
C to SpecC Conversion Style

Kiran Ramineni
Daniel Gajski

CECS Technical Report 03-13
April 14, 2003

Center for Embedded Computer Systems
Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

{kiran,gajski}@cecs.uci.edu

1

C to SpecC Conversion Style

Kiran Ramineni
Daniel Gajski

CECS Technical Report 03-13
April 4, 2003

Center for Embedded Computer Systems
Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425,USA

(949) 824-8059

{kiran,gajski}@cecs.uci.edu

Abstract

We present a methodology and style guidelines for automatic translation from a given design specification in raw C code
to SpecC code. Traditional conversion from C to SpecC relies on manual refinement which is painfully time consuming and
error prone. The automation of the refinement process provides a useful tool to reduce the time spent in conversion of C to
SpecC so that the system designer can spend more time with design decisions based on exploration with SpecC code.

2

Contents

1 Introduction 1

2 Code Refinement 2
2.1 Sequential vs Parallel programming model . 2
2.2 Clean model and non-clean model . 2
2.3 Semantic refinement . 2
2.4 Syntactic refinement . 3
2.5 Hello World Example . 3
2.6 SpecC Structural Hierarchy . 3
2.7 SpecC Behaviors . 3

3 Basic Constructs 4
3.1 If (no else) Statement . 4
3.2 If Else Statement . 5
3.3 While Statement . 5
3.4 Do While Statement . 5
3.5 For Statement . 6

4 Combination Of Constructs 6
4.1 While and If Statements (Clean) . 6
4.2 While and If Else Statements (Unclean) . 7
4.3 While and If Else Statements 2(Unclean) . 7

5 Example 7
5.1 Translation : Step 1 . 8
5.2 Translation : Step 2 . 9
5.3 Translation : Step 3 . 9
5.4 Translation : Step 4 . 9
5.5 Translation : Step 5 . 10

6 Experimental Results 10

7 Conclusion and future work 11

A. UnClean SpecC code for a sample file 12
A.1 Statistics . 12
A.2 Tree . 13
A.3 The UnClean code . 14

B. Clean SpecC code for a sample file 17
B.1 Statistics . 17
B.2 Tree . 18
B.3 The Clean code . 20

i

List of Figures

1 System Level Methodology. 1
2 Examples of clean computation and communication in C language . 2
3 A Hello World example . 3
4 SpecC Basic Structure . 3
5 SpecC Behavior Hierarchy . 4
6 If statement . 4
7 If Else statement . 4
8 While statement . 5
9 Do While statement . 5
10 For statement . 6
11 Combination of clean While and If statements . 6
12 Combination of Unclean While and If Elsestatements . 7
13 FSM for combination of Unclean While and If Elsestatements . 7
14 Second Combination of Unclean While and If Elsestatements . 7
15 FSM for second Combination of Unclean While and If Elsestatements . 8
16 Complex Example of nesting . 8
17 For Block . 9
18 Do While Block 1 . 9
19 Do While Block 2 . 9
20 If Else Block . 10
21 While Block . 10

ii

List of Tables

1 JBIG experimental results. 11

iii

C to SpecC Conversion Style

Kiran Ramineni and Daniel Gajski
Center for Embedded Computer Systems

University of California, Irvine, CA 92697
{kiran, gajski}@ics.uci.edu

Abstract

We present a methodology and style guidelines for auto-
matic translation from a given design specification in raw
C code to SpecC code. Traditional conversion from C to
SpecC relies on manual refinement which is painfully time
consuming and error prone. The automation of the refine-
ment process provides a useful tool to reduce the time spent
in conversion of C to SpecC so that the system designer can
spend more time with design decisions based on exploration
with SpecC code.

1 Introduction

In the recent years, the dramatic increase of behavioral
and structural complexity of SoC designs has raised the
abstraction level of system specification. Along with the
higher levels of abstraction comes the need for efficient sys-
tem level synthesis of functional specification to target ar-
chitectures. The wide variety of available target architec-
tures makes the job of making the optimal choice all the
more complicated. This calls for a methodology to effi-
ciently explore design spaces and fast tools for refinement
of functional system specification to an architecture model,
so that more architectures may be explored and evaluated.
Our System level design methodology [1] is aiming at refin-
ing an initial, functional system specification into a detailed
implementation description ready for manufacturing.

System level methodology consists of a set of models
and transformations (Figure 1). The executable models rep-
resent the same system at different levels of abstraction at
different phases of the design process. The transforma-
tions are a series of well-defined steps through which higher
level models are gradually refined into lower level models.
Our methodology starts with the capture of the intended
functionality in the form of specification model which de-
scribes the functionality as well as the performance, power,
cost and other constraints of the intended design. Archi-
tecture exploration, which synthesizes the specification into

an architecture model, includes the design tasks of alloca-
tion, partitioning of behaviors, channels, and variables, and
scheduling. Communication synthesis synthesizes the ab-
stract communications between behaviors in the architec-
ture model into an implementation. In the resulting com-
munication model, communication is described in terms of
actual wires and timing is described with bus protocols.

Manufacturing

Communication synthesis

Synthesis flow

Architecture exploration

Validation flow

Communication

model
Specification

Architecture
model

model

Simulation
model

Estimation

Validation
Analysis

Compilation

Library
Comp.

Simulation
model

Estimation

Validation
Analysis

Compilation

Simulation
model

Estimation

Validation
Analysis

Compilation

Simulation
model

Estimation

Validation
Analysis

Compilation

Interface synthesis

Implementation

Hardware

synthesis

Software

compilation Library

Back end

Capture

model
Implementation

Library

Library
Alg.

RTL

Allocation

Partitioning

Scheduling

Protocol insertion

Protocol inlining

Proto.

Figure 1. System Level Methodology.

In this paper we will focus on refinement from an un-
clean specification model into a clean specification model.
We will identify a set of building blocks and describe a
methodology that implements the refinement. The input to
our refinement tool is the unclean specification of an ab-
stract functional model and the output is the clean specifi-

cation model that will be used by System level methodology
for analysis and exploration.

The rest of the paper is organized as follows. Section
2 talks about SpecC language in general and different be-
haviors inside SpecC language. Section 3 will focus on the
basic constructs of a specification model. We will illustrate
different possible interleaving of basic constructs to get a
complicated nested code in section 4. The implementation
of the methodology for a complex example which has mul-
tiple nestings is shown in section 5 and some experimental
results are shown in section 6. Section 7 summarizes the pa-
per with conclusions. Appendix contains a sample of code
converted from C to SpecC with some hierarchial tree dia-
grams and code before and after the transformation.

2 Code Refinement

2.1 Sequential vs Parallel programming model

ANSI-C programs consist of a number of functions.
The executing sequence among function calls is sequential.
Therefore, this is a sequential programming model.

In general, hardware language consists of a number of
components executing in parallel, which can be called the
parallel programming model[4].

One step in behavior exploration is converting a sequen-
tial programming model to a parallel programming model.

2.2 Clean model and non-clean model

For the purposes of further discussion we need to define
two terms:

Clean computation: Behaviors are defined hierarchi-
cally; each behavior can also contain a number of behavior
instantiations of other behaviors. For example, in the C lan-
guage, behaviors are represented by functions, and the be-
havior instances are represented by function calls. In a clean
computation behavior, only two types of behaviors, leaf be-
havior and non-leaf behavior are allowed. Leaf behavior
contains a sequence of statements without any behavior in-
stances. Non-leaf behavior contains only behavior instances
without any statement execution. Figure 2(function A) is a
leaf behavior, Figure 2(function B) is a non-leaf behavior.
Figure 2(function C) is a non-clean computation behavior.

Clean communication: In a clean communication model,
parameters are passed by value among behavior instances.
Figure 2(function D) is a non-clean communication model;
Figure 2(function E) is a clean communication model.

If a model is both communication-clean and
computation-clean, it is a clean model. Otherwise, it
is a non-clean model. In general, C is a non-clean mod-
eling language. Hardware languages are clean modeling

1 void A() { int a; a = 0; a++; a--; }
2

3 void B() { A(); A(); }
4

5 void C (){ int a; A(); a++; }
6

7 void D (int *d) { int a; a = *d; }
8

9 void E (int d) { int a; a = d; }

(a) C code

Figure 2. Examples of clean computation and com-
munication in C language

languages. Thus, major part of behavior exploration is the
transition of a model from non-clean to clean.

The behavior exploration process can be divided into
two steps, namely, semantic(functionality) refinement and
syntactic refinement, which can be further divided into sub-
steps.

2.3 Semantic refinement

Neither the concept of pipelining nor parallelism exists
within the C language. However, to efficiently perform be-
havior modeling, system level design language must sup-
port these two concepts.

Behavior-parallel: Two behaviors are defined as
behavior-parallel if the execution sequence of the two be-
haviors does not influence the simulation result. Otherwise,
the two behaviors are defined as behavior-sequential.

Behavior-pipeline: If, within a sequential programming
model, a number of behaviors are executed one after an-
other in a loop body, and behavior communicates only with
the next behavior, then the execution relation between these
behaviors can be termed as: behavior-pipeline.

Architecture-parallel: If, during behavior to architecture
mapping, behavior A and behavior B are mapped to differ-
ent architecture components, then the implementation rela-
tion between A and B is called architecture-parallel. Other-
wise it is called architecture-sequential.

Architecture-sequential: If, during behavior to architec-
ture mapping, behavior A and behavior B are mapped to
one architecture component, then the implementation rela-
tion between A and B is called architecture-sequential. Typ-
ically, you would be doing this mapping if there is a lot
of communication between behavior A and B and mapping
these two behaviors on two different components makes the
system bus throttled and then the communication becomes
the bottleneck.

During behavior-architecture mapping, if we map either
a set of behavior-parallel or behavior-pipeline behaviors

2

to different architecture components to form architecture-
parallel, then we reach a parallel matching. Parallel match-
ing is a necessary but not a sufficient condition of parallel
execution.

2.4 Syntactic refinement

The syntactic refinement step modifies already granu-
alarized C code to SpecC syntax so that tools that use SpecC
specification can analyze well to assist the system designer.
This is very important and time consuming part since a good
refinement ensures not only a good starting point but also
some correct design decisions later.

SpecC is a true super set of ANSI-C. In other words,
every C program is also a SpecC program. In addition to
the ANSI-C constructs, the SpecC language includes exten-
sions for hardware design.

2.5 Hello World Example

A SpecC program is a collection of classes. There are
three types of classes, namely behaviors, channels, and in-
terfaces. These directly reflect the structure of the SpecC
model. Syntactically, a SpecC behavior is specified by use
of a behavior definition, such as the behavior Main in the
figure. In general, a behavior definition consists of a set of
ports, a set of local variables, instantiations and methods,
and a mandatory main method.

1 /* HelloWorld.c */
2

3 #include <stdio.h>
4

5 void main(void)
6 {
7 printf("HelloWorld!\n");
8 };

(a) C code

1 // HelloWorld.sc
2

3 #include <stdio.h>
4

5 behavior Main
6 {
7 void main(void)
8 {
9 printf("HelloWorld!\n");

10 }
11 };

(b) SpecC code

Figure 3. A Hello World example

A SpecC program starts with the execution of the main
method of the root behavior, which is identified by its name

Main. Please note that main and Main are names which
are recognized by automated tools, but these names are not
keywords. In the SpecC version of the Hello World exam-
ple, the main method is identical to the main function of
the ANSI-C version. The only difference is that it is en-
capsulated in the Main behavior. In general, it is always
the main method that is executed when an instantiated be-
havior is called. Also, the completion of the main method
determines the termination of the execution of the behavior.

2.6 SpecC Structural Hierarchy

In SpecC, structural hierarchy is supported in the style
of standard block diagrams. More specifically, structure
is represented as a hierarchical network of behaviors and
channels.

Basic Structure

•
 Top Behavior

•
 Child Behaviors

•
 Channels

•
 Interfaces

•
 Variables (Wires)

•
 Ports

b1
 b2

v1

c1

B

p1
 p2

Behavior

Child Behaviors

Channel

Variable

(Wire)

Ports
 Interfaces

Figure 4. SpecC Basic Structure

The example on the right shows a behavior B with two
ports, p1 and p2, through which it can communicate with
its environment. Internally, these ports are connected to two
child behaviors, b1 and b2. These child behaviors can com-
municate in two ways. First, both are connected to a shared
variable v1, which is written by b1 and then read by b2.
Second, b1 and b2 can communicate through the channel
c1. For example, the behavior b1 calls a function Write
provided by the left interface of channel c1. Similar, behav-
ior b2 calls a Read function provided by the right interface.
Please note that the figure only shows one level of the struc-
tural hierarchy. The child behaviors b1 and b2 can again
consist of a network of behaviors and channels.

2.7 SpecC Behaviors

Behavioral hierarchy is the composition of child behav-
iors in time. In SpecC, child behaviors can either be exe-
cuted sequentially or concurrently. Sequential execution, as
shown on the left hand side, can be specified by standard
sequential statements, or as a finite state machine (FSM)
model with explicit state transitions. On the right hand side,
concurrent execution is either parallel or pipelined.

3

behavior
 B_pipe

{

B b1, b2, b3;

void
 main(
void
)

{
pipe
{b1.main();

b2.main();

b3.main();

} }

};

Behavioral Hierarchy

B_par

b1

b3

b2

B_seq

b1

b3

b2

B_fsm

b1

b3

b2

b5
 b6

b4

B_pipe

b1

b3

b2

behavior
 B_seq

{

B b1, b2, b3;

void
 main(
void
)

{ b1.main();

b2.main();

b3.main();

}

};

behavior
 B_fsm

{

B b1, b2, b3,

b4, b5, b6;

void
 main(
void
)

{
 fsm
 { b1:{…}

b2:{…}

…}

}

};

behavior
 B_par

{

B b1, b2, b3;

void
 main(
void
)

{
 par
{b1.main();

b2.main();

b3.main();

} }

};

Sequential

Execution

FSM

Execution

Concurrent

Execution

Pipelined

Execution

Figure 5. SpecC Behavior Hierarchy

Concurrent execution is shown in the third figure, where
b1, b2 and b3 run in parallel. They all start simultaneously
when B par starts. Once all of them have completed their
execution, B par will also finish. Syntactically, parallel ex-
ecution is specified by use of the par construct. Very similar
to the par construct, the pipe construct allows execution in
pipelined fashion.

3 Basic Constructs

In this section, we specify guidelines for C to SpecC
translation for different control statements by recognizing
some basic blocks in a typical input C program.

3.1 If (no else) Statement

An If statement Figure 6 (part a) is clean, if the code
inside the braces of if condition (If Clean Code Segment)
is a sequence of just data statements and there are no calls
to other behaviors. For this type of statement, we can get
valid SpecC code just by wrapping the whole block of the
If statement as is into a leaf behavior.

An If statement Figure 6 (part b) is unclean, if the code
inside the braces of if condition (If Unclean Code Segment)
is a composite of data statements as well as calls to other
behaviors. Start and End states are fictitious dummy states
which correspond to entrance and exit, respectively inside
If fsm block. First task for converting this type of code is
transforming If Unclean Code Segment into a composite be-
havior which is clean in SpecC. If condition check can be
transformed to a Yes/No FSM (Finite State Machine) as it
resembles decision making as it resembles decision making.
If the condition is satisfied then the behavior representing If
Unclean Code Segment will be called.

C Code

(a) Clean Code

If(cond
){

Clean code segment

}

(b) Unclean Code

If(cond
){

Unclean code segment

}

SpecC
 Transformation

(a)

(b)

If(cond
){

If Clean code

segment

}

Behavior encapsulating if code

start

If(cond
)
yes

no

Unclean code

Segment(if
)

End

Behavior (If)

If_fsm_block

FSM representing if statement

Figure 6. If statement

C Code

(a) Clean Code

If(cond
){

If Clean code segment

}
Else{

Else Clean code segment

}

(b) Unclean Code

If(cond
){

If Unclean code segment

}

Else{

Else Unclean code segment

}
 Unclean code

segment(else
)

SpecC
 Transformation

start

If(cond
)
yes
 no

Unclean code

segment(if
)

End

Behavior (If)

Behavior encapsulating if else code

If_else_fsm

Behavior (Else)

FSM representing if else statement

If(cond
){

If Clean code segment

}Else{

Else Clean code Segment

}

Unclean code

segment(else
)

SpecC
 Transformation

(b)

start

If(cond
)
yes
 no

Unclean code

segment(if
)

End

Behavior (If)

(a)

Behavior encapsulating if else code

If_else_fsm

Behavior (Else)

FSM representing if else statement
FSM representing if else statement

If(cond
){

If Clean code segment

}Else{

Else Clean code Segment

}

Figure 7. If Else statement

4

3.2 If Else Statement

An If Else statement Figure 7 differs from an If state-
ment Figure 6 on including an Else part. If Statement is a
subset of If Else statement since If statement does not have
Else part. An If Else statement Figure 7 (part a) is clean
if the code inside the braces of if condition (If Clean Code
Segment) and else condition (Else Clean Code Segment) are
sequences of just data statements and there are no calls to
other behaviors. For this type of statement, we can get valid
SpecC code just by wrapping the whole blocks of “If Clean
Code Segment” and “Else Clean Code Segment” with the
condition check into a leaf behavior.

An If Else statement Figure 7 (part b) is unclean if it
satisfies one of the conditions below:

• If part Code Segment is Unclean

• Else part Code Segment is Unclean

• Both If and Else Code Segments are Unclean

To derive a valid SpecC code, first we need to make one
composite behavior for each of If and Else Unclean code
segments. Then, we can introduce Yes/No FSM for the con-
dition check. If the condition is satisfied, we make a call
to the If composite behavior. Otherwise, we call the Else
composite behavior.

3.3 While Statement

C Code

(a) Clean Code

While(cond
){

While Clean code segment

}

(b) Unclean Code

While(cond
){

Unclean code segment

}

SpecC
 Transformation

(a)

(b)

While(cond
){

while Clean code

segment

}

Behavior encapsulating while code

Behavior (while)

start

If(cond
)

yes

no

Unclean code

segment(while
)

End

while_fsm_block

FSM representing while statement

Figure 8. While statement

A While statement Figure 8 (part a) is clean if While
Clean Code Segment is a sequence of just data statements
and there are no calls to other behaviors. For this type of
statement, we can get valid SpecC code just by wrapping
the whole block of the While statement as is into a leaf be-
havior.

A While statement Figure 8 (part b) is unclean if While
Unclean Code Segment is a composite of data statements
as well as calls to other behaviors. First step in converting
this type of code is transforming While Unclean Code Seg-
ment into a composite behavior which is clean in SpecC.
If condition check can be transformed to a Yes/No FSM as
it resembles decision making. If the condition is satisfied
then the behavior representing While Unclean Code Seg-
ment will be called and then the control loops back to the
condition checking. This will repeat until the condition be-
comes false. Then, Exit state (End) will be called which
signifies end of the while statement.

3.4 Do While Statement

C Code

(a) Clean Code

do {

do while Clean code segment

}
While
(cond
)

(b) Unclean Code

SpecC
 Transformation

(a)

(b)

start

If (
cond
)

yes

Unclean code

segment

(do while)

End

do_while_fsm_block

no

do{

do while Clean

code segment

}
 While(cond
)

Behavior encapsulating do while code

FSM representing do while statement
FSM representing do while statement

do {

do while
 UnClean
 code segment

}
While
(cond
)

Figure 9. Do While statement

A Do While statement Figure 9 is just a small modifi-
cation to the While statement Figure 8. In the While state-
ment, the condition is checked first before executing While
(Un)clean Code Segment. On the contrary, in the Do While
statement, first the Do While (Un)clean Code Segment is
executed and then the condition is checked.

A Do While statement Figure 9 (part a) is clean if Do
While Clean Code Segment is a sequence of just data state-
ments and there are no calls to other behaviors. For this type

5

of statement, we can get valid SpecC code just by wrapping
the whole block of the Do While statement as is into a leaf
behavior.

A Do While statement Figure 9 (part b) is unclean if Do
While Unclean Code Segment is a composite of data state-
ments as well as calls to other behaviors. First step in con-
verting this type of code is transforming Do While Unclean
Code Segment into a composite behavior which is clean in
SpecC. If condition check can be transformed to a Yes/No
FSM as it resembles decision making. When executed, first
the behavior representing Do While Unclean Code Segment
is called then the If condition checked with Yes/No FSM.
If the condition satisfies, then the behavior representing Do
While Unclean Code Segment will be called and then the
control loops back to Yes/No FSM. This will repeat until
the condition becomes false. Then, Exit state (End) will be
called which signifies end of the do while statement.

3.5 For Statement

C Code

(a) Clean Code

for(init
 ;
 cond
; post){

for Clean code segment

}

(b) Unclean Code

for(init
 ;
 cond
; post){

for Unclean code segment

}

SpecC
 Transformation

(a)

(b)

for(init
;
 cond
; post){

for Clean code

Segment

}

Behavior encapsulating do while code

If (
cond
)
yes

no

Unclean code

segment(for
)
 End

Main Behavior (for)

for_fsm_block

start

init
init

post
post

Behavior (post)

Behavior (init)

FSM representing for statement

Figure 10. For statement

A For statement Figure 10 is just a small modification to
the While statement Figure 8. In the While statement, there
is only one block of code (While (Un)clean Code Segment)
where as in the For statement, along with For (Un)clean
Code Segment there are two more blocks of code. One
block is init statements and the other is post statements. Init
statements are executed once at the start of the For state-
ment block. Post statements are executed everytime the For
(Un)clean Code Segment is executed.

A For statement Figure 10 (part a) is clean if For Clean
Code Segment is a sequence of just data statements and

there are no calls to other behaviors. For this type of state-
ment, we can get valid SpecC code just by wrapping the
whole block of the For statement as is into a leaf behavior.

A For statement Figure 10 (part b) is unclean if For Un-
clean Code Segment is a composite of data statements as
well as calls to other behaviors. First step in converting
this type of code is transforming For Unclean Code Seg-
ment into a composite behavior which is clean in SpecC.
Then transform init and post statements to appropriate clean
SpecC behaviors. Generally, init and post statements con-
tain some variable initialization, increment and decrement
operations. So, they can be easily translated to leaf behav-
iors if they contain just the data statements and no calls to
other behaviors. Otherwise, they are transformed to com-
posite behaviors. Condition check can be transformed to a
Yes/No FSM as it resembles decision making.

When executed, first the behavior representing Init state-
ment is called once and then the Yes/No FSM is called. If
the condition is satisfied then the behavior representing For
Unclean Code Segment will be called followed by Post be-
havior and then the control loops back to Yes/No FSM. This
loop will repeat until the condition becomes false. Then,
Exit state (End) will be called which signifies end of the for
statement.

4 Combination Of Constructs

This section deals with translating C code with various
combinations of basic constructs into SpecC code.

4.1 While and If Statements (Clean)

C Code

(a) Clean Code

While(cond
){

while Clean code segment

If(cond_if
){

If_Clean
 code

}//if

else{

Else_Clean
 code

}//else

}//while

SpecC
 transformation

(a)

While
(cond
){

While
 Clean code segment

If(cond_if
){

If_Clean
 code

}//if

else{

Else_Clean
 code

}//else

}//while

Behavior encapsulating while if code

Figure 11. Combination of clean While and If state-
ments

A While statement is combined with an If statement as
the Figure 11 depicts. But both statements are clean. So,

6

the translation is simple as we wrap both these statements
into a simple leaf behavior.

C Code

(b)
 UnClean
 Code

While(cond
){

while
 unClean
 code segment

If(cond_if
){

If_unClean
 code

}//if

else{

Else_unClean
 code

}//else

}//while

If_fsm_block

Figure 12. Combination of Unclean While and If
Elsestatements

4.2 While and If Else Statements (Unclean)

In Figure 13, A While statement which is unclean is
combined with an if else statement. The unclean while
statement translation is done according to Figure 8 and
the If Else statement translation is done according to Fig-
ure 7. Since the If Else statement is a sequence to While
Unclean Code Segment, a new finite state (if fsm block) is
introduced just after the behavior representing While Un-
clean Code Segment. So, the final translation is nothing but
plugging the right FSMs which represent the basic building
blocks at the right places.

4.3 While and If Else Statements 2(Unclean)

This combination (Figure 14) differs from the previous
combination (Figure 12) in the sequence of execution of If
Else and While Unclean Code Segment. As the Figure 15 il-
lustrates, the While Unclean Code Segment is the sequence
to the If Else statement. Appropriate changes (flipping the
basic blocks) are made to the sequence of execution in Fig-
ure 15 which differs from Figure 13.

5 Example

Figure 16 depicts a complex nesting of one for loop, two
Do while loops, one If Else statement and one While loop.
Here, only While block has calls to other behaviors. While

(b)

If_fsm_block

FSM representing while if statement

Unclean code

segment(else
)

start

If(cond
)
yes
 no

Unclean code

segment(if
)

End

Behavior (If)
 Behavior (Else)

Unclean code

segment(else
)

start

If(cond
)
yes
 no

Unclean code

segment(if
)

End

Behavior (If)
 Behavior (Else)

Unclean code

segment(else
)

start

If(cond
)
yes
 no

Unclean code

segment(if
)

End

Behavior (If)

Unclean code

segment(else
)

start

If(cond
)
yes
 no

Unclean code

segment(if
)

End

Behavior (If)
 Behavior (Else)

Unclean code

segment(else
)

start

If(cond
)
yes
 no

Unclean code

segment(if
)

End

Behavior (If)
 Behavior (Else)

Unclean code

segment(else
)

start

If(cond
)
yes
 no

Unclean code

segment(if
)

End

Behavior (If)
 Behavior (Else)

while_fsm_block

start

If(cond
)

yes

no

Unclean code

segment(while
)

End

Behavior (while)

If_fsm_block

Figure 13. FSM for combination of Unclean While
and If Elsestatements

C Code

(b)
 UnClean
 Code

While(cond
){

If(cond_if
){

If_unClean
 code

}//if

else{

Else_unClean
 code

}//else

}//while

while
 unClean
 code segment

If_fsm_block

Figure 14. Second Combination of Unclean While and
If Elsestatements

7

If_fsm_block

FSM representing while if statement

Unclean code

segment(else
)

start

If(cond
)
yes
 no

Unclean code

segment(if
)

End

Behavior (If)
 Behavior (Else)

Unclean code

segment(else
)

start

If(cond
)
yes
 no

Unclean code

segment(if
)

End

Behavior (If)
 Behavior (Else)

Unclean code

segment(else
)

start

If(cond
)
yes
 no

Unclean code

segment(if
)

End

Behavior (If)

Unclean code

segment(else
)

start

If(cond
)
yes
 no

Unclean code

segment(if
)

End

Behavior (If)
 Behavior (Else)

Unclean code

segment(else
)

start

If(cond
)
yes
 no

Unclean code

segment(if
)

End

Behavior (If)
 Behavior (Else)

Unclean code

segment(else
)

start

If(cond
)
yes
 no

Unclean code

segment(if
)

End

Behavior (If)
 Behavior (Else)

while_fsm_block
while_fsm_block

start

If(cond
)

yes

no

End

Unclean code

segment(while
)

Behavior (while)

Unclean code

segment(while
)

Behavior (while)

If_fsm_block

Figure 15. FSM for second Combination of Unclean
While and If Elsestatements

for(init
;
 cond
; post){

clean code segment 1;

do{

clean code segment 2;

do{

clean code segment 3;

if(cond_if
){

clean code segment 4;

}//if

else{

while(cond_while
){

leaf_bahavior_1.main();

leaf_bahavior_2.main();

}//while

}//else

}while(cond_do_while_2);

}while(cond_do_while_1);

}//for

For block

Do While block 1

Do While block 2

If Else block

While block

Figure 16. Complex Example of nesting

block is a Composite behavior having two sequential leaf
behaviors named leaf behavior 1 and leaf behavior 2. The
code segments in all other blocks are clean as they only have
data statements. But, since While block is the inner most
block inside the nesting, it is propagating unclean behavior
to the If Else block. The If Else block, in turn makes the
Do While block 2 unclean. The Do While block 2 makes
the Do While block 1 unclean which in turn makes the For
block unclean. So, this is like a ripple effect where unclean
behavior in the deepest child behavior makes the top most
parent unclean.

We can adopt two approaches to get a valid SpecC code
out of this huge complex nesting of different basic blocks.
Top Down approach, where you start from the outer most
block (parent) and then work on inner block just below the
current block until you reach the innermost block.

When we apply the Top Down on Figure 16, ordering
follows this pattern:

1. For Block

2. Do While Block 1

3. Do While Block 2

4. If Else Block

5. While Block

If we follow Bottom Up approach, the order is reversed.
First we work on the inner most block, make it clean, then
work on the its immediate parent block and so on, till we
reach the top most block. We have followed the Top Down
approach for making this complex example clean.

5.1 Translation : Step 1

While working on the top most block, we abstract the
next level block and we include it as a child behavior.

8

SpecC
 representation

clean code

segment(for
)

Do_while

behavior_1

clean code

segment(for
)

Do_while

behavior_1

Hierarchial
 Behavior

If (
cond
)
yes

no

Unclean code

segment(for
)
 End

Main Behavior (for)

for_fsm_block

start

init

post

Behavior (post)

Behavior (init)

If (
cond
)
yes

no

Unclean code

segment(for
)
 End

for_fsm_block

start

init
init

Behavior (post)

Behavior (init)

FSM representing for and do while blocks

Figure 17. For Block

The For block Figure 17has a small modification from Fig-
ure 10. Figure 10 contains a behavior encapsulating a
for unclean code segment but Figure 17 has a compos-
ite behavior with two sequential behaviors. One of the
two sequential behaviors is the leaf behavior encapsulat-
ing clean code segment 1 and the other one is abstracted
Do While behavior 1.

5.2 Translation : Step 2

Do while Block 1 (Figure 18) is a parent to
Do while Block 2. We can abstract the latter as a simple
behavior following the execution of clean code segment 2.
So, the simplest translation possible is embedding
clean code segment 2 into a leaf behavior and abstracting
Do while Block 2 as a simple behavior. Finally, by
modifying Figure 9 so that the hierarchial behavior re-
flects two sequential behaviors (clean code segment 2
and Do While block 2) in substitution of the un-
clean code segment, we get a valid SpecC translation.

5.3 Translation : Step 3

Step 3 (Figure 19) is similar to step 2 (Figure 18) except
that Do while Block 2 has If Else block as the child block.

5.4 Translation : Step 4

If Else block (Figure 20) has While block as the child
block and Figure 20 depicts the difference from Figure 7 in

FSM representing do while blocks

start

If (
cond
)

Unclean code

segment

(do while)

End

do_while_fsm_block

start

If (
cond
)

yes

Unclean code

segment

(do while)

End

do_while_fsm_block

no

clean code

Segment 2

(do while 1)

Do_while

behavior_2

SpecC
 representation

Figure 18. Do While Block 1

FSM representing do while blocks

start

If (
cond
)

yes

Unclean code

segment

(do while)

End

do_while_fsm_block

no

start

If (
cond
)

yes

Unclean code

segment

(do while)

End

do_while_fsm_block

no

clean code

Segment 3

(do while 2)

If_Else

behavior

Specc transformation

Figure 19. Do While Block 2

9

that else block is a composite sequential behavior consist-
ing of a clean leaf behavior for clean code segment 3 and
an abstracted while (child) behavior.

FSM representing if else and while blocks

While

behavior

Unclean code

segment(else
)

start

If(cond
)
yes
 no

Unclean code

segment(if
)

End

Behavior (If)
 Behavior (Else)

Unclean code

segment(else
)

start

If(cond
)
yes
 no

segment(if
)

End

Behavior (If)
 Behavior (Else)

Unclean code

segment(else
)

start

If(cond
)
yes
 no

segment(if
)

End

Behavior (If)

Unclean code

segment(else
)

start

If(cond
)
yes
 no

segment(if
)

End

Behavior (If)
 Behavior (Else)

Unclean code

segment(else
)

start

If(cond
)
yes
 no

segment(if
)

End

Behavior (If)
 Behavior (Else)

segment(else
)

start

If(cond
)
yes
 no

)

End

Behavior (If)

If_else_fsm

Behavior (Else)

Specc transformation

Figure 20. If Else Block

5.5 Translation : Step 5

Step 5 (Figure 21) depicts the inner most while block.
This while block has a sequence of two behaviors named
leaf behavior 1 and leaf behavior 2. Figure 21 depicts
the difference from Figure 8 in that there is a com-
posite sequential behavior containing leaf behavior 1 and
leaf behavior 2.

6 Experimental Results

Based on the refinement rules defined in previous sec-
tion, we cleaned raw JBIG [3] C code to pure SpecC code.
Table 1 shows the results of the refinement from Unclean
SpecC code to Clean SpecC Code.

Our input is raw C code which was about 3900 lines in
total. Number of behaviors is not applicable to the raw
C code. So, the immediate translation of the C code into
SpecC code gave 3969 lines. But the resulting SpecC code
is not clean since this it was encapsulating the raw C func-
tions into behaviors based on some granularity decisions.
Before the refinement of the unclean SpecC code, there
were 29 behaviors in total, out of which 17 were leaf be-
haviors and the rest (12) were other behaviors. The prob-
lem with the other behaviors is that SpecC methodology

start

If(cond
)

yes

no

Unclean code

segment(while
)

End

while_fsm_block

FSM representing while blocks

Leaf_behavior
 1

Leaf_behavior
 2

Leaf_behavior
 1

Leaf_behavior
 2

Specc transformation

Figure 21. While Block

(Figure 1) used for exploration can not analyze them prop-
erly. So, it is important to eliminate the other behaviors by
refining them to either of leaf or sequential, FSM and pipe
behaviors.

After the refinement, there were 85 behaviors in total out
of which there were 64 leaf, 5 sequential, 16 fsm and 0 other
behavior. All the other type of behaviors were converted to
either of leaf, sequential and fsm behaviors. Before refine-
ment there were no fsm or sequential type behaviors. After
refinement, there were 23.5% of total behaviors were fsm
and sequential behaviors.

We tested JBIG code on a small image file of size 150 X
179 pixel. The results were same for both clean and unclean
codes. But there was a significant change in simulation tim-
ings. The simulation time for the raw C code was just 0.3
sec where as the unclean SpecC code took 0.7 seconds and
the clean SpecC code took 1.1 seconds for the clean code.
This was the result of introducing more behaviors in the
process of making the code cleaner.

An interesting observation was number of lines of code
and size of the code has increased after each refinement.
This was an effect of defining more leaf, fsm and sequential
behaviors in the process of cleaning the code. Appendix
contains a sample of code converted from C to SpecC with
some hierarchial tree diagrams and code before and after
the transformation.

10

Description Raw Unclean Clean
C Code SpecC code SpecC code

Formatted lines of code 3900 3969 5238
Formatted code size 77,448 bytes 155,756 bytes 184,297 bytes
Number of behaviors - 29 85
... classified as ’leaf’ - 17 (58.6%) 64 (75.3%)
... classified as ’sequential’ - 0 (0%) 5 (5.9%)
... classified as ’fsm’ - 0 (0%) 16 (18.8%)
... classified as ’other’ - 12 (41.4%) 0 (0%)
Simulation time 0.3 sec 0.6 sec 1.0 sec
Simulation results same same same
Ready for Analysis no partly completely

Table 1. JBIG experimental results.

The original raw C code was not analyzable where as
part of the unclean SpecC code could be used for analysis.
But the clean SpecC code is completely analyzable.

7 Conclusion and future work

In this paper, We presented the refinement rules and al-
gorithms for transforming an unclean specification model
into a clean specification model in our design methodology.
We suggested a set of rules for conversion that facilitates
an efficient approach to derive a clean specification from
an unclean specification model. We tested our set of con-
version guidelines on JBIG specification code which was
impossible for analysis using SpecC methodology. Exper-
iments were performed to support our methodology. The
methodology might increase of productivity of the design-
ers by relieving them from tedious and error-prone task of
rewriting models. For the future, we aim at automating con-
version from unclean specification model to clean specifica-
tion using our design methodology.

References

[1] Daniel D. Gajski et al., System Design: A Practi-
cal Guide with SpecC, Kluwer Academic Publishers,
2001.

[2] A.Gerstlauer, SpecC Modeling Guidelines, University
of California, Irvine, Technical Report ICS-TR-00-xx,
September, 1998.

[3] Junyu Peng, Lukai Cai, Anand Selka, Daniel D.
Gajski, Design of a JBIG Encoder using SpecC
Methodology, University of California, Irvine, Tech-
nical Report ICS-TR-00-13, June 2000.

[4] Lukai Cai, Daniel D. Gajski, C/C++ Based System
Design Flow Using SpecC, VCC and SystemC, Uni-

versity of California, Irvine, Technical Report CECS-
02-30 June, 2002.

11

A. UnClean SpecC code for a sample file

A.1 Statistics

1 Statistics
2 ----------
3 % sir_stats sde_diff_encode_line.sir
4

5 Design name : sde_diff_encode_line
6

7 Formatted lines of code : 2278
8

9 Formatted code size : 116829 bytes
10

11 Number of behaviors : 5
12

13 ... classified as ’leaf’ : 4 (80.0%)
14

15 ... classified as ’other’ : 1 (20.0%)
16

17 Number of channels : 0
18

19 Number of interfaces : 0

12

A.2 Tree

1

2 Hierarchy Tree
3 --------- ----
4 % sir_tree -bclt sde_diff_encode_line_unclean.sir
5

6 class type
7 is one of [BC], indicating behavior (B) or channel (C).
8

9 storage class
10 is intern or extern (one of [ix]), indicating internal
11 class with known body (i), or external class with
12 unknown body (x).
13

14 classification
15 is one of [cfhlopstwx], indicating for behaviors: con-
16 current (c), FSM (f), leaf (l), pipeline (p), sequen-
17 tial (s), exception (t), external (x), or other (o);
18 for channels: leaf (l), hierarchical (h), wrapper (w),
19 external (x), or other (o).
20

21

22 class type storage class classification description
23

24 B i l behavior adaptive_template
25

26 B i l behavior arith_encode
27

28 B i l behavior deterministic_prediction
29

30 B i l behavior model_templates
31

32 B i o behavior sde_diff_encode_line

13

A.3 The UnClean code

1

2 #include "constant.sh"
3

4 #include <assert.h>
5

6 import "jbig_head";
7 import "jbig";
8 import "arith_encode";
9 import "deterministic_prediction";

10 import "adaptive_template";
11 import "model_templates";
12

13 behavior sde_diff_encode_line(in struct local_data *ld,
14 in struct jbg_enc_state *s,
15 in unsigned long stripe,
16 in int layer,
17 in int plane)
18 { int int1, int2, flag, options, at_determined, count, cx, tx;
19 unsigned long y, j, l1, l2, l3, h1, h2, h3, *c, *c_all, hx;
20 unsigned *t, mx;
21 struct jbg_arenc_state *par1;
22

23

24

25 deterministic_prediction deterministic_prediction_exec(options, y, j, l1,l2,l3,
26 h1, h2, h3, flag);
27 adaptive_template adaptive_template_exec(at_determined, j, h1, h2, t, c, c_all, mx, hx,
28 count,flag);
29

30 arith_encode arith_encode_exec(par1, int1, int2);
31 model_templates model_templates_exec(y,j, l1, l2, l3, h1, h2, h3, tx, flag, cx);
32

33 void main(void){
34 ld->line_h1 = ld->line_h2 = ld->line_h3 = ld->line_l1 = ld->line_l2 = ld->line_l3 = 0;
35 if (ld->y > 0) ld->line_h2 = (long)*(ld->hp - ld->hbpl) << 8;
36 if (ld->y > 1) {
37 ld->line_h3 = (long)*(ld->hp - ld->hbpl - ld->hbpl) << 8;
38 ld->line_l3 = (long)*(ld->lp2 - ld->lbpl) << 8;
39 }
40 ld->line_l2 = (long)*ld->lp2 << 8;
41 ld->line_l1 = (long)*ld->lp1 << 8;
42

43 /* encode line */
44 for (ld->j = 0; ld->j < ld->hx; ld->lp1++, ld->lp2++) {
45 if ((ld->j >> 1) < ld->lbpl * 8 - 8) {
46 if (ld->y > 1)
47 ld->line_l3 |= *(ld->lp2 - ld->lbpl + 1);
48 ld->line_l2 |= *(ld->lp2 + 1);
49 ld->line_l1 |= *(ld->lp1 + 1);
50 }
51 do {

14

52 /*
53 assert(ld->hp - (s->lhp[s->highres[plane]][plane] +
54 (stripe * ld->hl + ld->i) * ld->hbpl)
55 == (ptrdiff_t) ld->j >> 3);
56

57 assert(ld->lp2 - (s->lhp[1-s->highres[plane]][plane] +
58 (stripe * ld->ll + (ld->i>>1)) * ld->lbpl)
59 == (ptrdiff_t) ld->j >> 4);
60 */
61 ld->line_h1 |= *(ld->hp++);
62 if (ld->j < ld->hbpl * 8 - 8) {
63 if (ld->y > 0) {
64 ld->line_h2 |= *(ld->hp - ld->hbpl);
65 if (ld->y > 1)
66 ld->line_h3 |= *(ld->hp - ld->hbpl - ld->hbpl);
67 }
68 }
69 do {
70 ld->line_l1 <<= 1; ld->line_l2 <<= 1; ld->line_l3 <<= 1;
71 if (ld->ltp && s->tp[ld->j >> 1] < 2) {
72 /* pixel are typical and have not to be encoded */
73 ld->line_h1 <<= 2; ld->line_h2 <<= 2; ld->line_h3 <<= 2;
74

75 /*#ifdef DEBUG
76 do {
77 ++tp_pixels;
78 } while (++(ld->j) & 1 && (ld->j) < hx);
79 #else */
80 (ld->j) += 2;
81 /* #endif */
82

83 } else
84 do {
85

86 ld->line_h1 <<= 1; ld->line_h2 <<= 1; ld->line_h3 <<= 1;
87

88 options=s->options;
89 y=ld->y;
90 j=ld->j;
91 l1=ld->line_l1;
92 l2=ld->line_l2;
93 l3=ld->line_l3;
94 h1=ld->line_h1;
95 h2=ld->line_h2;
96 h3=ld->line_h3;
97

98 deterministic_prediction_exec.main();
99

100 if (flag==1){
101 continue;
102 }
103 else{
104

15

105 y=ld->y;
106 j=ld->j;
107 l1=ld->line_l1;
108 l2=ld->line_l2;
109 l3=ld->line_l3;
110 h1=ld->line_h1;
111 h2=ld->line_h2;
112 h3=ld->line_h3;
113 tx=s->tx[plane];
114 flag=5;
115

116 model_templates_exec.main();
117 ld->cx=cx;
118

119 par1=ld->se;
120 int1=ld->cx;
121 int2=(ld->line_h1 >> 8) & 1;
122

123 arith_encode_exec.main();
124 /*#ifdef DEBUG
125 encoded_pixels++;
126 #endif*/
127

128 /*diff_adaptive_template(ld, s);*/
129 at_determined=ld->at_determined;
130 j=ld->j;
131 h1=ld->line_h1;
132 h2=ld->line_h2;
133 t=&(ld->t);
134 c=ld->c;
135 c_all=&(ld->c_all);
136 mx=s->mx;
137 hx=ld->lx;
138 count=3;
139 flag=1;
140 adaptive_template_exec.main();
141

142 }
143 } while (++(ld->j) & 1 && (ld->j) < ld->hx);
144 } while ((ld->j) & 7 && (ld->j) < ld->hx);
145 } while ((ld->j) & 15 && (ld->j) < ld->hx);
146 } /* for (j = ...) */
147

148 /* low resolution pixels are used twice */
149 if (((ld->i) & 1) == 0) {
150 ld->lp1 -= ld->lbpl;
151 ld->lp2 -= ld->lbpl;
152 }
153 }
154 };

16

B. Clean SpecC code for a sample file

B.1 Statistics

1 Statistics
2 ----------
3 % sir_stats sde_diff_encode_line_clean.sir
4 Design name : sde_diff_encode_line
5 Formatted lines of code : 2677
6 Formatted code size : 124765 bytes
7 Number of behaviors : 30
8 ... classified as ’leaf’ : 29 (96.7%)
9 ... classified as ’fsm’ : 1 (3.3%)

10 Number of channels : 0 Number of
11 interfaces : 0

17

B.2 Tree

1

2 Hierarchy Tree
3 --------- -----
4

5 % sir_tree -bclt sde_diff_encode_line_clean.sir
6

7 class type
8 is one of [BC], indicating behavior (B) or channel (C).
9

10 storage class
11 is intern or extern (one of [ix]), indicating internal
12 class with known body (i), or external class with
13 unknown body (x).
14

15 classification
16 is one of [cfhlopstwx], indicating for behaviors: con-
17 current (c), FSM (f), leaf (l), pipeline (p), sequen-
18 tial (s), exception (t), external (x), or other (o);
19 for channels: leaf (l), hierarchical (h), wrapper (w),
20 external (x), or other (o).
21

22 {\bf class type, storage class, classification, description}
23

24 B i l behavior assign_ld
25

26 B i l behavior increment_ld_hp
27

28 B i l behavior increment_ld_i
29

30 B i l behavior increment_ld_j
31

32 B i l behavior increment_ld_y
33

34 B i l behavior increment_long_plus_plus
35

36 B i l behavior increment_plus_plus
37

38 B i l behavior init_ld_i
39

40 B i l behavior init_long_to_zero
41

42 B i l behavior init_to_zero
43

44 B i f behavior sde_diff_encode_line
45 B i l |------ sde_diff_encode_line_init init
46 B i l |------ init_ld_j init_j
47 B i l |------ dummy for_loop_repeat
48 B i l |------ sde_diff_encode_line_leaf_1 leaf1
49 B i l |------ dummy do_while_loop_1
50 B i l |------ dummy do_while_loop_1_repeat
51 B i l |------ increment_ld_lp1 increment_lp1

18

52 B i l |------ increment_ld_lp2 increment_lp2
53 B i l |------ sde_diff_encode_line_leaf_2 leaf2
54 B i l |------ dummy do_while_loop_2
55 B i l |------ dummy do_while_loop_2_repeat
56 B i l |------ sde_diff_encode_line_leaf_3 leaf3
57 B i l |------ sde_diff_encode_line_leaf_5 leaf5
58 B i l |------ dummy do_while_loop_3_repeat
59 B i l |------ dummy do_while_loop_3
60 B i l |------ deterministic_prediction_init deterministic_prediction_init_exec
61 B i l |------ deterministic_prediction deterministic_prediction_exec
62 B i l |------ model_templates_init model_templates_init_exec
63 B i l |------ model_templates model_templates_exec
64 B i l |------ sde_diff_encode_line_arith_encode_init sde_diff_encode_line_arith_encode_init_exec
65 B i l |------ arith_encode arith_encode_exec
66 B i l |------ adaptive_template_init adaptive_template_init_exec
67 B i l |------ adaptive_template adaptive_template_exec
68 B i l \------ sde_diff_encode_line_leaf_4 leaf4
69

70 B i l behavior sde_encode_diff_enable_flag

19

B.3 The Clean code

1 #include "constant.sh"
2

3 #include <assert.h>
4

5 import "jbig_head";
6 import "jbig";
7 import "arith_encode";
8 import "deterministic_prediction";
9 import "adaptive_template";

10 import "model_templates";
11 import "definitions";
12

13 behavior sde_diff_encode_line_init(in struct local_data *ld){
14 void main(){
15

16 ld->line_h1 = ld->line_h2 = ld->line_h3 = ld->line_l1 = ld->line_l2 = ld->line_l3 = 0;
17 if (ld->y > 0) ld->line_h2 = (long)*(ld->hp - ld->hbpl) << 8;
18 if (ld->y > 1) {
19 ld->line_h3 = (long)*(ld->hp - ld->hbpl - ld->hbpl) << 8;
20 ld->line_l3 = (long)*(ld->lp2 - ld->lbpl) << 8;
21 }
22 ld->line_l2 = (long)*ld->lp2 << 8;
23 ld->line_l1 = (long)*ld->lp1 << 8;
24 }
25 };
26

27 behavior sde_diff_encode_line_leaf_1(in struct local_data *ld){
28 void main(){
29

30 if ((ld->j >> 1) < ld->lbpl * 8 - 8) {
31 if (ld->y > 1)
32 ld->line_l3 |= *(ld->lp2 - ld->lbpl + 1);
33 ld->line_l2 |= *(ld->lp2 + 1);
34 ld->line_l1 |= *(ld->lp1 + 1);
35 }
36 }
37 };
38

39 behavior sde_diff_encode_line_leaf_2(in struct local_data *ld){
40 void main(){
41

42 ld->line_h1 |= *(ld->hp++);
43 if (ld->j < ld->hbpl * 8 - 8) {
44 if (ld->y > 0) {
45 ld->line_h2 |= *(ld->hp - ld->hbpl);
46 if (ld->y > 1)
47 ld->line_h3 |= *(ld->hp - ld->hbpl - ld->hbpl);
48 }
49 }
50 }
51 };

20

52

53

54

55

56

57

58 behavior sde_diff_encode_line_leaf_3(in struct local_data *ld, in struct jbg_enc_state *s){
59 void main(){
60 ld->line_l1 <<= 1; ld->line_l2 <<= 1; ld->line_l3 <<= 1;
61 }
62 };
63

64 behavior sde_diff_encode_line_leaf_5(in struct local_data *ld, in struct jbg_enc_state *s){
65 void main(){
66 /* pixel are typical and have not to be encoded */
67 ld->line_h1 <<= 2; ld->line_h2 <<= 2; ld->line_h3 <<= 2;
68 (ld->j) += 2;
69 }
70 };
71

72 behavior sde_diff_encode_line_leaf_4(in struct local_data *ld){
73 void main(){
74 /* low resolution pixels are used twice */
75 if (((ld->i) & 1) == 0) {
76 ld->lp1 -= ld->lbpl;
77 ld->lp2 -= ld->lbpl;
78 }
79

80 }
81 };
82

83 behavior deterministic_prediction_init(in struct local_data *ld,
84 in struct jbg_enc_state *s,
85 out int options,
86 out unsigned long y,
87 out unsigned long j,
88 out unsigned long l1,
89 out unsigned long l2,
90 out unsigned long l3,
91 out unsigned long h1,
92 out unsigned long h2,
93 out unsigned long h3,
94 in int flag){
95 void main(){
96 ld->line_h1 <<= 1; ld->line_h2 <<= 1; ld->line_h3 <<= 1;
97

98 options=s->options;
99 y=ld->y;

100 j=ld->j;
101 l1=ld->line_l1;
102 l2=ld->line_l2;
103 l3=ld->line_l3;
104 h1=ld->line_h1;

21

105 h2=ld->line_h2;
106 h3=ld->line_h3;
107 }
108 };
109

110 behavior model_templates_init(in struct local_data *ld,
111 in struct jbg_enc_state *s,
112 in int plane,
113 out unsigned long y,
114 out unsigned long j,
115 out unsigned long l1,
116 out unsigned long l2,
117 out unsigned long l3,
118 out unsigned long h1,
119 out unsigned long h2,
120 out unsigned long h3,
121 out int tx,
122 out int flag,
123 in int cx){
124 void main(){
125 y=ld->y;
126 j=ld->j;
127 l1=ld->line_l1;
128 l2=ld->line_l2;
129 l3=ld->line_l3;
130 h1=ld->line_h1;
131 h2=ld->line_h2;
132 h3=ld->line_h3;
133 tx=s->tx[plane];
134 flag=5;
135 }
136 };
137

138 behavior sde_diff_encode_line_arith_encode_init(in struct local_data *ld,
139 out struct jbg_arenc_state *par1,
140 out int int1,
141 out int int2,
142 in int cx){
143 void main(){
144

145 ld->cx=cx;
146 par1=ld->se;
147 int1=ld->cx;
148 int2=(ld->line_h1 >> 8) & 1;
149 }
150 };
151

152 behavior adaptive_template_init(in struct local_data *ld,
153 in struct jbg_enc_state *s,
154 out int at_determined,
155 out unsigned long j,
156 unsigned long h1,
157 out unsigned long h2,

22

158 out unsigned *t,
159 out unsigned long *c,
160 unsigned long *c_all,
161 out unsigned mx,
162 out unsigned long hx,
163 out int count,
164 out int flag
165){
166 void main(){
167

168 at_determined=ld->at_determined;
169 j=ld->j;
170 h1=ld->line_h1;
171 h2=ld->line_h2;
172 t=&(ld->t);
173 c=ld->c;
174 c_all=&(ld->c_all);
175 mx=s->mx;
176 hx=ld->lx;
177 count=3;
178 flag=1;
179 }
180 };
181

182 behavior sde_diff_encode_line(in struct local_data *ld,
183 in struct jbg_enc_state *s,
184 in unsigned long stripe,
185 in int layer,
186 in int plane)
187 { int int1, int2, flag, options, at_determined, count, cx, tx;
188 unsigned long y, j, l1, l2, l3, h1, h2, h3, *c, *c_all, hx;
189 unsigned *t, mx;
190 struct jbg_arenc_state *par1;
191

192

193 sde_diff_encode_line_init init(ld);
194 sde_diff_encode_line_leaf_1 leaf1(ld);
195 sde_diff_encode_line_leaf_2 leaf2(ld);
196 sde_diff_encode_line_leaf_3 leaf3(ld, s);
197 sde_diff_encode_line_leaf_4 leaf4(ld);
198 sde_diff_encode_line_leaf_5 leaf5(ld, s);
199

200 init_ld_j init_j(ld);
201 increment_ld_lp1 increment_lp1(ld);
202 increment_ld_lp2 increment_lp2(ld);
203

204 deterministic_prediction_init deterministic_prediction_init_exec(ld, s, options, y, j, l1, l2, l3, h1, h2, h3, flag);
205 deterministic_prediction deterministic_prediction_exec(options, y, j, l1,l2,l3, h1, h2, h3, flag);
206 adaptive_template_init adaptive_template_init_exec(ld, s, at_determined, j, h1, h2, t, c, c_all, mx, hx, count,flag);
207 adaptive_template adaptive_template_exec(at_determined, j, h1, h2, t, c, c_all, mx, hx, count,flag);
208

209 sde_diff_encode_line_arith_encode_init sde_diff_encode_line_arith_encode_init_exec(ld, par1, int1, int2, cx);
210 arith_encode arith_encode_exec(par1, int1, int2);

23

211 model_templates_init model_templates_init_exec(ld, s, plane, y,j, l1, l2, l3, h1, h2, h3, tx, flag, cx);
212 model_templates model_templates_exec(y,j, l1, l2, l3, h1, h2, h3, tx, flag, cx);
213

214 dummy for_loop_repeat, do_while_loop_1, do_while_loop_1_repeat,
215 do_while_loop_2, do_while_loop_2_repeat;
216 dummy do_while_loop_3, do_while_loop_3_repeat;
217

218 void main(void){
219

220 fsm{
221 init : goto init_j;
222 init_j : goto for_loop_repeat;
223 for_loop_repeat : if(ld->j < ld->hx) goto leaf1; goto leaf4;
224 leaf1 : goto do_while_loop_1;
225 do_while_loop_1 : goto leaf2;
226 do_while_loop_1_repeat : if ((ld->j) & 15 && (ld->j) < ld->hx) goto
227 do_while_loop_1; goto increment_lp1;
228 increment_lp1 : goto increment_lp2;
229 increment_lp2 : goto for_loop_repeat;
230 leaf2 : goto do_while_loop_2;
231 do_while_loop_2 : goto leaf3;
232 do_while_loop_2_repeat : if ((ld->j) & 7 && (ld->j) < ld->hx) goto
233 do_while_loop_2; goto do_while_loop_1_repeat;
234 leaf3 : if ((ld->ltp && s->tp[ld->j >> 1] < 2)) goto leaf5; goto
235 do_while_loop_3;
236 leaf5 : goto do_while_loop_2_repeat;
237 do_while_loop_3_repeat : if(++(ld->j) & 1 && (ld->j) < ld->hx) goto
238 do_while_loop_3; goto do_while_loop_2_repeat;
239 do_while_loop_3 : goto deterministic_prediction_init_exec;
240 deterministic_prediction_init_exec : goto deterministic_prediction_exec;
241 deterministic_prediction_exec : if(flag != 1) goto
242 model_templates_init_exec; goto do_while_loop_3_repeat;
243 model_templates_init_exec : goto model_templates_exec;
244 model_templates_exec : goto sde_diff_encode_line_arith_encode_init_exec;
245 sde_diff_encode_line_arith_encode_init_exec : goto arith_encode_exec;
246 arith_encode_exec : goto adaptive_template_init_exec;
247 adaptive_template_init_exec : goto adaptive_template_exec;
248 adaptive_template_exec : goto do_while_loop_3_repeat;
249

250 leaf4 : break;
251 }
252 }
253 };

24

