM and generates task creation
calls to the RAL. It also realizes the task’s parameter set of the
TLM (e.g. priority, stack size) on the target. Our HdS syn-
thesis translates SLDL statements for parallel execution into
fork/join services of the RAL.

Interrupt-based Multi-Tasking. In the second case, tar-
geting to a naked processor, the software execution is per-
formed without an RTOS. Instead, interrupts are utilized to
provide multiple flows of execution. We support this alterna-
tive for systems where RTOS execution is not desirable (very
few tasks, execution on a DSP, footprint limitations). Our mo-
tivating example of a speech codec implemented on a DSP is
shown in Section A.

For this interrupt-based alternative, the RAL (Figure 6(b))
implements an emulation, providing a subset of the RTOS ser-
vices needed for software execution (e.g. events, processor sus-
pension and interrupt registration).

We assume that each task is composed of a sequence of com-
putation (C), synchronization (S) and data transfers (T) as
shown in the example in Figure 7(a). If only interrupts are
used for synchronization, then the task main function is trans-
formed into a state machine shown in Figure 7(b). Each syn-
chronization point (e.g S1, S2) starts a new state (ST1, ST2).
The state machine transitions to the next state upon success-
ful synchronization (receiving of interrupt I1 or I2). Additional
states are inserted to represent conditional execution and loops
(ST0 initialization; ST1 loop head).

The task’s state machine is then executed in the interrupt
handlers, which were initially chosen for synchronization. The
task priorities can be preserved by choosing the interrupts ac-
cording to priority. The lowest priority task executes in the
main task (Tmain), the startup task of the processor.

Listing 1 outlines the produced C implementation. For ex-
planation assume that ST1 is the current state and that com-
putation C1 just finished. Next, the synchronization S1 is
checked (line 10). In case it has not yet occurred, the state
machine terminates (line 11) and so does the interrupt han-
dler. Receiving the next interrupt I1 sets S1.ready (line 2) and
executes the state machine again (line 3). It then passes con-

C0

C1
S1

C2
S2

T1

T2

(a) Input

ST0

ST3

ST2

ST1

C0

C1

S1T1

S2T2

I1

I2
C2

Cn

Sn

Tn

In

Computation
Synchronization
Transfer (Data)
Interrupt

(b) Output

Fig. 7. Reactive task template.

ditional (line 10), receives the data, and executes computation
C2. The do-while-loop transitions from ST3 to ST1 without
terminating the interrupt handler.

Listing 1 Interrupt-based multi-tasking excerpt.

1 void i n tHand l e r I 1 () {
r e l e a s e (S1) ; /∗ s e t S1 ready ∗/

3 executeTask0 () ; /∗ t a s k s t a t e machine ∗/
}

5 void executeTask0 () {
do { switch (State) {

7 /∗ . . . ∗/
case ST1 : C1 (. . .) ;

9 State = ST2 ;
case ST2 : i f (attempt (S1)) T1 rece ive (. . .) ;

11 else break ;
C2 (. . .) ;

13 State = ST3 ;
case ST3 : /∗ . . . ∗/

15 } } while (State == ST1) ;
}

C. Binary Image Generation

The generation of a complete target binary is the final aspect
of HdS synthesis. It generates configuration and makefiles,
which control compilation and linking of generated code and
database components, as illustrated in Figure 8.

Identifying the dependencies of each component is impor-
tant for an efficient database. It enables a flexible composition
of the final binary, while minimizing code duplication inside
the database. The matrix of arrows in Figure 8 symbolizes the
dependencies when selecting a component. The most specific
element is the RTOS port, since it depends on RTOS, proces-
sor, and cross-compiler (call frame and stack layout). The soft-
ware synthesis generates a customized Makefile, which selects
the components and generates the target binary. Automating
this step avoids duplication of the system configuration and
minimizes the user effort.

V. Experimental Results

To evaluate our approach, we have applied it to six real-life
examples. We will describe two examples in more detail.

Cross Compile
and Link

Software Synthesis
TLM

Gene-
rated
Code

Libs

Target Binary

SW DB
- RTOS
- Wrapper
- HAL

Appl.
Driver

Int.
Build and Configuration

RAL
RTOS

RTOS Port
Startup
HAL

Pr
oc

es
so

r
RT

OS
Co

mp
ile
r

Bo
ard

Code Gen. FW Synth.

Fig. 8. Synthesis of target image.

A. Interrupt-based Implementation Example

We start by showing a concrete example of an interrupt-
based multi-tasking implementation. We implemented a GSM
06.60 [7] transcoder on a Motorola DSP 56600 assisted by a
HW accelerator that performs the codebook search, and four
HW blocks for I/O. Since the DSP only executes two tasks
(and an RTOS port was not available for the DSP), we applied
our interrupt-based multi-tasking approach. The encoder exe-
cutes in Tmain and the higher priority decoder in the interrupt
handler IntB. Figure 9 shows the state machine for the de-
coder task, which consists of 4 states. ST1 and ST2 have
been created due to synchronization (S1, S3), which uses the
interrupt IntB. ST0 and ST3 are inserted to accommodate
initialization and post processing. A speech frame consists of
four sub-frames. Therefore, ST2 is repeated four times.

ST0

ST2

CInit

S2
Csub

ST1
S1
Cpre

IntB

ST3Cpost

IntB
4xfo

re
ve

r

Cinit Initialize the decoder
S1 Parameters available
T1 Receive parameters
CprePreprocessing (linear prediction)
S2 New sub frame ready
T2 Receive sub frame
CsubDecode sub frame
T3 Output sub frame
Cpost Post processing

T3

T1

T2

Fig. 9. State machine for GSM decoder.

Figure 10 shows the time line for transcoding one sub-frame.
At its start the processor is suspended, waiting for input data.
The encoder is triggered at t1 through IntC and the event e1.
After feeding the codebook accelerator, the encoder suspends
on e2 waiting for results. Later at t3, IntB signals availabil-
ity of a sub-frame for decoding. The decoder state machine is
executed in the IntB handler in the state ST2. It reads the
input data (T2), decodes it (Csub) and writes the results (T3)
to the output HW. The latter needs no synchronization, since
the output HW is always available. At t4, the decoder is pre-
empted by the higher priority IntC announcing the codebook
data availability through e2. The encoder resumes at t6 and
finishes at t7. The cycle repeats at t8 with the next sub-frame.
In total, 3451 interrupts are triggered, see Table II.

B. Exploration Example

We use an automotive example to illustrate the exploration
capabilities with respect to comparing the two multi-tasking
approaches. We model an Electronic Control Unit (ECU) con-
taining an ARM7TDMI processor. It executes three tasks:
anti-lock break control, RPM computation, and engine fan con-
troller. Six sensors and actuators are connected to two different
CAN busses, further three are attached to the processor bus
inside the ECU (Figure 11).

We generated code for both approaches, first toward ex-
ecution on top of the RTOS uCOS-II [22], and second for
interrupt-based execution. In the latter case, the fan control
was mapped to Tmain and the other two tasks were converted
to state machines. Table I compares the results.

ST
2

timet7
Tmain

IntA
IntB
IntC

t1 t2 t3 t4 t5 t6 t8

Csub T3T2

encoder encoder

decoder

e1

e2

e1

e2

e1

Fig. 10. GSM transcoding execution.

ECUCPU: ARMv7

AMBA AHB

CAN
Transducer

CA
N

Bu
s

Break Sensor

Left Rotation
Sensor

Left Break
Actuator

Right Rotation
Sensor

Right Break
Actuator

CAN
Transducer

CA
N

Bu
s

Temp.
Sensor

RPM
Sensor

Fan
Ralay

Dash-
board
display

Fan Control
RPM

Anti-Lock

Fig. 11. Automotive Example Application.

The automotive example profits from the interrupt-based
solution. Avoiding the RTOS code reduces footprint, since
a specific simpler code is used instead. Also, the allocated
stack size is reduced, since all tasks share the same stack. The
CPU busy cycles drop from 6.7 MCycles to 5.1 MCycles. The
RTOS startup is avoided and fewer cycles are needed for the
OS functionality (e.g for event handling and context switching)
due to simplicity.

As one detail, we analyze the interrupt latency, which we
define for this paper as delay between triggering the interrupt
wire to the first bus transaction retrieving the data. The la-
tency for the RPM task (until reading the RPM sensor) is
shorter (1001 instead of 1794 cycles), due to execution in the
interrupt handler itself. Additionally, we counted the occurring
interrupts. The number is reduced from 1478 to 1027, since the
interrupt-based solution does not use the timer. The number
of interrupts for data synchronization remains constant.

Our automotive example clearly benefited from the inter-
rupt-based execution. We position it, where applicable, as an
alternative in special cases (very few tasks, strict optimiza-
tion requirements, or unavailability of an RTOS). Since either
implementation can be generated automatically, such an ex-
ploration becomes easily possible.

C. Synthesis Results

To show the benefits of automatic HdS generation for a range
of applications, we have applied our HdS synthesis to six target
applications. The first two are the GSM and the car ECU. Ad-
ditionally, we examined a JPEG encoder, a SW MP3 decoder,
an MP3 decoder with 3 hardware accelerators and a combined
system with MP3 decoding and JPEG encoding. Table II sum-
marizes these results. The top section quantifies each target
applications’ complexity. It ranges from the simple JPEG with
2 I/O blocks to the Mp3 HW, which uses 2 I/O blocks, 3 HW
accelerators and 4 busses.

Next, the table shows the number of generated lines of code
for application and HdS, each for the RTOS-based and the
interrupt-based multi-tasking. We have not implemented the
GSM in an RTOS-based solution, since we had no RTOS port
available for the DSP. Also, we have not realized the Mp3 HW

+ JPEG example in the interrupt-based form, since it uses
services we do not intend to replicate with interrupts. In ex-
amples with HW support, the HdS code is larger, due to the
extra communication. In general a significant amount of code
is generated (e.g. 1186 lines for Mp3 HW + JPEG). In all

TABLE I
Automotive Example Results

Multi-tasking RTOS-based Interrupt-based

Footprint 36224 Bytes 21052 Bytes
Alloc. Stacks 4096 Bytes 1024 Bytes

CPU Busy Cycles 6.706 MCycles 5.106 MCycles
Latency RPM Task 1794 Cycles 1001 Cycles

Interrupts 1478 1027

TABLE II
SW Synthesis and Execution Results

Example Mp3 Mp3 Mp3HW
GSM Car JPEG SW HW + JPEG

Complexity
IO/HW/Bus 4/ 1/ 1 9/ 2/ 3 2/ 0 /1 2/ 0/ 1 2/ 3/ 4 6/ 3/ 4
SWBehaviors 112 10 34 55 54 90

Channels 18 23 11 10 26 47
Tasks/ ISRs 2/ 3 3/ 5 1/ 2 1/ 3 1/ 8 3/ 14

Lines of Code, RTOS-based
Application - 153 818 13914 12548 13480

HdS - 649 210 299 763 1186
Lines of Code, Interrupt-based

Application 5921 210 797 13558 12218 -
HdS 377 575 187 256 660 -

Execution, RTOS-based
CPU Cycles - 6.7M 127.7M 185.8M 44.5M 174.6M

CPU Load - 0.9% 100.0% 100.0% 30.9% 86.6%
Interrupts - 1478 805 4195 1144 1914

Execution, Interrupt-based
CPU Cycles 42.0M 5.1M 126.7M 182.3M 43.3M -

CPU Load 42.5% 0.7% 100.0% 100.0% 30.5% -
Interrupts 3451 1027 726 4078 1054 -

examples, our HdS synthesis completes in less than a second.
Manually writing the HdS would take 12 to 79 hours (assuming
15 lines of correct code per hour [24]3). This translates to a
tremendous productivity gain of 44,000x to 120,000x.

To validate the correctness of the generated code, we exe-
cuted each synthesized target binary on a virtual platform with
an integrated ISS (a Motorola ISS for the DSP; SWARM ISS
[6] for the ARM). Each application executes functionally cor-
rect, yielding an output matching the specification. Table II
shows execution statistics of the ISS cosimulation. As in the
car example, fewer CPU cycles (busy cycles only) are used in
the interrupt-based solution. However, the relative improve-
ment is marginal for the larger computation dominated appli-
cations. Similar to before, avoiding the OS timer tick reduces
the number of processed interrupts.

VI. Conclusions

In this paper, we have presented our systematic HdS synthe-
sis approach. Our HdS synthesis consist of three parts: com-
munication synthesis, multi-task synthesis and binary image
generation. It generates communication drivers, interrupt han-
dlers and adjusts for the target multi-tasking. Our approach
supports targeting toward an existing RTOS. Furthermore, it
offers an alternative to use interrupts for multi-tasking if an
RTOS-based execution is undesirable.

Our HdS synthesis is an integral part of our ESL flow. Begin-
ning from an abstract model, our flow automatically generates
a system TLM based on the designer’s architecture decisions.
From the generated TLM, our HdS synthesis automatically
generates the binaries for each processor in the system. To-
gether, a complete ESL flow for software is provided.

We have demonstrated our ability to automatically generate
the final binary image from an abstract specification using 6
real-life target applications: different media applications and
a control system. Our HdS synthesis allows to target different
processors, platforms and applications.

Automating the tedious and error prone process of manual
firmware development results in significant gains in designer

3Note [24] reports 27 lines in extreme programming (for a pro-
grammer pair), including debugging and testing time. Note also, we
assume a validated specification is available from which we synthe-
size equivalent correct code automatically.

productivity. Thus it enables rapid exploration of the embed-
ded software design space. In future, we plan to extend the
interrupt-based multi-tasking to cover additional OS services
and to further extend our SW database.

Acknowledgments. The authors thank the SCE research
team at the Center for Embedded Computer Systems at UC
Irvine for their support.

References

[1] F. Balarin et al. Hardware-Software Co-Design of Embedded
Systems: The POLIS Approach. Kluwer, 1997.

[2] L. Benini et al. MPARM: Exploring the Multi-Processor SoC
Design Space with SystemC. VLSI Signal Processing, 2005.

[3] Center for Embedded Computer Systems, UC Irvine. SoC En-
vironment (SCE). http://www.cecs.uci.edu/∼cad/sce.html.

[4] J. Cortadella et al. Task Generation and Compile Time
Scheduling for Mixed Data-Control Embedded Software. In
DAC, Los Angeles, CA, June 2000.

[5] CoWare. Virtual Platform Designer. www.coware.com.
[6] M. Dales. SWARM 0.44 Documentation. Department of Com-

puter Science, University of Glasgow, Nov. 2000. www.cl.cam.
ac.uk/∼mwd24/phd/swarm.html.

[7] European Telecommunication Standards Institute (ETSI). Dig-
ital cellular telecommunications system; Enhanced Full Rate
(EFR) speech transcoding, 1996. GSM 06.60.

[8] D. D. Gajski et al. SpecC: Specification Language and Design
Methodology. Kluwer, 2000.

[9] L. Gauthier, S. Yo, and A. A. Jerraya. Automatic Generation
and Targeting of Application-Specific Operating Systems and
Embedded Systems Software. IEEE TCAD, 20(11), Nov. 2001.

[10] P. Gerin et al. Scalable and Flexible Cosimulation of SoC
Designs with Heterogeneous Multi-Processor Target Architec-
tures. In ASPDAC, Yokohama, Japan, Jan. 2001.

[11] A. Gerstlauer, D. Shin, J. Peng, R. Dömer, and D. D. Gajski.
Automatic, Layer-based Generation of System-On-Chip Bus,
Communication Models. IEEE TCAD, 26(9), Sept. 2007.

[12] T. Grötker, S. Liao, G. Martin, and S. Swan. System Design
with SystemC. Kluwer, 2002.

[13] S. Heinen. HdS from Semiconductors Perspective. In Hardware
dependent Software Workshop at DAC, San Diego, CA, 2007.

[14] F. Herrera et al. Systematic Embedded Software Generation
from SystemC. In DATE, Munich, Germany, Mar. 2003.

[15] S. Hong et al. Creation and Utilization of a Virtual Platform for
Embedded Software Optimization: An Industrial Case Study.
In CODES+ISSS, Seoul, South Korea, Oct. 2006.

[16] International Organization for Standardization (ISO). Refer-
ence Model of Open System Interconnection (OSI), second edi-
tion, 1994. ISO/IEC 7498 Standard.

[17] T. Kempf et al. A SW performance estimation framework for
early System-Level-Design using fine-grained instrumentation.
In DATE, Munich, Germany, Mar. 2006.

[18] M. Krause, O. Bringmann, and W. Rosenstiel. Target software
generation: an approach for automatic mapping of SystemC
specifications onto real-time operating systems. Design Au-
tomation for Embedded Systems, 10(4):229–251, Dec. 2005.

[19] A. Nacul and T. Givargis. Lightweight Multitasking Support for
Embedded Systems Using the Phantom Serializing Compiler.
In DATE, Munich, Germany, Mar. 2005.

[20] S. Ritz et al. High-Level Software Synthesis for the Design of
Communication Systems. IEEE Journal on Selected Areas in
Communications, Apr. 1993.

[21] G. Schirner, A. Gerstlauer, and R. Dömer. Abstract, multi-
faceted modeling of embedded processors for system level de-
sign. In ASPDAC, Yokohama, Japan, January 2007.

[22] uCos-II. http://www.ucos-ii.com.
[23] I. Viskic, S. Abdi, and D. D. Gajski. Automatic generation of

embedded communication SW for heterogeneous MPSoC plat-
forms. In LCTES, Monterey, USA, June 2007.

[24] W. A. Wood and W. L. Kleb. Exploring XP for Scientific Re-
search. IEEE Software, 20(3), May 2003.

[25] H. Yu, R. Dömer, and D. Gajski. Embedded Software Gen-
eration from System Level Design Languages. In ASPDAC,
Yokohama, Japan, Jan. 2004.

