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Abstract

As we are entering the network-on-chip era and system communication is becoming a dominating factor, communica-
tion abstraction and synthesis are integral to defining system design flows and methodologies. The key to the success of any
approach, however, are well-defined abstraction levels and models, which enable design automation for synthesis and verifi-
cation to achieve the required productivity gains. In this report, we define a flow of system communication abstraction layers
and corresponding design models that supports design automation for successive, step-wise refinement of communication from
abstract application transactions down to a bus-functional implementation. We applied the flow to the example of a mobile
baseband chip platform. Results show the trade-offs between accuracy and complexity of different transaction levels in the
flow. Furthermore, the experiments demonstrate the effectiveness and feasibility of an automated flow.
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Abstract

As we are entering the network-on-chip era and system
communication is becoming a dominating factor, commu-
nication abstraction and synthesis are integral to defining
system design flows and methodologies. The key to the suc-
cess of any approach, however, are well-defined abstrac-
tion levels and models, which enable design automation
for synthesis and verification to achieve the required pro-
ductivity gains. In this report, we define a flow of system
communication abstraction layers and corresponding de-
sign models that supports design automation for succes-
sive, step-wise refinement of communication from abstract
application transactions down to a bus-functional imple-
mentation. We applied the flow to the example of a mobile
baseband chip platform. Results show the trade-offs be-
tween accuracy and complexity of different transaction lev-
els in the flow. Furthermore, the experiments demonstrate
the effectiveness and feasibility of an automated flow.

1 Introduction

Raising the level of abstraction for the system-on-chip
(SoC) design is widely seen as a prominent solution for
closing the well-know and often-cited productivity gap.
System-level design flows, methodologies, and tools that
support design automation for synthesis of heterogeneous,
multi-processor SoCs are therefore crucial to closing this
productivity gap.

The key to the success of any of these approaches are,
however, well-defined design flows with clear and unam-
biguous abstraction levels, models, and transformations.
Multiple levels of abstractions have to be defined based on
a separation of concerns such that critical issues are ad-
dressed early while unnecessary and misleading details are
abstracted away. The gaps between levels should focus the
design on a single implementation issue only at each level.
Furthermore, only a formalized semantics of design mod-
els enables the application of design automation for syn-
thesis and verification.

As SoCs grow in complexity and size, on-chip commu-
nication is becoming more and more important. Further-
more, new classes of optimization problems arise as, for
example, communication delays and latencies across the
chip start dominating computation delays. Therefore, sim-
ple communication architectures purely based on bus struc-
tures and protocols are not sufficient any more. Therefore,
as we enter the network-on-chip era, more and more com-
plex network-based communication architectures and pro-
tocols are needed, and corresponding design flows need to
be developed. Again, applicability for both humans and
automated tools depends on well-defined design steps and
abstraction layers.

Abstracting communication based on a separation of
concerns is not a new concept and, for example, well estab-
lished in the networking world. However, communication
design for SoCs poses unique challenges in order to cover a
wide range of architectures from traditional bus structures
up to full networks while at the same time offering new
opportunities for optimizations based on the application-
specific nature of system designs. The goal is therefore,
to develop a SoC communication design flow that enables
rapid design space exploration through design automation
in order to achieve the required productivity gains while
supporting a wide range of implementations.

The rest of the report is organized as follows: in the rest
of this section, we will outline the design process and SoC
communication requirements in general, followed by an
overview of related work. In Section 2, the different lay-
ers of SoC communication functionality along which the
proposed communication design flow is structured are de-
scribed. Following the system design example of a mobile
baseband platform through the flow, the resulting design
models that form the core of the communication design
methodology are defined in Section 3 and the results we
obtained from applying this communication design flow to
the given system design example will be shown. Finally,
the report concludes with a summary and an outlook on
future work in Section 4.
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Figure 1: Communication design flow.

1.1 Design Flow

Typically, a system design process in general starts with an
executable description of the desired system functionality
[1]. Based on the fact that computation and communication
in a system are to a large part orthogonal and hence can be
separated, we can divide the system design process into
two major tasks [4]. First, computation design implements
the system computation on an architecture of processing el-
ements (PEs, i.e. software and hardware processors, mem-
ories, and IPs). In the resulting architecture model, PEs
communicate via message-passing channels. Then, com-
munication design implements this abstract communica-
tion between PEs over wires of busses and other communi-
cation structures. The result is a bus-functional description
of the system as a netlist of PEs connected via pins and
wires where each PE can then be further implemented in
software or hardware through a backend process.

Within this general framework, the communication de-
sign methodology is then defined as a set of models and
transformations between models that subdivides the com-
munication design flow into smaller, manageable steps.
With each step, a new model of the design is generated
where a model is a description of the design at a certain
level of abstraction, usually captured in machine-readable
and executable form, i.e. in a system-level design language
(SLDL). The abstraction level of each model is defined
by the amount of implementation detail contained in the
model, e.g. in terms of structure (space) or order (time),
as represented by the interfaces and semantics of the chan-
nels connecting PEs. At the start of the design process,
communication is described in purely behavioral or func-
tional manner through message-passing channels. At the
end of the communication design flow is a structural de-
scription of the communication architecture in the form of
wires connecting the pins of bus-functional PEs.

Communication design is then the process of moving

from one model to the next, gradually transforming mod-
els and refining the abstract communication in the archi-
tecture model down to its bus-functional implementation
(Figure 1). The abstraction levels and models at the core
of the methodology are defined such that models can be
generated automatically through corresponding refinement
tools. Refinement tools apply transformations to a model
in order to represent and implement design decisions taken
from the user or from an automatic synthesis algorithm.
With each design step, additional layers of communication
functionality are added to the design and inlined into the
processing elements for implementation. In the process,
channels between PEs abstracting the communication layer
are replaced with channels at the next lower level of ab-
straction. Depending on the specific refinement tools, all
or part of each communication layer are taken out of a set
of databases or generated on the fly.

1.2 SoC Communication

In general, SoC applications require reliable, synchronous
and asynchronous communication between entities. In
synchronous communication, both sender and receiver are
provided with information about the completion of the
transaction, i.e. delivery of data from sending to receiving
entity. Usually, this means that on both sides calls block
until it is guaranteed that data has arrived at/from the other
end1. Around the actual data transfer, this requires syn-
chronization to ensure that both sides have issued and en-
tered matching communication calls and/or that data has
been transfered and delivered to the caller successfully.
Note that synchronous communication precludes loss of
data but does not guarantee protection against date errors,
for example. Synchronous communication is often chosen
because it minimizes storage and by default, any lossless
communication without buffering has to be synchronous
and blocking.

Asynchronous communication, on the other hand, is less
restricted in that no feedback about completion of transfers
is provided or required. In the general case, communica-
tion calls on both sides do not block on successful data
delivery, i.e. communication partners are decoupled and
don’t need to be synchronized. Asynchronous communi-
cation enables and is a consequence of buffering of data
without overall synchronization. Asynchronous communi-
cation therefore acts like a FIFO queue where the queue
depth depends on the amount of buffering in the actual im-
plementation2. Note that independent of the blocking and

1Calls might not block on delivery if data is buffered and some other
mechanism (e.g. callbacks) is available to provide feedback about com-
pletion.

2If the implementation does not make any guarantees at all, queues of
depth zero are possible which, if lossless, are equivalent to synchronous
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non-blocking nature of communication in the synchronous
and asynchronous case, calls itself may be blocking or non-
blocking depending on how overflow of any available lo-
cal buffers is handled. For example, if data is simply dis-
carded when buffers are full, asynchronous sends are non-
blocking but lossy.

In both cases, reliable communication has to be lossless
and error-free, i.e. it is guaranteed that data that is put in on
the sender side will come out unchanged at the receiving
end. Reliability is achieved through flow control and/or er-
ror correction. Flow control is error prevention in that it
ensures that communication partners can not overrun each
other, thus avoiding data loss during the actual data trans-
fer. By matching data rates on both ends, including local
delays for processing of data, it guarantees that both sides
are free to send and receive. Therefore, during a transfer,
flow control needs to delay the faster end until it can be
made sure that the other side is ready. At the lowest level,
flow control requires some appropriate timing guarantees
in the implementation, for example by inserting delays or
wait states to communicate at a lowest common, fixed data
rate. On top of that, information about the state of data pro-
cessing needs to be exchanged, i.e. making sure that data is
available for sending (ready messages) or that the receiver
can accept data and has space to put it (acknowledgments),
in order to match data rates and delay the faster end by ap-
propriately blocking callers. Note that synchronization for
synchronous communication and flow control are related,
and the implementation of one can ease or even replace
the implementation of the other. For example, state infor-
mation provided by flow control can be used for synchro-
nization. In fact, flow control is a less restricted version of
synchronization of individual data elements, and without
buffering they are equivalent.

Error correction is necessary to deal with unreliable un-
derlying communication structures. Possible errors can in-
clude data (bit) errors or complete loss of data. Typically,
error correction requires detection of errors together with
retransmission of data. Error detection is usually based
on (negative or lack of) acknowledgments from receiver to
sender together with error checking at the receiving side.
Note that error correction can compensate for data loss due
to lack of or incomplete flow control. Therefore, if error
corrections is necessary for other reasons and if the perfor-
mance hit can be tolerated (e.g. if the likelihood of over-
flows is small), it can possibly replace flow control com-
pletely.

Both flow control and error correction can profit from
intermediate buffering of outstanding data in order to in-
crease performance and throughput by hiding and com-
pensating for communication delays and latencies (e.g.

communication.

to inject more data while waiting for replies or acknowl-
edgments). Also, intermediate buffers are unavoidable in
multi-hop communication architectures that require store-
and-forward configurations. However, buffering affects
synchronization and flow control, and it requires special
handling for their implementation. For example, buffering
without additional synchronization results in asynchronous
communication by definition, even though communication
from buffer to buffer (or between application and buffer) is
synchronous. Pairwise synchronization on each leg does
not provide end-to-end synchronous communication un-
less it can be guaranteed that synchronization for the same
data in intermediate way-stations happens simultaneously.
Otherwise, additional overall synchronization is required
to track the data across buffers on its path for synchronous
communication.

Buffers can be used to even out data rate variations in
general and for flow control in particular. Given large
enough buffers, explicit flow control can possibly avoided
all together as long as burst of data are guaranteed to fit
into the buffers. Otherwise, information about buffer fill
states needs to be exchanged. In any case, however, flow
control at lower levels needs to ensure that communica-
tion between buffers matches the rate at which data is read
from one buffer with the rate at which it can be stored in
the next. Note that in contrast to synchronization, reliabil-
ity of communication between buffers implies overall end-
to-end reliability. However, cross-influences between dif-
ferent communication streams due to sharing of resources
(e.g. buffers) usually requires end-to-end flow control in
order to avoid unnecessary blocking of others and hence,
in the worst case, the possibility of deadlocks in case one
stream saturates shared resources.

All in all, a communication design flow needs to take
all these issues into account in order to allow designing an
optimal communication architecture for a given SoC appli-
cation.

1.3 Related Work

There is a wealth of system-level design languages (SLDL)
like SpecC or SystemC [1, 2] available for modeling and
describing systems at different levels of abstraction. How-
ever, the languages itself do not define any details of actual
concrete design flows.

Recently, SLDLs have been proposed as vehicles for so-
called transaction-level modeling (TLM) of systems to pro-
vide communication abstraction [3]. However, no general
definition of the level of abstraction and the semantics of
transactions in such models have been given. Furthermore,
TLM proposals so far focus on simulation-purposes only
and they lack a path to vertical integration of models for
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implementation and synthesis.
There are several approaches dealing with automatic

generation, synthesis and refinement of communication
[6, 5, 7]. None of these approaches, however, provide inter-
mediate models breaking the design gap into smaller steps
required for rapid, early exploration of critical design is-
sues.

Finally, in [8], the authors show an approach for mod-
eling of communication at different levels of abstraction
with automatic translation between levels based on mes-
sage composition rules. However, they do no propose an
actual design methodology and their approach is, for ex-
ample, limited in its support for arbitration and interrupt
handling in traditional bus-based architectures.

2 Communication Layers

The communication design flow is structured along a lay-
ering of communication functionality. The implementation
of SoC communication is divided into several layers based
on separation of concerns, grouping of common function-
ality, dependencies across layers, and general applicability
of design space exploration through humans or automated
tools.

Layers are stacked on top of each other where a layer
provides services to the next higher layer by building upon
and using the services provided by the next lower layer.
In general, at its interface to higher layers, each layer
provides services for establishing communication channels
and for performing transactions over those channels. Chan-
nels are virtual mechanisms offered by a layer to transport
data between end-points created in the layer’s interface (by
communication partners in different PEs). They may be
stateful or stateless depending on whether their end-points
are associated with state in their implementation inside
the PEs. Similarly, channels can be connection-oriented
or connection-less depending on whether they implement
handshaking for channel setup before and/or after data is
exchanged.

Channels can be pre-defined/hardcoded statically as part
of the system configuration or established dynamically dur-
ing run-time. End-points and hence channels in the system
are distinguished by names, i.e. a channel is defined by
creating end-points with the same name in the layer’s inter-
face. At the interface to higher layers, logical channels be-
tween named end-points are defined and used to exchange
data at the level of the layer’s interface. Internally, a layer
will implement its channels by mapping each channel to
one or more channels in the next lower layer. As a result,
a layer inherits the communication functionality of its next
lower layer and provides its own, more powerful services
on top of that.

Channels at different layers and different channel types
in the same layer have different semantics for the transac-
tions performed over them. For example, they can vary in
the amount of synchronization or reliability they provide.
The services offered by a layer at its interface define cer-
tain semantics of transactions in the system where details
of lower layers (including the layer itself) are abstracted
away. In other words, semantics of transactions vary from
layer to layer and specific transaction semantics are defined
as the set of services (methods) declared in a layer’s inter-
face (API). Consequently, system communication can be
described as transactions on different levels of abstraction
corresponding to each layer of communication. Hence, by
implementing only higher layers of functionality and ab-
stracting system communication as transactions at the level
of a layer’s interface, each layer defines a model of the sys-
tem at a certain level of abstraction.

PEPE

App

Layer 1

Layer n-1

PEPE

App

Layer 1

Layer n-1

Channel n

n+1

(a) Input model n

PEPE

App

Layer 1

Layer n

Layer n-1

PEPE

App

Layer 1

Layer n

Layer n-1

Channel n+1

(b) Output model n+1

Figure 2: Model refinement.

With each step in the design flow, an additional layer of
communication functionality is introduced into the design
model. Therefore, as a result of each design step, a new
system model at the next lower level of abstraction is gen-
erated. As show in Figure 2, the design is refined stepwise
by inlining layers of communication implementation into
the design’s PEs and by replacing the communication be-
tween PEs (as represented by the channels connecting PEs)
with channels that model the transaction semantics behav-
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ior at the interface of the next lower layer in an abstract
manner. In each model, channels between PEs can gen-
erally be described in a purely behavioral manner or as a
hierarchical composition of channels from the next lower
layer. In the latter case, the hierarchically composed chan-
nel specifies how its layer is implemented on top of the
services provided by the next lower layer. Model refine-
ment is then the process of refining the channels in such a
way and inlining the functionality of the outer channel into
the PEs, exposing its subchannels in the process.

Depending on the type of PE, communication layers will
be realized in different form (software, operating system
kernel, device driver, hardware abstraction layer (HAL),
hardware) through the backend tools that take each PE
down to its cycle-accurate implementation. Note that lay-
ers of communication in the system model as a result of this
communication design flow serve as a specification of the
desired behavior for implementation in the backend tools.
Therefore, as part of synthesis of communication in hard-
ware and/or software in the backend, layers are possibly
grouped or merged for optimizations across layer bound-
aries.

2.1 Layers for SoC Communication

As outlined in Section 1.2, the SoC communication design
flow supports implementation of reliable synchronous and
asynchronous communication channels found in the ap-
plication. Implementation of synchronous communication
provides the corresponding guarantees about completion of
transactions. For asynchronous communication, no such
feedback is made available. In fact, neither are any guaran-
tees about buffer sizes made in that case and asynchronous
communication might even end up being implemented in
a synchronous form. If a defined amount of buffering is
required, queues of appropriate depth need to be imple-
mented as part of the application.

Communication layering is based on separation and
chaining of implementation issues like synchronization, re-
liability (flow control, error correction), sharing/multiplex-
ing (requiring separation in time and space, e.g. arbitra-
tion and addressing), and partitioning (bridging, routing).
Depending on the amount of communication functionality
implemented, communication semantics vary from layer
to layer in whether transactions are synchronous/asyn-
chronous or reliable/unreliable. For example, implementa-
tion of a communication aspect in a layer might affect se-
mantics, resulting in communication that is asynchronous
instead of synchronous or unreliable instead of reliable,
e.g. due to unavoidable buffering in bridges. Layers then
need to be added above to compensate for these side ef-
fects. For example, the purpose of implementation of syn-

chronization in one layer is to provide synchronous com-
munication on top of underlying asynchronous transac-
tions.

Table 1 summarizes the layers for SoC communication
by listing for each layer its interface of services offered to
the layer above, its functionality, and its level of imple-
mentation in the PEs. The ISO OSI reference model [9]
was consulted as an initial general guideline for develop-
ing the layers and corresponding OSI layers are noted for
each SoC communication layer. Note, however, that due to
the unique features and characteristics of SoC communica-
tion, layers have been tailored specifically to these require-
ments. As a result, layering of SoC communication func-
tionality deviates from the OSI layers defined for classical,
general-purpose computer networking. Compared to the
OSI model, layers have been split or combined to satisfy
these needs, especially for support of traditional bus-based
communication at the lower levels [10]. In the following,
we will describe and define each layer in more detail:

Application Layer The application layer corresponds to
the computation functionality of the system which de-
fines the behavior of the application implemented by
the system design. During the computation design
process, the initial specification of the desired system
behavior has been mapped onto a set of PEs. Inside
each PE, the parts of the initial specification mapped
onto that PE form the PE’s application layer. The ap-
plication layers describe the processing of data in the
PEs. PEs exchange data by passing messages over
named channels with synchronous or asynchronous
semantics where channels with different names are
used to distinguish among data of different purpose.

Presentation Layer The presentation layer provides ser-
vices to establish named channels between PEs and
to reliably send and receive messages of arbitrary, ab-
stract data type over them. Each presentation layer
channel carries messages of a fixed type where a se-
quence of messages of the same type can be trans-
fered repeatedly over a named channel. In general,
the presentation layer provides synchronous and asyn-
chronous channels depending on the application re-
quirements.

The presentation layer becomes part of the applica-
tion software and is responsible for data formatting.
It converts abstract data types in the application to
blocks of ordered bytes as defined by the canonical
byte layout requirements of the lower (network) lay-
ers. For example, the presentation layer takes care of
PE-specific data type conversions and endianess (byte
order) issues.
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Layer Interface semantics Functionality Impl. OSI

Application N/A • Computation Application 7

Presentation
PE-to-PE, typed, named messages

• v1.send(struct myData)
• Data formatting Application 6

Session
PE-to-PE, untyped, named messages

• v1.send(void*, unsigned len)

• Synchronization
• Multiplexing

OS kernel 5

Transport
PE-to-PE streams of untyped messages

• strm1.send(void*, unsigned len)

• Packeting
• Flow control
• Error correction

OS kernel 4

Network
PE-to-PE streams of packets

• strm1.send(struct Packet)
• Routing OS kernel 3

Link
Station-to-station logical links

• link1.send(void*, unsigned len)

• Station typing
• Synchronization

Driver 2b

Stream
Station-to-station control and data streams

• ctrl1.receive()

• data1.write(void*, unsigned len)

• Multiplexing
• Addressing

Driver 2b

Media Access
Shared medium byte streams

• bus.write(int addr, void*, unsigned len)

• Data slicing
• Arbitration

HAL 2a

Protocol
Unregulated word/frame media transmission

• bus.writeWord(bit[] addr, bit[] data)
• Protocol timing Hardware 2a

Physical
Pins, wires

• A.drive(0)

• D.sample()

• Driving, sampling Interconnect 1

Table 1: Communication layers.

Session Layer The session layer provides named chan-
nels over which untyped messages can be transfered
reliably. Session layer messages are uninterpreted, or-
dered blocks of bytes. Session layer channels are used
to distinguish among communication end-points in
the system application where each channel can carry
an ordered sequence of messages. Channels are syn-
chronous or asynchronous and the session layer gen-
erally supports both types of channels.

The session layer is at the interface between appli-
cation software and operating system. If the layers
below are asynchronous, the session layer will im-
plement end-to-end synchronization to provide any
synchronous communication required above. Fur-
thermore, it is responsible for multiplexing messages
of different channels into a number of end-to-end
sequential message streams. Messages of different
channels at the session layer interface inside a single
PE are usually statically or dynamically ordered. If
all communicating PEs transmit messages of differ-
ent session layer channels in a pre-defined order, they
can be merged into a single stream directly. In gen-
eral, however, the session layer merges channels into
multiple concurrent streams or it implements name
resolution for multiplexing arbitrary messages over a

single stream (i.e. separating them in space; it does
not necessarily implement separation in time in those
cases and messages can enter the target stream con-
currently).

Transport Layer The transport layer provides services to
reliably transmit end-to-end streams of arbitrary, un-
typed messages (blocks of bytes). Channels at the
transport layer define the communication pipes be-
tween PEs in the system over which individual com-
munication sessions are handled by the layers above.
Transport layer channels are generally asynchronous
where the amount of buffering, if any (i.e. possi-
bly providing synchronous communication), gener-
ally also depends on the layers below.

The transport layer implements end-to-end data flow
as part of the operating system kernel. It splits mes-
sages into smaller packets, e.g. to reduce intermediate
minimum buffer sizes from whole messages down to
single packets. Depending on the links and stations
in lower layers, the transport layer implements end-
to-end flow control and error correction to guarantee
reliable transmission.

Network Layer The network layer provides services for
establishing end-to-end paths that can carry streams
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of packets. Depending on the layers below, the net-
work layer may or may not guarantee reliable deliv-
ery but in the general case, transactions are best-effort
only. Furthermore, channels are asynchronous de-
pending on both the layers below and the amount of
buffering introduced in the network layer itself.

The network layer completes the high-level, end-to-
end communication implementation in the operating
system kernel. It is responsible for routing of end-
to-end paths over individual point-to-point links. As
part of the network layer implementation, additional
communication stations (transducers) with intermedi-
ate buffering are introduced as necessary, e.g. to cre-
ate and bridge subnets, splitting the system of con-
nected PEs into smaller, directly connected groups.
Assuming reliable stations and links, routing in SoCs
is usually done statically, i.e. all packets of a chan-
nel take the same fixed, pre-determined path through
the system. In general, however, the network layer
can implement dynamic routing on a connection or
packet-by-packet basis to deal with changing under-
lying conditions. In all cases, the network layer is
responsible for separating different end-to-end paths
going through the same stations. In a simple imple-
mentation, a dedicated logical link is established be-
tween two stations for each channel routed through
them, assuming the underlying layers support a large
enough number of simultaneous logical links between
all pairs of stations. In the general case, multiple con-
nections are routed and multiplexed over a single log-
ical link and the network layer implements additional
addressing to distinguish different end-to-end connec-
tions.

Link Layer The link layer provides services to establish
logical links between adjacent (directly connected)
stations and to exchange data packets in the form of
uninterpreted byte blocks over those links. Depend-
ing on the lower layers, a number of named logical
link channels can be established between pairs of sta-
tions. Furthermore, links may or may not be reliable
and synchronous.

The link layer is the highest layer of drivers for ex-
ternal interfaces and peripherals in the operating sys-
tem, and it provides their interface to the rest of the
OS kernel. The link layer defines the type of a sta-
tion (e.g. master/slave) for each of its incoming or
outgoing links. As a result, it implements any nec-
essary synchronization between stations, e.g. by split-
ting each logical link into separate control (e.g. inter-
rupts or acknowledgments) and data streams as pro-
vided by lower layers.

Stream Layer The stream layer provides separate streams
for transporting control and data messages from sta-
tion to station. Data messages are arbitrary, uninter-
preted byte blocks. The format of supported control
messages, if any, is dependent on specific layer im-
plementations (e.g. simple handshaking in the case
of interrupt-driven synchronization). Stream channels
are generally asynchronous and unreliable. Reliabil-
ity of streams may depend on certain assumptions,
e.g. streams might guarantee reliability (or at least no
data loss) with proper prior outside synchronization.

The stream layer is the bottom part of peripheral-
specific drivers in the operating system. It is respon-
sible for merging and implementing multiple control
and data streams over a common, shared medium. As
such, it multiplexes and de-multiplexes streams, e.g.
by separating them in space (but not time) through
addressing. Note that since control streams might re-
quire very specific access formats, merging through
simple appending of addresses to control messages
might not be possible and other schemes like polling
might be required, for example in the case of interrupt
sharing.

Media Access Layer The media access layer provides
services to transfer blocks of bytes over channels rep-
resenting shared media between stations. Depending
on the type of medium, different categories of trans-
actions or different categories of information within
a transaction might be supported by a channel (e.g.
distinction of address, control, and data). In general,
a medium is asynchronous and unreliable. It usually
requires prior outside synchronization to avoid data
loss. Furthermore, a medium mar or may not be error-
free.

The media access layer implements the hardware ab-
straction layer for a station’s external interfaces. It is
responsible for slicing blocks of bytes into unit trans-
fers available at the interface. In the process, it’s im-
plementation has to guarantee that the rates of succes-
sive transfers within a block match for all communi-
cation partners. Furthermore, the media access layer
regulates and separates simultaneous accesses in time
(e.g. through arbitration). Depending on the scheme
chosen, additional arbitration stations are introduced
into the system as part of the media access layer.

Protocol Layer The protocol layer provides services to
transfer words or frames (i.e. groups of bits) over a
physical medium. Depending on the transfer modes
supported by the medium, different types of trans-
actions, e.g. for different word sizes might be avail-
able. A protocol layer channel is asynchronous, un-
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buffered, lossy, and it may or may not be error-free.
Since there is no buffering, it requires proper outside
synchronization to provide lossless communication or
any communication at all.

The protocol layer is the implementation of the
medium’s transfer protocol in the hardware of a sta-
tion’s interface. It is responsible for driving and sam-
pling the external pins according to the protocol tim-
ing diagrams and thereby matching the transmission
timing on the sender and receiver sides. As part of
the protocol layer, any repeater stations that connect
physical wire segments with matching protocols in or-
der to represent them as one common medium are in-
troduced as necessary.

Physical Layer The physical layer provides services for
writing to (driving) and reading from (sampling)
channels representing the wires connecting stations.
It implements the physical aspects of communica-
tion as the interface between digital hardware and the
analog real world. It is responsible for applying the
proper signals to the pins of a station’s external inter-
face such that the signal can be recognized and recon-
structed at the other side.

2.2 Communication Layer Stacks

In general, when implementing a specific stack of commu-
nication layers for a SoC design, implementations of indi-
vidual layers are dependent on each other. For example,
the implementation of higher layers depends on guarantees
and services provided by lower ones. On the other hand,
the specification for implementation of lower layers is de-
rived from the requirements of higher ones.

Therefore, whole stacks of communication layers are
traditionally designed together at once. For example, in
general-purpose networking standards where communica-
tion stacks have to support a wide variety of applications
with dynamically varying characteristics on top of any pos-
sible physical medium, whole layer stacks are designed
with the most general assumptions about requirements and
guarantees. Physical media are generally assumed to be
best-effort only, i.e. lossy and error-prone, requiring error
correction at higher layers. On the other hand, to support
both varying application requirements and unknown, long
media latencies in an efficient way, heavy buffering is em-
ployed. The required end-to-end flow control is then per-
formed together with end-to-end error handling in the up-
per layers. As a result of buffering, communication is usu-
ally asynchronous only and synchronization is added in the
topmost layers if necessary.

In SoCs, on the other hand, where the application is
known a-priori, layers can be designed together with defin-

ing the specific target communication architecture for im-
plementation such that the stack is optimized to application
requirements and physical characteristics. As the design
process moves from top to bottom layer by layer, only the
functionality required by the application is gradually im-
plemented. Each layer implements its part of the require-
ments and thereby defines the specification for the next
layer as the functionality remaining. However, in order to
implement higher layers efficiently and optimally, infor-
mation about basic characteristics of the underlying layers
needs to be available even in this case. For example, error
correction at higher layers depends on whether individual
links are reliable or not.

In typical, traditional bus-based SoC communication ar-
chitectures, individual point-to-point links are assumed to
be reliable with low latencies. Therefore, no error correc-
tion is required and point-to-point bus transactions are usu-
ally implemented synchronously without buffering. Net-
works of busses with bus bridges in between are required
to deal with incompatible bus protocols of IPs, or for per-
formance or other optimization reasons. In these cases,
buffering in the bridges generally requires end-to-end flow
control in higher layers, especially if resources are shared.
Furthermore, end-to-end synchronization across bridges
has to be added in the topmost layers if required by the ap-
plication. Finally, the application itself will implement any
additional deep buffering to avoid unnecessary blocking in
case of data rate variations.

An example of communication layers for a typical SoC
communication architecture is shown in Figure 3. The ex-
ample shows a part of a system with two processing el-
ements PE0 and PE1. At the application level, PE0 com-
municates with PE1 through two message channels, c1 and
c2. Furthermore, PE1 exchanges data with another remote
PE in the system through a channel c3. In the presentation
layer, abstract data types in the messages are converted into
canonical byte format in both PEs. In the session layer,
messages from c1 and c2 are merged into a single data
stream between PE0 and PE1. The transport layer splits
large messages into streams of packets in order to have uni-
form, smaller message sizes for buffering at lower layers.
In the network layer, the network architecture of stations
and links is decided upon and packets are routed accord-
ingly. In this example, PE0 and PE1 are directly connected
via a single logical link whereas PE1 sends and receives
data destined or originating from other PEs through a log-
ical link to a network interface which in turn will route the
data packets to/from the other PEs via its outgoing logical
link(s).

For both links between PE0 and PE1 and between PE1
and the interface, bus-based communication is used and
PE1 is declared the master whereas PE0 and the interface
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Figure 3: Communication architecture example.

act as slaves. Correspondingly, links are split into control
and data streams in the link layer where control streams
perform handshaking from slave to master and data streams
perform transfers under the control of the master. In the
stream layer, the two data streams in PE1 are then multi-
plexed over the single medium the PE is connected to by
assigning different addresses to each stream. In the media
access layer, data stream packets are sliced into bus words.
Furthermore, inside the bus master PE1 media access layer,
arbitration calls to request and release the bus are inserted
before and after each bus transfer. For the link between
PE0 and PE1, the bus is split into two segments and a re-
peater is inserted as part of the media access layer in order
to cope with slight variations in PE0’s and PE1’s bus pro-
tocols. The repeater connects the different bus protocols
and passes bus words and handshake events transparently
between them. Note, however, that the necessary buffer-
ing of words and events in the repeater will have the effect
of increased latencies. Finally, the protocol layer imple-
ments the protocols for driving and sampling the wires of
Bus0 connecting PE0 and repeater, and for Bus1 connect-
ing repeater, PE1, and the interface. The protocol layer
also implements handshaking in the form of interrupts be-
tween stations and the protocol for bus requests over the
arbitration bus in PE1.

The links to other PEs in the system going in and out
of the interface are implemented over a shared, long-
latency, error-prone network medium. The link layer im-
plements buffering, error correction and flow control to
provide high-performance, reliable link communication by
interleaving data and control over a single mixed byte
stream supported by the medium. The stream layer assigns

medium addresses to each link and the media access layer
then splits packets into media frames while participating in
the arbitration protocol on the medium (e.g. through col-
lision detection). Finally, the protocol layer converts the
media frames into bit streams on the physical wires, in-
cluding any special services required for arbitration (e.g.
listen-while-send).

3 Communication Models

A system model is generally a description of the system
at a certain level of abstraction, i.e. with a certain amount
of implementation detail. As outlined in the previous sec-
tion, during the design process, layers of communication
functionality are gradually inserted into the system design
model. With each step, a new layer of detail is added to
each PE (possibly introducing new components in the pro-
cess) and the channels between PEs are replaced with chan-
nels at the level of abstraction of the next lower layer’s
interface. Therefore, with each design step, the system
model is refined and a new type of model is generated. As a
result, there are generally as many system models as there
are communication layers.

In all but the lowest, physical model, communication
is described in an abstract, functional manner as transac-
tions over channels. Depending on the layer and hence the
model, channels support transactions with semantics at dif-
ferent levels of abstraction but in all cases communication
is behavioral. Only at the lowest level, communication in
the physical model is fully structural as a netlist of stations
connected by models of actual wires.
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A so-called transaction-level model (TLM) in general
is a model of a system in which communication between
components is described in a behavioral or functional view
(i.e. components communicating via channels), not in a
structural view (i.e. netlist of components connected via
wires). All the intermediate models in the communication
design flow are TLMs with transaction semantics at dif-
ferent levels of detail. Depending on the amount of detail
needed, each model presents a different view of the system
for different purposes.

3.1 System Modeling Example

In the following, we will use an example of a system
design to describe and define the different models corre-
sponding to the layers at the core of the communication
design process. The design being used as an example is
a mobile phone application stripped down to two typical
functional blocks. The specification model of the design
example is shown in Figure 4. At the top level, it con-
sists of concurrent functional blocks for JPEG encoding of
digital pictures and for voice encoding/decoding (vocoder)
on the transmission path to the base station. A channel
between the two blocks is used to send control messages
from the JPEG encoder to the vocoder. The JPEG encoder
[11, 12] is triggered by an external signal. After initial-
ization, stripes of raw pixels are received from the exter-
nal camera and encoded in blocks of 8x8 pixels in a four-
stage pipeline. The voice encoder/decoder [13, 14], on the
other hand, internally runs encoding and decoding blocks
in parallel. On the encoding side, voice samples from the
microphone are split into frames of 160 samples (20 ms
of speech) and further into subframes of 40 samples for
encoding into 244 bits per frame. On the decoding side,
the bit stream received from the radio is used to synthesize
frames of speech in a reverse process.

The system model for the example after computation de-
sign is shown in Figure 5. During computation design, the
application has been mapped onto a typical mobile phone
baseband platform consisting of subsystems for digital sig-
nal processing (DSP) and basic control. On the controller
side, a ColdFire processor is running the JPEG encoder
in software assisted by a hardware IP component for DCT
(DCT IP). Under the control of the processor, a DMA com-
ponent receives pixel stripes from the camera and puts
them in a shared memory (Mem) where they are then read
by the processor. On the DSP side, the DSP processor is
running encoding and decoding tasks in parallel. Tasks
are dynamically scheduled under the control of an operat-
ing system model [15] that sits in an additional OS layer
DSP OS of the DSP processor. Note that on the Cold-
Fire side, no operating system is needed and the OS layer

CF OS is empty. The encoder on the DSP is assisted by
a custom hardware coprocessor (HW) for the codebook
search. Furthermore, four custom hardware I/O processors
perform buffering and framing of the vocoder speech and
bit streams.

In the PE architecture model, processing elements com-
municate via message-passing channels. The communica-
tion design process gradually implements these channels
and generates a new model for each layer of communica-
tion functionality inserted. In the following sections, we
will describe and define the different communication mod-
els that correspond to the different communication layers.

3.1.1 Application Model

The application or presentation model for the design exam-
ple is shown in Figure 6. The application model is the start-
ing point for communication design and is mostly equiv-
alent to the architecture model that was the result of the
computation design process. However, as required for the
communication design flow, the purely behavioral DCT IP
component has been replaced with a model that encapsu-
lates a structural (bus-functional) model of the component
in a wrapper (DCTAdapter) that implements all layers of
communication with the IP. Since the IP’s communication
protocols are pre-defined and fixed, its communication can
not be designed arbitrarily and the wrapper provides the
necessary functionality to be gradually inserted into the
IP’s communication partners as design progresses.

The application model specifies the communication
functionality to implement. For each data item (variable)
communicated between PEs, the model contains a corre-
sponding typed message-passing channel. Communication
and channels at the application level are always reliable.
In this example, all channels between PEs are specified to
be asynchronous, i.e. the application does not require syn-
chronous messages. In general, channels at the application
level specify the synchronization requirements but not the
amount of buffering for implementation of the channels.
Instead, the amount of buffering in application-level chan-
nels will depend on their implementation in lower layers.
In the application model, channels can therefore have any
amount of buffering, e.g. some average, fixed number or,
if information about the implementation is available, they
can be annotated with estimated buffer sizes for feedback
during simulation.

In the application model, the shared memory PE is mod-
eled as a special channel. The memory channel encap-
sulates all data items (variables) mapped into the shared
memory component. At its interface, the memory channel
provides two methods for each data item to read and write
the item’s value from/to memory.
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3.1.2 Transport Model

The transport model of the design example is shown in Fig-
ure 7. Inside each PE, the model contains implementations
of the presentation and session layers. As will be explained
below, in this example, the session layer is empty. Note
that in the general case of systems with session layer func-
tionality, an additional intermediate session model of the
system would be available.

In the transport model, PEs are connected through trans-
port channels that carry streams of untyped (byte-level)
messages. In general, channels in the transport model are
always reliable. However, the transport model does not
specify the amount of synchronization and buffering in its
channels, i.e. channels are generally asynchronous and can
have any amount of buffering. On the other hand, if their
implementation is known or can be estimated, semantics
of channels in the transport model can be selected to re-
flect and abstract the behavior of their implementation.

Inside the PEs, the model contains presentation layer im-
plementations in the form of adapter channels that provide
the presentation layer API to the application on the one
side while connecting and calling transport layer methods
on the other side. As outlined in previous sections, the
presentation layer performs data formatting for every mes-
sage data type found in the application. Therefore, for each
application layer channel there are corresponding presenta-
tion layer adapters inside the PEs that convert the abstract
data types into byte blocks. Since the presentation layer
becomes part of the application, its adapter channels are
instantiated inside each PE’s application layer. Note that
for the IP component, presentation layer adapters were part
of the IP wrapper and have been inlined into the PE (Cold-
Fire) communicating with the IP.

As part of the presentation layer implementation, the
shared memory PE model has been refined down to an ac-
curate representation of the byte layout in the memory. All
variables stored inside the memory are replaced with and
grouped into a single array of bytes. As part of the pre-
sentation layer, layout and addressing of variables inside
the memory is defined based on the parameters (e.g. align-
ment) of the chosen target memory component. Instead
of accesses to individual variables, the memory PE in the
session or transport model only supports read and write ac-
cesses to blocks of bytes at a given offset in the memory.
The presentation layers inside the PEs accessing the mem-
ory are in turn responsible for converting application vari-
ables into size and offset for shared memory accesses.

The transport model generally also contains session
layer implementations inside the PEs. In this case, the ap-
plication only requires asynchronous communication and
the session layer does not need to implement any extra
end-to-end synchronization. Furthermore, all communica-

tion between the same end-points is sequential. Therefore,
no concurrent communication can be multiplexed over the
same transport stream (sequential communication, on the
other hand, is merged over single streams as much as pos-
sible in order to reduce the number of transport streams
in the system). Therefore, each transport will only carry
messages that are already sequentialized (ordered in time)
by the application. Since ordered messages going over
the same transport can be multiplexed directly, merging of
sessions over transports is resolved simply through proper
connectivity in the operating system layer of PEs (for hard-
ware PEs that don’t have an OS layer, an extra hardware
layer that will absorb all further communication implemen-
tation is inserted).

3.1.3 Link Model

Figure 8 shows the link model for the system design exam-
ple. In this design, both the transport and network layers
are empty, i.e. there are no additional layers implemented
in the PEs of the link model. Furthermore, the intermedi-
ate network model which would generally be available is
equivalent to the transport model and therefore not shown
here. The transport layer is empty for this example because
message sizes are small and deterministic such that extra
packeting of messages is not necessary. In addition, the im-
plementation of lower layers is known to provide reliable
communication without sharing of resources (buffers), i.e.
no end-to-end flow control or error correction is needed.
The network layer, on the other hand, is not required in this
design since all data is routed statically in a pre-determined
manner, i.e. the routing of the network layer can be mod-
eled through proper static connectivity of link level chan-
nels.

In the link model, end-to-end channels have been re-
placed with point-to-point logical links between adjacent
stations that will later be physically directly connected
through wires. Since it will be impossible to directly
connect the two processors in this example, an additional
Bridge station has been inserted into the link model, con-
necting the two subsystems. As a result, the end-to-end
channel between ColdFire and DSP processors has been
split into two links. The bridge in between then transpar-
ently forwards packets between the two links.

In general, channels representing the logical links be-
tween stations in the link model may or may not be reli-
able, synchronous, and buffered, i.e. the link model does
not specify how links should be implemented. Again, if
information about their implementation is available, on the
other hand, link channels can be chosen to model their ac-
tual, real behavior for feedback, e.g. during simulation. In
the case of this example, all logical links in the design are
known to be synchronous, reliable, and unbuffered and the
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model contains channels with corresponding semantics.

3.1.4 Stream Model

Figure 9 shows the stream model for the design example.
Implementations of the link layer in the form of adapter
channels have been inserted into the PEs for each logical
link in the design. Since the link layer is part of the operat-
ing system kernel, its implementation channels are inserted
into the OS layers of the PEs (or the communication hard-
ware layer for synthesizable PEs).

The link layer defines the types of each station and splits
the packet streams into separate control and data streams
as necessary. In this example, bus-based communication
is chosen for implementation and the ColdFire and DSP
processors are masters on their respective busses. Further-
more, the DMA component can act as both a master (for
communication with the memory) or slave (for communi-
cation with the processor) on the ColdFire bus. All other
PEs are bus slaves. Since communication with the DCT IP
component is compatible with this master/slave arrange-
ment of stations, the corresponding link layer implementa-
tion could simply be taken from the IP wrapper and inlined
into the CF OS model as link layer adapter channel.

Corresponding to the bus-based master/slave arrange-
ment of the example, each logical link has been split into
a data stream under the control of the master and a control
stream from slave to master. By synchronizing master to
slave through the control stream before a packet transfer
can be initiated by the master, packet losses are avoided
and reliable, unbuffered, and synchronous links are imple-
mented. Channels for data streams have special semantics
in the sense that they are synchronous and blocking on the
slave side and asynchronous and non-blocking on the mas-
ter side. Even though they are error-free, they are not re-
liable as packet losses can happen if transactions are not
properly synchronized beforehand. Control channels, on
the other hand, are simple handshake channels (queues of
depth one for control messages that do not carry values). In
general, semantics of channels in the stream model depend
completely on the chosen implementation scheme and no
general format can be defined.

In case of the shared memory PE, since the Mem compo-
nent is assumed to be always ready, no extra synchroniza-
tion through control streams is necessary. Instead, a single
data stream for memory slave accesses under the control
of bus masters is sufficient. In contrast to normal message
data streams, the memory data stream carries extra infor-
mation about the offset of the byte block being accesses
in each read or write transaction. Note that in the process
of explicitly modeling memory data streams, the memory
model has been refined into an active component listening
and serving request that come in over its data stream.

3.1.5 Media Access Model

The media access model for the design example is shown
in Figure 10. In the media access model, stations are
connected through channels representing the underlying
shared communication media. Media channels support
transactions for exchanging data packets in the form of
uninterpreted blocks of bytes. Due to the shared nature
of normal media, media channels usually allow multiple
virtual multi-point connections over them that can occur
concurrently, simultaneously and overlapping in time. In
general, media channels are asynchronous and they may or
may not be reliable and buffered. However, media channels
reflect and model the underlying communication medium
and the semantics and exact format of the transactions they
support therefore depend on the behavior and capabilities
of the chosen medium.

In this example, there are two busses, cfBus for the Cold-
Fire subsystem and dspBus for the DSP subsystem. Re-
flecting the master/slave behavior of bus-based communi-
cation, both media channels are unbuffered, error-free, and
asynchronous on the master side and synchronous on the
slave side. Note that bus media channels are not reliable
as packets can be lost if the slave is not waiting when the
master initiates a transaction. Both busses support multi-
ple concurrent and overlapping virtual connections through
addressing. Therefore, for each transaction, the bus ad-
dress of the virtual connection it belongs to needs to be sup-
plied to the bus channels. For communication with shared
memory components, the interfaces of the media channels
supports special split transactions that allow the memory
component to listen on the medium for a range of addresses
and then serve the transaction request after proper address
decoding.

Since in general and in this example, the medium for
communication with an IP component is proprietary and
not 100% compatible with other general media in the sys-
tem (as signified by different semantics and/or different
media interfaces), additional transducer stations that trans-
late between different media interfaces have to be inserted
in front of each IP in the media access model. In this ex-
ample, transducer T DCT performs the necessary address
translations between cfBus and dctBus.

The media access model adds implementations of the
stream layer for control and data streams inside each sta-
tion. For each data stream, adapter channels with imple-
mentations of its stream layer are inserted into the cor-
responding PEs and connected to the proper interface of
the media channel, e.g. to the master or slave side of the
medium. The data stream layers implement multiplexing
of data streams over a shared medium. In this example,
multiple data streams over the same medium are separated
through proper bus addressing where bus addresses are
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hardcoded when instantiating the data stream adapters.
Implementation of the stream layer of control streams

in the media access model generally depends on the un-
derlying medium. For example, control streams can be
implemented through normal or specialized media chan-
nel transactions. In the example of bus-based communica-
tion shown here, control streams are implemented through
processor interrupts. For each control stream coming into
the master processor, the processor’s OS layer exports a
method that implements the corresponding handshaking
control transaction. Slave PEs then simply call the corre-
sponding master method as they did with the control chan-
nel before. Inside the processors, control handlers then
implement the handshaking through semaphores that con-
nect to and signal the processor’s link layer as the control
channel did before. In case the processor is not running
an operating system (as is the case with the ColdFire pro-
cessor, for example), handshaking semaphores are imple-
mented by polling a flag set by the control handler when-
ever an interrupt occurs, suspending the main application
in between. In case the processor is running an operating
system (DSP), handshaking through semaphores has to be
under the control of the operating system and control han-
dlers therefore spawn special tasks that serve as the bottom
halves of the control handlers and implement the actual sig-
naling of the semaphores on top of the OS model.

3.1.6 Protocol Model

The protocol model of the design example is shown in Fig-
ure 11. The protocol model includes implementations of
the media access layer in the form of adapter channels in
all stations connected to a medium. For each media con-
nection in a station, a corresponding media access adapter
of the right type (e.g. master or slave access) is instanti-
ated. For the software processors, the media access layer
becomes part of the processor’s hardware abstraction layer
(HAL) and corresponding processor layers CF HAL and
DSP HAL that instantiate the media access layer adapters
are inserted for the ColdFire and DSP processors, respec-
tively.

In the protocol model, media channels have been re-
placed with shared protocol channels connecting the sta-
tions. Protocol channels model and provide all the possible
transactions supported over the actual physical medium.
The media access layers then use the different services and
transfer models available in the protocol to efficiently im-
plement media transfers, slicing data packets into actual
data transfer units (words or frames) supported by the pro-
tocol on the physical medium. In the case of the example
shown here, bus protocols support transactions for trans-
fers of standard 24-bit bus words with 16-bit addresses in
case of the dspProtocol or for byte, word, and long-word

transfers with 32-bit addresses in case of the cfProtocol.

Since the media access layer does not implement any
additional functionality, transaction semantics of protocol
channels and media channels in the media access model are
equivalent. Generally, protocol channels are asynchronous
and may or may not be reliable and buffered. Their actual
semantics and transaction format, however, are directly de-
pendent on and a direct reflection of the behavior and ca-
pabilities of the protocol they represent. In the case of
the example, bus protocols are asynchronous on the mas-
ter side, synchronous on the slave side, error-free but not
reliable against data loss (in case of not properly synchro-
nized transfers), and they support multiple virtual connec-
tions via bus addressing.

For shared memory transfers, protocol channels provide
split transactions that allow the shared memory to listen to
and serve incoming accesses. Furthermore, media access
layer implementations differ for normal message-passing
transfers and memory transfers. In case of message-
passing transfers, virtual protocol connections are only
needed to distinguish different message streams and the
same protocol address can be used for all successive trans-
fers in a message packet. For memory accesses, however,
protocol addresses have to be used to distinguish among in-
dividual addressable units (words) in the memory and ad-
dresses have to be incremented properly according to align-
ment for all successive transfers in a consecutive block of
data. Therefore, depending on the type of access, different
types of media access adapter channels can be instantiated
in a station for each type of media connection.

In contrast to media channels, protocol channels only
support one active transaction at any given time, even when
coming from different virtual connections. Therefore, in
addition to slicing of data packets into protocol units, the
media access layer implementations in the protocol model
also implement contention resolution according to the me-
dia’s access protocol in order to regulate conflicting ac-
cesses to the protocol channel. In case of bus-based com-
munication as in the example, contention can happen if
multiple masters are accessing the same bus. Since both
DMA and ColdFire are masters on the cfProtocol, their me-
dia access layer adapters implement bus arbitration before
each transfer by connecting to and communicating via an
additional arbitration protocol channel Arbiter. The arbi-
tration channel provides methods to acquire and release bus
access, and its model of arbitration behavior is provided in
the form of semaphore semantics.

As part of the media access layer implementation in
the protocol model, handshaking from slaves to masters
through control handlers exported by the processors is re-
fined down to the level of actual hardware interrupts avail-
able in the processors. The hardware abstraction layers
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of the processors export methods that implement the pro-
cessor’s interrupt handlers and that correspond to the ac-
tual interrupt vectors and interrupt sources supported by
the processor hardware. In general, for implementation of
handshaking, slaves in the protocol model call the appro-
priate interrupt handler assigned to them and the interrupt
handlers in turn call the control handler for the correspond-
ing slave in the processor’s OS layer. In case of interrupt
sharing due to limited numbers of interrupt sources in a
processor, interrupt handlers in the HAL together with ad-
ditional adapter channels in the control path of the slaves
implement polling of slaves to determine the actual inter-
rupt sources such that the right OS control handler can be
called. As shown in the example of the DSP HAL layer, in-
terrupt handlers for shared interrupts (interrupts from I/O
processors in this case) perform polling of slaves over the
bus through appropriate media access layer transactions. In
the slaves participating in the polling (I/O processors), on
the other hand, an extra layer of adapter channels that is
inserted in the path of handshaking calls from slave to pro-
cessor answers matching polling requests that arrive after
calling the assigned interrupt handler in the processor.

3.1.7 Bus-Functional Model

The final bus-functional or physical model of the system
design example used to demonstrate communication mod-
eling throughout the design flow is shown in Figure 12. In
the bus-functional model, components are connected and
communicating through signals representing and modeling
the actual physical wires of the chosen medium and their
associated wire semantics (driving and sampling transac-
tions). In the case of the example, components are con-
nected through set of wires forming the busses in the sys-
tem.

Inside the components of the bus-functional model, im-
plementations of the protocol layer in the form of adapter
channels are inserted. For each protocol transaction sup-
ported, protocol layer adapter channels drive and sample
the media wires connected to them according to the corre-
sponding timing diagram. For programmable processors,
protocol layer implementations are part of the processor
hardware. Therefore, models of the processor hardware
that include the protocol layer instances are added in the
bus-functional model in the form of additional hardware
layers for such processors, e.g. CF HW and DSP HW in
the example shown here. Bus protocol layer adapters in
the processors and other PEs of the example implement bus
transactions on the master and/or slave side, and they read
from or write to the appropriate bus wires correspondingly.

Hardware layers of processors in the bus-functional
model also include a model of the processor’s interrupt
behavior. Inside the hardware layer, the processor HAL

model runs under control of an interrupt service routine
(ISR) that gets triggered whenever an external interrupt
condition signal becomes true. The ISR then reads and ac-
knowledges the interrupting source over the processor bus
protocol, and it calls the corresponding interrupt handler in
the processor HAL model before resuming normal proces-
sor HAL execution.

Outside of the processor hardware models, the bus-
functional system model includes models of interrupt con-
trollers associated with the processors. Interrupt con-
trollers perform interrupt detection on the actual interrupt
wires, signal interrupt conditions to the processor hardware
model, and deliver interrupt vectors to ISRs in the proces-
sors over the processor bus. Interrupt controllers become
additional system components but since they are usually
part of a processor, both interrupt controller and proces-
sor hardware models are encapsulated into bus-functional
processor models. For example, the PIC interrupt con-
trollers are combined with processor hardware models
CF HW and DSP HW into bus-functional models CF BF
and DSP BF. In both cases, PICs connect to the processor
bus wires as bus slaves and they supply the interrupt inputs
of the bus-functional processor models.

On the slave side, adapter channels that generate inter-
rupts on the processor’s or PICs interrupt pins are inserted
as part of the protocol layer implementation for handshak-
ing in the bus-functional model.

Implementation of arbitration in the bus-functional
model inserts corresponding protocol layer implementa-
tions in the form of arbitration adapter channels inside each
PE participating in the arbitration protocol. Arbitration
adapter channels implement the arbitration protocol in the
masters by appropriately driving and sampling the wires
of the arbitration bus. In the example shown here, a cen-
tralized arbitration scheme is defined for the bus on the
ColdFire side. Therefore, the bus-functional model con-
tains a centralized, shared Arbiter component that receives
requests for bus access from the two masters (DMA BF and
CF BF) and grants them according to the chosen arbitra-
tion protocol.

The bus-functional model is the end result of the com-
munication design process and it is a structural represen-
tation of the complete system architecture including com-
putation and communication, i.e. it defines the netlist of
system components and their connectivity. In the back-end
design process that follows system design, each of the sta-
tions and PEs in the bus-functional model of the system
will then be further implemented by synthesizing the be-
havioral descriptions of computation blocks and communi-
cation adapters inside them down to structural descriptions
defining their microarchitecture and finally their gate-level
netlist.
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ColdFire subsystem DSP subsystem System
Lines of Simulation Comm. Lines of Simulation Comm. Lines of Simulation

Model code time delays code time delays code time

Application 3,729 0.28 s 0 ms 12,528 38.8 s 0 ms 14,363 63.3 s
Link 3,978 0.35 s 0 ms 12,480 40.3 s 0 ms 14,535 62.1 s
Stream 4,099 0.72 s 0.28 ms 12,558 41.9 s 1.18 ms 14,754 99.3 s
Media Access 4,337 1.16 s 0.40 ms 12,782 60.1 s 1.74 ms 15,244 134.2 s
Protocol 5,313 7.47 s 1.18 ms 12,966 129.2 s 1.28 ms 16,436 650.1 s
Bus-functional 5,906 19.69 s 1.50 ms 13,245 417.2 s 1.80 ms 17,335 2,416 s

Table 2: Modeling results.

3.2 Experimental Results

In order to evaluate the benefits of each model in terms
of trade-offs between complexity and accuracy, we imple-
mented and simulated all but the transport models of the
design example introduced in the previous section in the
SpecC system-level design language (SLDL) [1]. A test-
bench common to all models was created which exercises
the design by simultaneously encoding and decoding 163
frames of speech on the vocoder side while performing
JPEG encoding of 30 pictures with 116x96 pixels. Mod-
els were composed hierarchically out of separate ColdFire
and DSP subsystems for JPEG encoding and voice encod-
ing/decoding, respectively, where each subsystem can be
simulated independently. The overall system is then com-
posed by connecting the two subsystems as needed and
simulating them together. Models were simulated on a
360 MHz Sun Ultra 5 workstation using the QuickThreads
version of the SpecC simulator.

Table 2 summarizes the results for the ColdFire subsys-
tem, the DSP subsystem, and the whole system of the dif-
ferent communication models. Model complexity is given
both in terms of number of lines of code (not counting
the testbench) and in terms of time needed for simulation
of the models. Accuracy of communication modeling in
terms of feedback available as a result of simulation runs
is provided in the form of simulated delays introduced by
additional communication overhead. Delay figures listed
here are pure communication overhead and are in addition
to any computation delays which are not included here.
More specifically, communication delays do not include
(estimated or other) delays for implementation of commu-
nication (i.e. adapter channels) inside the PEs. They only
reflect unavoidable overhead due to multiplexing, arbitra-
tion, or interrupt handling, for example.

The graph in Figure 13 plots the simulation times for the
different models of the whole system, the DSP subsystem,
and the ColdFire subsystem. Simulation times are normal-
ized against the simulation time of the initial architecture
model of the same design. Similarly, the graph in Figure 14
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Figure 13: Model complexity in terms of simulation per-
formance.
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shows the simulated contributions of communication over-
head to the overall transcoding (back-to-back encoding and
decoding) and encoding delays in the vocoder and JPEG
encoder, respectively. In this case, communication delays
are normalized against the total communication delays in
the final bus-functional model.

Apart from the standard communication models with
purely behavioral and abstract channel models between
PEs, both graphs also show results for intermediate mod-
els in which channels are refined but not yet inlined, i.e.
refined channels describe their implementation on top of
the next lower layer, hierarchically composing them out
of lower-level channels. Since inlining results in addi-
tional implementation details (e.g. for implementation of
interrupt handling) that is not available in those intermedi-
ate models, such models can provide additional abstraction
levels at a finer granularity. Finally, in case of refinement
from the protocol model down to the bus-functional model,
yet another intermediate model was created by gradually
refining the arbiter from a purely behavioral semaphore
into an arbiter component communicating via abstract arbi-
tration protocol channels and finally into a structural model
that communicates via wires.

As the results show, model complexity generally grows
exponentially with lower levels of abstraction. The link
models can have lower complexity due to the reduced num-
ber of channels after merging all of the sequential com-
munication channels in the application over single links.
On the other hand, there is a large jump in complexity in
the protocol model due to the slicing of messages into bus
words and the resulting increase in simulation events that
happens in the media access layer implementation. Accu-
racy and usefulness of simulation results generally depends
on the complexity and characteristics of the design. If com-
munication is statically scheduled and there is no media
contention, early models that include good estimates about
media delays can provide accurate enough feedback for
useful design space exploration. On the other hand, if arbi-
tration or other schemes for dynamically scheduling over-
lapping communication during runtime are needed, only
the protocol model (or models below) can provide accu-
rate results about actual delays.

All in all, both link and media access or protocol mod-
els are good candidates for designer interaction. The link
model at the interface between network and link design
represents and defines the topology of the communication
architecture while serving as the specification for imple-
mentation of point-to-point links between stations. The
media access or protocol models, on the other hand, can
serve as abstract representations of specific link implemen-
tations for faster feedback (e.g. via simulation) during ex-
ploration. Depending on the type of implementation cho-

Network DesignNetwork Design Network
protocols

Network
protocols

Architecture modelArchitecture model

Bus-functional modelBus-functional model

GUIGUI

Link modelLink model

Comm. Link DesignComm. Link Design Media
protocols

Media
protocols

Protocol modelProtocol modelMAC modelMAC model

Figure 15: Communication design methodology.

sen, media access and protocol models trade off accuracy
in terms of arbitration versus speed in terms of data slicing.
Note that arbitration can not be modeled accurately with-
out data slicing in the usual case where media accesses are
interleaved at the protocol (bus word) level.

4 Summary & Conclusions

In this report, we presented a structuring of the communi-
cation design flow for SoCs into well-defined abstraction
levels, design models and layers of communication func-
tionality. A communication design flow should support
a wide range of target communication architectures with
different, even non-traditional media and protocols (e.g.
network-oriented architectures and protocols to cope effec-
tively with ever-increasing latencies and delays). Further-
more, any design flow should support design automation
for refinement and synthesis in order to assist designers and
achieve the necessary productivity gains. Based on the lay-
ers and models presented in this report, such design flows
can be developed.

Generally it can be observed that the communication
design flow can be divided into two major tasks that are
largely independent: communication network design and
communication link design. In the proposed communi-
cation design methodology (Figure 15), a network design
step first defines the communication topology of stations
connected by links and implements end-to-end communi-
cation on top of that. In the resulting link model, each
closed group of communication links between connected
stations can then be implemented separately in a communi-
cation link design step. Communication link design selects
a medium and associated protocols for each directly con-
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nected group of stations and implements the point-to-point
communication between them over that medium. The re-
sulting bus-functional model can then serve as the starting
point for implementation of each station in the system in a
back-end process. In addition, the communication link step
should support generation of abstracted media access and
protocol communication models for rapid feedback during
the design process.
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