
Automatic Generation of Bus Functional Models from Transaction
Level Models

Dongwan Shin and Samar Abdi and Daniel Gajski

Technical Report CECS-03-33
November 18, 2003

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

{dongwans,sabdi,gajski}@cecs.uci.edu

1

Automatic Generation of Bus Functional Models from Transaction
Level Models

Dongwan Shin and Samar Abdi and Daniel Gajski

Technical Report CECS-03-33
November 18, 2003

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

{dongwans,sabdi,gajski}@cecs.uci.edu

Abstract

This report presents methodology and algorithms for generating bus functional models from transaction level models in
system level design. Transaction level models are often used by designers for prototyping the bus functional architecture of the
system. Being at a higher level of abstraction gives transaction level models the unique advantage of high simulation speed.
This means that the designer can explore several bus functional architectures before choosing the optimal one. However,
the process of converting a transaction level model to a bus functional model is not trivial. A manual conversion would not
only be time consuming but also error prone. A bus functional model should also accurately represent the corresponding
transaction level model. We present algorithms for automating this refinement process. Experimantal results presented using
a tool based on these algorithms show their usefulness and feasibility.

2

Contents

1. Introduction 1

2. Related work 2

3. Communication Refinement Flow 2

4. Communication architecture 2

5. Communication refinement 3
5.1. Application layer . 4

5.1.1 Addressing . 4
5.1.2 Data slicing . 4
5.1.3 Synchronization . 4
5.1.4 Interrupt Controller . 5

5.2. Multiple Masters . 5
5.2.1 Queue . 5
5.2.2 Arbiter . 5

6. Experiment Results 5

7. Conclusion and Future Works 6

i

List of Figures

1 Communication refinement engine . 2
2 A typical communication bus architecture . 3
3 Application layer for simple architecture . 3
4 Master and slave communication mechanism for simple architecture . 4
5 Interrupt controller and Slave communication mechanism . 5
6 Interrupt handler and Master communication mechanism . 6
7 Top level of the transaction level model . 7
8 Top level of the generated bus functional model . 8

ii

Automatic Generation of Bus Functional Models from Transaction Level Models

Dongwan Shin and Samar Abdi and Daniel Gajski
Center for Embedded Computer Systems

University of California, Irvine

Abstract

This report presents methodology and algorithms for
generating bus functional models from transaction level
models in system level design. Transaction level models
are often used by designers for prototyping the bus func-
tional architecture of the system. Being at a higher level
of abstraction gives transaction level models the unique ad-
vantage of high simulation speed. This means that the de-
signer can explore several bus functional architectures be-
fore choosing the optimal one. However, the process of con-
verting a transaction level model to a bus functional model
is not trivial. A manual conversion would not only be time
consuming but also error prone. A bus functional model
should also accurately represent the corresponding trans-
action level model. We present algorithms for automating
this refinement process. Experimantal results presented us-
ing a tool based on these algorithms show their usefulness
and feasibility.

1. Introduction

With the increasing complexity of System on a chip
(SoC) designs and the pressure of the time-to-market, we
are continuously faced with the challenge of implementing
the design specification while meeting the strict constraints
it imposes. In order to tackle these problems, Raising the
level of abstraction to the system level has been touted as a
main solution. However, a well-defined system level design
methodology and clear and unambiguous models of the dif-
ferent levels of abstraction in system design are necessary.

The transaction level modeling (TLM) [GLMS02] is
high-level approach to modeling the systems where details
of communcations among system components are separated
from the detail of the implementation of system components
and communication architecture. TLM aims at communica-
tion modeling so as to optimize simulation speed. TLM has
been considered to address needs for early architecture ex-
ploration and embedded software development. However,
much work still needs to be done to formalize the SoC de-
sign methodology and to adopt TLM in SoC design flow.

In SoC design, Communication synthesis requires exten-
sive design space exploration for communication architec-
ture. With a greater number and variety of components be-
ing put together on a chip, the task of communication syn-
thesis becomes more complicated. In order to choose the
right communication architecture for our designs, we need
to generate models that reflect the communication architec-
ture. These models are then evaluated through simulation
to test their “goodness”.

Typically, these models are handwritten, which poses a
number of problems. First of all, a lot of time is spent in
writing these models which is a serious handicap to the ex-
ploration process. The fewer architectures we test, the lower
is the probability of choosing the optimal one.

Secondly, model rewriting is an error prone process. It is
possible to introduce several errors while manually rewrit-
ing the model. Since the most systems contain at least one
processor, software is an essential part of the system. The
software can have concurrent execution of behaviors, which
should be scheduled with the help of an operating system.
The currency of the software makes software impossible to
debug. This makes the evaluation of our communication
architecture questionable.

Finally, clear separation of decision-making step and re-
finement step enables designers to implement systems with
their insight on the system and algorithm developers to im-
plement many efficient algorithms independently for design
exploration and synthesis.

In this report we look at how we speed up the commu-
nication synthesis process by enabling automatic model re-
finement. The rest of the report is organized as follows.
Section 2 is a brief review of the related work in this area.
Section 3 talks about our communication refinement flow.
In Section 4, communication architecture will be discussed.
Section 5 looks at tasks of communication refinement for
the system with dynamical scheduled behaviors. Finally,
we present experimental results in section 6 and concludes
this report with future works.

1

2. Related work

In recent years, a lot of attention has been given to mod-
eling and synthesis of bus architectures. Most of the work
has been done in optimizing communication architectures
for specific designs. Yen and Wolf [YW95] mapped a multi-
process description to processing elements (PEs) and devel-
oped heuristics to determine the communication resources
on the target architecture. In [GABP98], Gogniat et al. pro-
posed the communication interface generation method from
partitioned and scheduled system model for HW/SW inter-
faces for co-design of embedded systems. Ortega and Bor-
riello looked at a retargetable modeling scheme for max-
imum utilization of bus bandwidth in [OB98]. However,
they focused mostly on reactive real time systems.

CoWare [CoW] can support shared memory among het-
erogeneous processors but focuses on rendezvous commu-
nication protocol based on message passing. Jerraya et
al. [LYBJ01] [CBG+02] presented interesting schemes for
putting together heterogeneous components on a bus using
wrappers for design of application-specific multi-processor
SoCs. Grötker et al. talked about transaction level model-
ing in [GLMS02] that aims at communication modeling so
as to optimize simulation speed. However, they do not ad-
dress automatic refinement of a transaction level model to
produce a timing-accurate and pin-accurate bus functional
model.

3. Communication Refinement Flow

Figure 1 shows how communication synthesis is per-
formed in our SoC design methodology. We begin with a
transaction model of a system. It reflects the intended ar-
chitecture of the system with respect to the components that
are present in the design. Each component executes a spe-
cific behavior in parallel with other components. Commu-
nication inside a component takes place through local mem-
ory of that component, and is thus not a concern for com-
munication refinement. Inter-component communication is
point-to-point and takes place through abstract channels that
support send and receive methods.

The second input is a protocol library that a set of chan-
nels that model the protocols of system buses. These chan-
nels provide for the standard read/write methods for the bus
protocol. Additional methods may be required for more
complex designs that support arbitration, multiple interrupt
signals etc. Each bus transaction also requires definition of a
master and slave. Therefore, the protocol library must pro-
vide for unique channels for both master and slave sides.
The ports of the bus protocol channel represent the actual
bus wires which are later exposed in the bus functional
model.

The finnal input is a set of synthesis decisions by user.
The user provides a set of synthesis decisions like bus al-
location, bus mapping, connectivity, bus access priorities
etc. The decisions must input to the refinement engine us-
ing a specific format. Some typical features of the com-
munication architecture include the choice of system buses,
the mapping of abstract communication to these buses, the
connectivity between components and buses etc. Based on
these decisions, the refinement engine imports the required
protocols from the bus protocol library and generates inter-
faces and drivers for components so that they may talk over
the system buses. For the purpose of our implementation,
we annotated the input model with the set of synthesis de-
cisions. The refinement tool then detects and parses these
annotations to perform the requisite model transformations.

With these inputs, the communication refinement tool
produces an output model that reflects the bus architecture
of the system. In the output model, the top level of the de-
sign consists of system components and wires of the system
bus(es). The components themselves are refined to their
bus functional models that communicate using the system
bus(es). Our refinement implelements two-way blocking

Transactionlevel model

Bus functionalmodel

Communication Refinement Protocol
Library

GUI

Decision making
tools

Bus Allocation/
Connectivity/

Arbitration

Estimation

Figure 1. Communication refinement engine

message passing. In the case of two way blocking commu-
nication, both the sender and receiver must be blocked until
the transaction has completed. This mechanism is modeled
using events and blocking wait statements. As we can see,
the sender writes the data on a shared variable in the channel
and follows up by notifying the receiver. The receiver can-
not read the data until it gets the sender’s notification. This
guarantees the safety of the transaction. The ack event guar-
antees that the sender cannot rewrite on the channel until
the previous transaction has completed. Such a mechanism
is deterministic.

4. Communication architecture

In this section, we look at communication architecture
which is output of the communcation refinement. Our com-
munication architecture contains processing elements (PEs)

2

which communicate through the buses. Communication be-
tween processing elements is based on either message pass-
ing and global shared memory. In general, each PE has local
memories as part of the its microarchitecture. If the local
memory of a PE can be accessed from other PEs it becomes
global system memory. The union of all member variables
in PE will be stored in its local memory.

The PEs are decomposed of master and slave. The mas-
ter components can initiate the transaction and read (write)
data from (to) slaves. The slaves have memory-mapped reg-
isters which can be read and written by masters. In case
of design with more than one slaves on a bus, the system
needs interrupt controllers. Each master component has its
own interrupt controller to resolve the multiple interrupt re-
quests from slaves. For design with more than one masters
on a bus, we need an arbiter to resolve multiple requests to
bus from masters. For communication between masters, we
use the queue to buffer the transactions, because the mas-
ters cannot communicate each other directly. In the case of
multiple bus designs, system might need bus bridge which
connects buses. Figure shows the typical communication
architecture. Inside the PEs, behavior models of bus drivers

IC1
IC1

IC1
Master1

Master1

Arbiter

Slave1

Interrupt
Controller

Master1
Master

Queue1
Queue1Queue

Queue
Slave1

Slave1
Slave

System Bus

IRQ

BusReq/Gnt

IntrReq/
IntrAck

Figure 2. A typical communication bus architecture

and bus interfaces describe the PE’s communication func-
tionality, i.e. the implementation of the message-passing
communication over the bus protocols. Those bus adapters
specify how the PE implements the semantics of the abstract
channels by driving and sampling the wires of the system
bus. Behavioral blocks inside the PEs, in turn, connect to
the equivalent message-passing channel interface provides
by bus adapters.

The bus adapter channels are hierarchically composed
of two layers: a high-level application layer and a low-
level protocol layer. The protocol layer performs actual
bus transactions by driving and sampling bus wires. The

protocol layer is instantiation of the bus protocol from the
protocol library. At its interfaces to application layer, sits
on top of the protocol layer and provides the adapter’s outer
interface to the external world. Using the protocol layer
primitives, it performs the necessary synchronization, data
slicing, addressing to implement the communication over
the bus protocol. The application layer will be explained in
the next section in detail.

5. Communication refinement

In this section, we look at communication refinement
of a simplistic model. We will look at the basic tasks in-
volved in the refinement process before moving on to more
complex architectures. The design consists of two compo-
nents (a processor and a HW unit) communicating with two-
way blocking channels. All this communication needs to
be mapped to a single system bus in order to get a simple
bus architecture as shown in Figure 3. Four communica-
tion points are shown in the master and slave component.
Each communication point is labeled such that node A of
master talks to node A of slave, node B of master talks to
node B of slave and on. Implementation of data transactions
on the system bus is done by the Application Layer for that
variable. Each component in the design has a unique Ap-
plication Layer for every variable that it sends or receives.
The Application Layer essentially substitutes the original
abstract communication channel by implementing the data
transfer on the system bus. Additions made to the model
as a result of communication refinement are highlighted in
Figure 3.

System Bus

Synchronization

Write words

Addressing &Data slicing

bus driver

Sender

A

B

D

C

Synchronization

Read words

Addressing & Data Slicing

bus driver

Receiver

A

B

D

C

Figure 3. Application layer for simple architecture

3

5.1. Application layer

Application layer wraps up the protocol layer and pro-
vides the adapter’s outer interface to the external world. Us-
ing the protocol layer primitives, it performs the necessary
addressing, data slicing and synchronization to implement
the communication over the bus protocol.

5.1.1 Addressing

Virtual addresses on the application side have to be turned
into a bus adressing scheme. In general, bus address are
a combination of source PE, destination PE, and ID of the
message to be transfered. Depending on the application,
the bus addressing scheme can be simplified. For example,
if there is a predefined order of messages between two PEs
(which means PEs are statically scheduled), the message ID
can be removed from the address.

5.1.2 Data slicing

The abstract communication channels of the input model
perform transaction of complex variables with the help of
events. These complex variables could be structures, multi-
dimension arrays or integers. Eventually, they need to be
translated to a bit-stream to be sent over the system bus. On
the receiver side, this bit stream needs to be identified and
reassembled to the original variable. Data slicing algorithm
is explained in [ASG03] in detail.

5.1.3 Synchronization

Besides converting abstract data to bus words, we also
need to preserve the communication semantics of the input
model. In the case of abstract channels, each data transac-
tion is independent and does not interfere with other trans-
actions. However, once all those independent data transac-
tions are mapped on the same bus, they have to share the
same communication medium and synchronization events.
Therefore, it is necessary to generate additional synchro-
nization code so as to avoid conflicts on the bus. This syn-
chronization is inserted around the data splitting and trans-
fer code in the application layer.

If there are a set of concurrent behaviors inside compo-
nents, the behaviors can be scheduled statically or dynam-
ically. If the two communicating components have stati-
cally scheduled behaviors, there would be no possibility of
temporal overlap of communication. In the two component
design scenario, this amounts to communication between
two concurrent processes. This is well explained in this
paper [ASG03]. In this report, we will focus on commu-
nication between components with dynamically scheduled
behaviors.

With dynamically scheduled components, we are faced
with a scenario where we might have temporal overlap of
communication. For instance, in Figure 3, transactions B
and C might overlap in time. In such a case, we have two
issues to look into.

Firstly, we have to determine the source of the data trans-
fer request. If the master gets an interrupt from the slave,
there is no way to tell if the slave is ready for transaction
B or C. In a normal addressing scheme, a query by the
master will only result in the slave component’s address.
To distinguish between the two transaction requests, each
variable (message) should be assigned a different address.
Moreover, the behavior of the interrupt handler on the mas-
ter side would be shown in Figure 4. On the master side,
we will also need separate message id (msg# ih) register
for each message. The master is waiting for message id
(msg# waiting). The interrupt handler on receiving an in-
terrupt event reads the message id (msg# ih) from the reg-
isters inside the slave with slave address. After getting an
acknowledge from master, the slave will put the variable
address on the bus.

Secondly, with temporal overlap of communication, we
need to control access to the IO port of the component.
Therefore each data transfer has to be treated like a critical
section. To ensure this, we can use the semaphore for the
IO protection of the software components, and for hared-
ware component, hardware protection mechanism like test-
and-set. Note in Figure 4 that each access to the IO port is
protected. The code generated in application layer for each
component must ensure that the IO port is reserved before it
is used. subsectionMultiple Slaves This is a typical SoC de-

Master Application Layer Interrupt Handler

A0SlaveReady
== false

A1

msg#_ih ==
msg#_waiting

A3
Reserve I/O ports;
MasterRead/
 Write(Slave#, msg)

A4

I0

IRQ == true

I3 msg#_ih = msg#;
Release I/O ports

SlaveReady = false
Release I/O ports;

SlaveReady
== false IRQ ==

false

A2

I/O ports
== free

I/O ports
!= free

I1

I/O ports == free

I/O ports
!= free

I2

Reserve I/O ports;
SlaveReady = true;
MasterRead(
 Slave#, msg#)

Master Component

S0

I/O ports == free

S2
SlaveWrite(
 slave#, msg#);
IntrReq = false

S3

S4

SlaveRead/
 Write(slave#, msg)

Release I/O ports

S1 Reserve I/O ports;
IntrReq = true

I/O ports
!= free

Slave Component

Slave Application Layer

msg#_ih !=
msg#_waiting

Figure 4. Master and slave communication mechanism
for simple architecture

sign where several slave components talk to a single master.
In some ways, this case is similar to multi-threaded dynam-
ically scheduled components that we discussed in the previ-

4

ous section. However, there are several independent inter-
rupt lines and the master, which is typically a processor, has
only one incoming interrupt line in its bus functional model.
Some processors may have more than one interrupt, with an
interrupt controller built in. The way we handle this is by
parameterizing the processor components.

5.1.4 Interrupt Controller

If the number of slaves is more than the number of interrupt
ports on the processor’s interface, we generate an interrupt
controller. A generic interrupt controller for a master com-
ponent consists of Interrupt Request ports, Interrupt Ac-
knowledge ports labeled IntrReq and IntrAck respectively,
as shown in Figure 5. Depending on the synthesis deci-
sion, we generate a priority based or round-robin interrupt
controller. In Figure 5, Select function implements these
arbitration scheme in interrupt controller. Upon choosing a
slave request, the controller sends an interrupt event to the
master component and an acknowledge signal to the cho-
sen slave. For the master component, there is no change

S0

I/O ports == free

S2
SlaveWrite(
 slave#, msg#);
IntrReq = false

S3

S4

SlaveRead/
Write(slave#, msg)

Release I/O ports

C0

IntrReq == true

C1
Slave# =
 Select(IntrReqs);
IRQ = true

C3

IntrAck[slave#] = falseS4

IntrAck[slave#] = true;
IRQ = false

IntrAck == true

IntrAck
== false

IntrReq
== false

S1 Reserve I/O ports;
IntrReq = true

I/O ports
!= free

Slave Application LayerInterrupt Controller

C2 SlaveWrite(
 IC#, slave#)

Figure 5. Interrupt controller and Slave communica-
tion mechanism

in the application layer. Since each variable carries its own
address, the master does not make any distinction based on
the slave component. However, the operation of the slave
component has to be changed in the presence of other com-
peting slaves. As shown in Figure 5, the slave sends an
interrupt request to the interrupt controller and waits for the
acknowledge. If the controller gives acknowledge to an-
other slave, the request signal must be kept high to compete
for the next acknowledge cycle. The interrupt handler inside
the interrupted master will get the memory mapped register
address of the slave from the interrupt controller, and read
the address of the variable on the bus from the slave. After
getting an acknowledge signal, the slave will put the vari-

able address into its memory-mapped register and continue
as before.

5.2. Multiple Masters

5.2.1 Queue

The master components cannot communicate directly with-
out the help of the components which buffer the message
among master components. Because the master compo-
nents have the out-going address buses and can’t be slave
on the bus. In our implementation, we choose the FIFO
queues to perform data transactions among master compo-
nents. The FIFO queue serves slave on the bus. Each master
component has its own queue to get the message from other
master components. Master components will write message
ID and message to the queue of other master components
which they want to transfer messages. Then, if there are
messages in the FIFO queue, the FIFO queue will interrupt
the the master component. The master component will read
message ID and message data from the queue.

5.2.2 Arbiter

For buses that support arbitration, the designer may desig-
nate more than one master as shown in Figure 6. The arbi-
tration mechanism could either be distributed or centralized.
For distributed arbitration, we rely on the protocol channel
to provide for an appropriate method to request bus arbi-
tration. Essentially, the master side protocol should have a
special method which is annotated to be identified as the bus
arbitration method. If such a channel method is not found,
we have to generate a centralized bus arbiter as per the re-
quirements. Based on synthesis decisions, we generate a
priority-based or round-robin arbitration unit. The arbiter
behavior is exactly like that of an interrupt controller, except
that it resolves conflicts between masters. The arbitration is
implemented inside protocol layer, because generally, it is
the part of bus protocol.

6. Experiment Results

Based on the described methodology and algorithms, we
developed a communication refinement tool in C++. The
example was chosen as the GSM Vocoder which is em-
ployed worldwide for cellular phone networks. The model
was based on the bit-exact reference implementation of the
ETSI standard in ANSI C. It encodes 5 ms of speech data
consisting of 163 frames. Different architectures using the
Motorola DSP56600 processor and custom hardware units
were generated and various bus architectures were tested.
Table 1 shows the data from tests conducted on 4 differ-
ent architectures of the GSM Vocoder. The total traffic per

5

Table 1. Experimental results for various vocoder architectures
Number of Number of Traffic/ Schedule TLM BFM Modified Automatic Manual

Components System Buses sample Method Size Size (LOC) refinement refinement
(bytes) (seconds) (person-hr)

1 DSP 56600 Static 10270 12554 2284 0.701 230
+ 1 (Motorola DSP bus) 36512

1 standard HW Dynamic 10307 13304 2997 0.714 300
1 DSP 56600 Static 9968 11279 1311 0.439 130

+ 1 (Motorola DSP bus) 46944
2 standard HW Dynamic 10010 11611 1601 0.464 160
2 DSP 56600 Static 11049 15373 4324 1.597 430

+ 1 (Motorola DSP bus) 57276
2 standard HW Dynamic 11103 16739 5636 1.687 560
2 DSP 56600 Static 35309 44771 9462 3.047 950

+ 2 (Motorola DSP bus) 121924
3 standard HW Dynamic 35496 45557 10661 3.156 1070

Master Application Layer Interrupt Handler

A0
Slave

Ready[slave#]
== false

A1

msg[slave#] ==
msg#_waiting

A3 Reserve I/O ports

A4 MasterRead/
Write(Slave#, msg)

A5

I0

IRQ == true

MasterRead(IC#, Slave#);
SlaveReady[slave#] = true

I3

MasterRead(Slave#, msg#);
msg[slave#] = msg#;
BusReq = false

I4

BusReq = false;
SlaveReady[slave#] =
 false;
Release I/O ports;

SlaveReady[slave#] == false

msg[slave#]
!= msg#_waiting

BusGnt == true

IRQ ==
false

BusGnt == true

A2

I/O ports == free

I/O ports
!= free

I1

I/O ports == free

I/O ports
!= free

I2

Master Component

BusGnt
== false

BusGnt
== false

BusReq = true

BusReq = false

Reserve I/O ports

BusReq = true

BusReq = false

Release I/O portsI5

Figure 6. Interrupt handler and Master communication
mechanism

speech sample refers to the amount of data exchanged be-
tween components during course of one simulation with a
sample speech of 163 frames. Note that this data increases
with greater partition, which increases communication time.
To compare against the manual effort of model refinement,
we used the Lines of Code (LOC) metric. Even with a
very optimistic estimate of 10 LOC per person hour, man-
ual communication refinement takes several hundred hours
for reasonably complex designs. Automatic refinement on
the other hand completes in the order of a few seconds. The
productivity gain is enormous as a result of automatic re-

finement.
Snapshots from the GUI of our SoC design environ-

ment [APY+03] are shown in Figure 7 and Figure 8. The
design has 4 components, DSP0, DSP1, HW0 and HW1
communicating with abstract channels as seen in Figure 7.
One Motorola DSP56600 bus is used. The generated bus
functional model’s snapshot can be seen in Figure 8. Our re-
finement tool inserts two interrupt controllers for two DSP
processors and a queue and an arbiter. Note that the top
level consists of the components connected with wires of
the system buses.

7. Conclusion and Future Works

In this report, we suggested a methodology algorithms
to automatically generate bus functional models from trans-
action level model with abstract message passing semantics.
A tool has been developed and experiments were performed
to validate this concept. Simulations were done on input
transaction level models and output bus functional models
to ensure their semantic equivalence. Our main contribution
in this report is the automation of a time-consuming and er-
ror prone process to achieve better designer productivity.
It also enables designers to evaluate several design points
during exploration. Future work in this direction would in-
volve automatic generation of transducer to make different
bus protocols compatible.

References

[APY+03] Samar Abdi, Junyu Peng, Haobo Yu, Dongwan
Shin, Andreas Gerstlauer, Rainer Dömer, and
Daniel D. Gajski. System-on-chip Environ-
ment (SCE Version 2.2.0 beta): Tutorial. Tech-

6

Figure 7. Top level of the transaction level model

nical Report CECS-TR-03-18, Center for Em-
bedded Computer Systems, University of Cali-
fornia, Irvine, July 2003.

[ASG03] Samar Abdi, Dongwan Shin, and Daniel D.
Gajski. Automatic communication refinement
in system-level design. In Proceedings of the
Design Automation Conference, pages 300–
305, June 2003.

[CBG+02] W. O. Cesario, A. Baghdadi, L. Gauthier,
D. Lyonnard, G. Nicolescu, Y. Paviot, S. Yoo,
A. A. Jerraya, and M. Diaz-Nava. Component-
baed design approach for multicore SoCs. In
Proceedings of the Design Automation Confer-
ence, pages 789–794, June 2002.

[CoW] CoWare N2C. Available at http://www.
coware.com/cowareN2C.html.

[GABP98] Guy Gogniat, Michel Auguin, Luc Bianco, and
Alain Pegatoquet. Communication synthesis
and HW/SW integration for embedded sys-
tem design. In Proceedings of the Interna-
tional Workshop on Hardware-Software Code-
sign, pages 49–53, March 1998.

[GLMS02] Thorsten Grötker, Stan Liao, Grant Martin, and
Stuart Swan. System Design with SystemC.
Kluwer Academic Publishers, March 2002.

[GVNG94] Daniel D. Gajski, Frank Vahid, Sajiv Narayan,
and Jie Gong. Specification and Design of Em-
bedded Systems. Prentice-Hall, 1994.

[LYBJ01] Damien Lyonnard, Sunjoo Yoo, Amer Bagh-
dadi, and Ahmed A. Jerraya. Automatic gen-
eration of application-specific architectures for
heterogeneous multiprocessor system-on-chip.
In Proceedings of the Design Automation Con-
ference, pages 518–523, June 2001.

[OB98] Ross B. Ortega and Gaetanno Borriello. Com-
munication synthesis for distributed embedded
systems. In Proceedings of the International
Conference on Computer-Aided Design, pages
437–444, November 1998.

[RSV97] James A. Rowson and Alberto Sangiovanni-
Vincentelli. Interface based design. In Pro-
ceedings of the Design Automation Confer-
ence, pages 178–183, June 1997.

7

Figure 8. Top level of the generated bus functional model

[VT97] Frank Vahid and Linus Tauro. An object-
oriented communication library for Hard-
ware/Software codesign. In Proceedings of
the International Workshop on Hardware-
Software Codesign, pages 81–86, March 1997.

[YW95] Ti-Yen Yen and Wayne Wolf. Communication
synthesis for distributed embedded systems. In
Proceedings of the International Conference
on Computer-Aided Design, pages 288–294,
November 1995.

8

