
Formal Verification of Specification Partitioning

Samar Abdi and Daniel Gajski

Technical Report CECS-03-06
March 6, 2003

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

fsabdi,gajskig@cecs.uci.edu

1

Formal Verification of Specification Partitioning

Samar Abdi and Daniel Gajski

Technical Report CECS-03-06
March 6, 2003

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

fsabdi,gajskig@cecs.uci.edu

Abstract

This report presents a formal approach to verify models in a system level design environment. It is a first in series of reports
that demonstrate how we use this formal approach to refine a given specification down to its cycle-accurate implementation.
We formally define models and develop theorems and proofs to show that our well defined refinement algorithms produce
functionally equivalent models. In this report, we specifically look at generation of an architecture level model by refinement
of a specification model. The refinement process follows a well defined system level partitioning algorithm. We prove that
executing the individual steps of the refinement algorithm, in the predefined order, leads to an equivalent model.

2

Contents

1 Introduction 1

2 Model Algebra 2
2.1 Model Definition . 2

2.1.1 Terms and definitions . 2
2.1.2 Axioms . 3

3 System Level Partitioning 3
3.1 Partitioning refinement algorithm 4
3.2 Theorems . 5
3.3 Validation of Partitioning refinement . .. 7

4 Conclusion 8

i

List of Figures

1 The gradual refinement process. 1
2 A simple specification model. 4
3 Model after partitioning. .. 4

ii

Formal Verification of Specification Partitioning

Samar Abdi and Daniel Gajski
Center for Embedded Computer Systems

University of California, Irvine

Abstract

This report presents a formal approach to verify models
in a system level design environment. It is a first in series of
reports that demonstrate how we use this formal approach
to refine a given specification down to its cycle-accurate im-
plementation. We formally define models and develop the-
orems and proofs to show that our well defined refinement
algorithms produce functionally equivalent models. In this
report, we specifically look at generation of an architecture
level model by refinement of a specification model. The re-
finement process follows a well defined system level parti-
tioning algorithm. We prove that executing the individual
steps of the refinement algorithm, in the predefined order,
leads to an equivalent model.

1 Introduction

The dramatic increase of behavioral and structural com-
plexity of SoC designs has raised the abstraction level of
system specification. The common approach is system de-
sign is to write models at different levels of abstraction.
However,with the size of these designs, traditional verifi-
cation and simulation based approaches for validation are
no longer practical. Besides, verification by comparing two
separately written models is not tractable.

The only solution is to generate one model from another
using a well defined sequence of refinements [2]. The out-
put model is the product of gradual refinements to the input
model. Each gradual refinement modifies the model such
that the model’s functionality is retained. Figure 1 shows
how a model refinement is broken into a sequence of grad-
ual refinement steps. We must ensure that model at leveli
is equivalent to the one at leveli � 1. By transitivity this
ensures that the final output model is equivalent to the input
model. To achieve this, we develop formalisms to describe
models at different abstraction levels and perform refine-
ments on them. This report presents a limited set of for-
malisms useful in the context of system level design parti-
tioning.

Specification Model (level 0)

Intermediate Model (level i)

Intermediate Model (level i-1)

Intermediate Model (level 1)

Architecture Model (level N)

Refinement 1

Refinement i

Figure 1. The gradual refinement process.

This report is a first in series of reports on formal veri-
fication of system level model refinements. Here, we focus
on the behavioral partitioning of a specification model to
derive an architecture level model. The report is divided as
follows. We begin by introducing the model algebra in the
next section. This includes a formal definition of a model in
terms of the model algebra in Section 2. We also present the
basic axioms associated with this algebra. We then present
the partitioning refinement algorithm in Section 3. Next, we
prove some useful theorems. The final theorem uses the ax-
ioms of Model Algebra and these theorems to prove that the
partitioned architecture model and specification model are
equivalent. The model in this report has been simplified to
demonstrate the concept. The methods used are completely
scalable and can be used for large models as well. Finally,
we wind up with a summary and conclusion.

1

2 Model Algebra

For proving correctness of model refinements, we need
to define a model algebra that can be used to formally rep-
resent system models. Generally speaking, a system is a
set of tasks that are executed in a predefined partial order.
Therefore, intuitively, the system model should be a compo-
sition of these tasks. Hence, the basic unit of computation
in the model is a task calledleaf behavior. A leaf behavior
is formally defined as a sequence of operations being exe-
cuted in a serial order. A model is constructed out of these
leaf behaviors by using the basic concept of hierarchy and
composition operations. Two or more leaf behaviors are put
together to compose a composite behavior. The composite
behaviors may also be combined with other leaf or compos-
ite behaviors to generate larger composite behaviors. In the
scope of this report, the composition may be sequential or
parallel. Moreover, we need synchronization between be-
haviors to ensure the correct temporal order of execution.

The Model Algebra is defined as:

A =< B ;θ;γ >

Here,

B = Set of Behaviors;

θ = fseq; parg(Set of Operations)

γ = f!;/g(Set of Relations)

seq= Sequential composition operation

if b1;b2;b3; ::: 2 B ;

thenseq(b1;b2;b3; :::) 2 B

par= Parallel composition operation

if b1;b2;b3; ::: 2 B ;

thenpar(b1;b2;b3; :::) 2 B

In this algebra, we have a set of objects (behaviors) and
a set of operations (seq, par). Theseqoperator implies that
behaviors are composed sequentially. Hence if

b= seq(b1;b2; :::;bi);b1;b2; :::;bi 2 B

b2 starts afterb1 has completed,b3 starts afterb2 has com-
pleted and so on. In this case,b is a composite behavior
formed from behaviorsb1 throughbi . Behaviorb is said
to start whenb1 starts and it ends whenbi ends. Note that
b2 B , and can be used to create more composite behaviors.

The par operator combines behaviors into a parallel
composition. Hence, if

b= par(b1;b2; :::;bi);b1;b2; :::;bi 2 B

then, there is no predefined order of execution between the
behaviorsb1;b2; :::;bi . In this case,b is a composite behav-
ior formed from behaviorsb1 throughbi . Behaviorb is said
to start when any behavior inb1 throughbi starts. Behavior
b is said to complete when all behaviors fromb1 throughbi

complete.
We define the relationsynchronization constrainton B

as follows

8b1;b2 2 B ; if b1 ! b2; then

irrespective of the hierarchical composition, behaviorb2

cannot start executing until behaviorb1 completes.
We also define the relationsub-behavioronB as follows

8b1;b2 2 B ; if b1/b2; then

b1 is a sub-expression in the hierarchical expression ofb2.

2.1 Model Definition

Based on the above algebra, a system model can be de-
fined as an expression inA along with a set ofsynchroniza-
tion constraints.

M = H(M);C(M);where

H(M) = the hierarchical composition of behaviors

representing the model M, and

C(M) = synchronization constraint on the set

of behaviors in H(M)

2.1.1 Terms and definitions

For the purpose of explaining and formally proving correct-
ness of model refinements, we need to introduce some no-
tations.

Leafs This is the set of all leaf level sub-behaviors of a
behavior.

Lea f s(x) = fbjb/x; 6 9y/x s.t. y/bg

PredecessorA behavior x is said to be apredecessorof

behavior y in model M (denoted byx
M
< y), if in the

temporal order of execution x must complete before y
begins. Formally,

1. 8x;y/H(M); if seq(::;x;y; ::)/H(M) thenx
M
< y

2. 8x;y/H(M); if x! y2C(M) thenx
M
< y

3. 8x;y;z/H(M); if z/y andx
M
< y thenx

M
< z

4. 8x;y;z/H(M); if z/x andx
M
< y thenz

M
< y

2

5. 8x;y;z/H(M); if x
M
< y andy

M
< z thenx

M
< z

Immediate PredecessorA behavior x is said to be anim-
mediate predecessorof behavior y, in a model M (de-

noted byx
M
� y) if

6 9z/H(M);z2 B ; such thatx
M
< z

M
< y

2.1.2 Axioms

Now that we have established the basic building blocks of
the system model, we need to define a set of axioms that
are associated with the model algebra. These axioms will
be used to construct proofs that will validate model refine-
ments and transformations.

Axiom 1 (Synchronization) A sequential composition of
behaviors b1;b2 in a model M may be replaced by a paral-
lel composition of b1;b2 by adding a synchronization con-
straint b1 ! b2 in C(M).

f (seq(b1;b2);b3;b4:::);C(M) =

f (par(b1;b2);b3;b4:::);C(M)[b1! b2

Axiom 2 (Flattening) If a behavior x is composite and
parent of x is the same composite type as x, and x does
not have any synchronization constraints, then x may be re-
moved through flattening.

x= seq(b1;b2; :::bj)

y= seq(a1;a2:::ai ;x;c1;c2:::ck)/H(M); and

6 9n/H(M); such that

n! x2C(M) or x! n2C(M); then

y= seq(a1;a2; :::;ai ;b1;b2; :::;bj ;c1;c2; :::;ck)

The dual forparbehavior is as follows:

x= par(b1;b2; :::bj)

y= par(a1;a2:::ai ;x;c1;c2:::ck)/H(M); and

6 9n/H(M); such that

n! x2C(M) or x! n2C(M); then

y= par(a1;a2; :::;ai ;b1;b2; :::;bj ;c1;c2; :::;ck)

Axiom 3 (Forward Substitution) If a behavior x is a se-
quential composition such that x= seq(b1;b2:::;bi) and if
there exists a synchronization constraint from a behavior
n! x, then the constraint may be replaced by a synchro-
nization constraint n! b1. Similarly, a constraint x! n
may be replaced by bi ! n

if x = seq(b1;b2; :::;bi)/H(M); then

8n/H(M); if n! x2C(M)

C(M) = (C(M)�n! x)[n! b1

8n/H(M); if x! n2C(M)

C(M) = (C(M)�x! n)[bi ! n

If a behavior x is a parallel composition such that x=
par(b1;b2:::;bi) and if there exists a synchronization con-
straint from a behavior n! x, then the constraint may
be replaced by synchronization constraints n! b1;n !
b2; :::;n! bi. Similarly, a constraint x! n may be replaced
by constraints b1! n;b2! n; :::bi ! n:

if x = par(b1;b2; :::;bi)/H(M); then

8n/H(M); if n! x2C(M);

C(M) = (C(M)�n! x)[n! b1;n! b2; :::;n! bi

8n/H(M); if x! n2C(M);

C(M) = (C(M)�x! n)[bi ! n;b2! n; :::bi ! n:

Axiom 4 (Commutativity) A parallel composition of the
type par(b1;b2) is equivalent to par(b2;b1).

par(b1;b2) = par(b2;b1)

.

3 System Level Partitioning

This is the first step in deriving the architecture model
from a given specification [1]. Once we have determined the
components in the proposed system architecture, we need
to divide the system tasks into suitable groups. Each of
these groups is assigned to a unique component in the ar-
chitecture. After this assignment, we need to evaluate the
correctness and suitability of our partition. For this pur-
pose, we need to generate an executable model of the par-
titioned model. The model may be generated automatically
from the specification, once we have the partitioning deci-
sions. This process is known as partitioning refinement [3].
In this sub-section, we present the partitioning refinement
algorithm using our model algebra. Subsequently, we de-
velop a theorem and prove it to show that this algorithm
indeed works correctly. We wind up with a conclusion and
proposed future work in this direction.

3

a

d

cb

M

Specification Model
M = H(M), C(M)

H(M) = seq (a, par (b, c), d)
C(M) = { }

Figure 2. A simple specification model.

3.1 Partitioning refinement algorithm

Given a model M = H(M), C(M), a set of
n components PE1;PE2; :::;PEn and n partitions
partition1; partition2; :::; partitionn. Each partition is
a set of leaf behaviors in M. The partitions follow the
property that

n[

i=1

partitioni = Lea f s(H(M)); and

partitioni \ partitionj = φ;1� i; j � n

partitioni is assigned toPEi

The partitioned modelMp is generated as follows.

1. We initialize H(Mp) as a parallel composition ofn be-
haviorsPE1 throughPEn.

2. H(M) is copied into eachPEi ;1� i � n

3. From each behaviorPEi1� i � n, remove all leaf be-
haviorsbl such thatbl 2 (Lea f s(H(M))� partitioni)

4. Add following synchronization constraints

n[

i=1

fx! yjy2 partitioni;x
M
� y;

a

d

cb

M

Partitioned Model
M = H(M), C(M)

H(M) = par (seq (a, b, d), c)
C(M) = { a c, c d}

p

PE PE1 2

sync

sync

Figure 3. Model after partitioning.

x2 (Lea f s(H(M))� partitioni)g

An example of the refinement process is demonstrated
on a simple specification model. The specification, com-
prising of four leaf behaviors viz.a, b, c and dis shown
in figure 2. Leaf behaviorsb andc are composed in paral-
lel to form a composite behavior. This composite behavior
follows a and precedesd in a larger sequential composition.
The partitioning decision is as follows.

partition1 = a;b;d; to PE1

partition2 = c; to PE2

After partitioning, the model is refined to a parallel com-
position ofPE1 andPE2. Synchronization constraints are
added across the partitions to maintain the original partial

order of execution.a
M
� c andc

M
� d, are the only imme-

diate predecessor relations across partitions. Therefore, we
add corresponding synchronization constraints i.e.a! c
andc! d to derive modelMp as shown in figure 3.

4

3.2 Theorems

The axioms in Section 2 establish the basic properties of
a model. We now focus on developing some useful the-
orems from these axioms. The theorems in turn will be
employed to prove the correctness of model refinement al-
gorithms. In particular, we are trying to prove that our re-
finement algorithm for partitioning a specification model is
correct. The theorems in this sub-section will help in prov-
ing that the model obtained after partitioning isequivalent
to the specification.

Theorem 1 (Expression Exchange)A sequential compo-
sition of the type seq(b1;b2; :::bi) in a given model M,
may be replaced by a parallel composition of the type
par(b1;b2; :::bi) by adding the synchronization constraints
b1! b2;b2 ! b3; ::::bi�1 ! bi to C(M).

f (seq(b1;b2; :::bi);bi+1;bi+2::);C(M)

= f (par(b1;b2; :::bi);bi+1;bi+2::);

C(M)[fb1 ! b2;b2 ! b3; :::;bi�1 ! big

The proof is as follows:

M = f (seq(b1;b2; :::bi);bi+1;bi+2::);C(M)

We prove this theorem by mathematical induction. for i
= 3, we have,

M = f (seq(b1;b2;b3);b4; :::);C(M)

= f (seq(seq(b1;b2);b3);b4; :::);C(M)

using axiom 2

= f (par(seq(b1;b2);b3);b4; :::);

C(M)[seq(b1;b2)! b3

using axiom 1

= f (par(seq(b1;b2);b3);b4; :::);

C(M)[b2 ! b3

using axiom 3

= f (par(par(b1;b2);b3);b4; :::);

C(M)[b2 ! b3[b1 ! b2

using axiom 1

= f (par(b1;b2;b3);b4; :::);

C(M)[b1 ! b2;b2 ! b3

using axiom 2

So, the theorem is proved fori = 3. By principle of in-
duction, let us assume that the theorem is true for integer
i = N;N > 3. We have to prove that the theorem holds true
for i = N+1 also.

for i = N+1, we have

M = f (seq(b1;b2; :::;bN;bN+1);bN+2; :::);C(M)

= f (seq(seq(b1;b2; :::;bN);bN+1);bN+2; :::);C(M)

using axiom 2

= f (par(seq(b1;b2; :::;bN);bN+1);bN+2; :::);

C(M)[fseq(b1;b2; :::;bN)! bN+1g

using axiom 1

= f (par(seq(b1;b2; :::;bN);bN+1);bN+2; :::);

C(M)[fbN ! bN+1g

using axiom 3

= f (par(par(b1;b2; :::;bN);bN+1);bN+2; :::);

C(M)[fbN ! bN+1g

[fb1 ! b2;b2 ! b3; � � � ;bN�1 ! bNg

using assumption for i = N

= f (par(b1;b2; :::;bN;bN+1);bN+2; :::);

C(M)[fb1 ! b2;b2 ! b3; � � �

� � � ;bN�1 ! bN;bN ! bN+1g

using axiom 2

Hence proved.

Theorem 2 (Permutation of parallel behaviors) A paral-
lel composition of the type par(b1;b2; :::bi) in a given model
M, may be replaced by a parallel composition of behaviors
b1 through bi in any permutation.

This amounts to proving that

par(b1;b2; ::;bx;bx+1; :::;by;by+1; :::bi)

= par(b1;b2; :::;by;bx+1; :::;bx;by+1; :::bi);

x 6= y;1� x;y� i

The proof is as follows: Without loss of generality, let us
assumex< y Let y= x+n;n� 1 So, we have

b = par(b1;b2; :::;bx;bx+1; :::;bx+n�1;by; :::;bi)

= par(b1;b2; :::;bx;bx+1; :::; par(bx+n�1;by); :::;bi)

= using axiom 2

= par(b1;b2; :::;bx;bx+1; :::; par(by;bx+n�1); :::;bi)

using axiom 4

= par(b1;b2; :::;bx;bx+1; :::;by;bx+n�1; :::;bi)

using axiom 2

Using n iterations of the above three steps and moving
by to the left, we get

b = par(b1;b2; :::;by;bx;bx+1; :::;bx+n�1; :::;bi)

5

= par(b1;b2; :::;by; par(bx;bx+1); :::;bx+n�1; :::;bi)

using axiom 2

= par(b1;b2; :::;by; par(bx+1;bx); :::;bx+n�1; :::;bi)

using axiom 4

= par(b1;b2; :::;by;bx+1;bx; :::;bx+n�1; :::;bi)

using axiom 2

Again, using n iterations of the above three steps and
movingbx to the right, we get

b= par(b1;b2; :::;by;bx+1; :::;bx;by+1; :::bi)

Hence proved.

Theorem 3 (Immediate Predecessors)In order for y to be
an immediate predecessor of behavior x in a model M,one
of the following conditions must be fulfilled.

1. seq(:::;y;x; :::)/H(M)

2. y
M
� seq(x; :::)

3. y
M
� par(:::;x; :::)

4. seq(:::;y)
M
� x

5. par(:::;y; :::)
M
� x

The proof for this theorem is derived from the definitions
of predecessorsandimmediate predecessorsas described in
section 2.1.1. We prove this theorem by contradiction. Let

there be a behaviorz/H(M), such thatz
M
� x andzdoes not

follow any of the conditions 1 through 5.

Let y1 /H(M) and y1
M
� x by condition 1. Therefore,

we haveseq(:::;y1;x; :::) / H(M). By definition of pre-

decessor, z
M
< x, so it must be true that eitherz/ y1 or

z
M
< seq(:::;y1;x; :::).

if z
M
< seq(:::;y1;x; :::), then by definitionz

M
< y1. Hence,

z
M
6� x, sincey1

M
< x.

if z/y1 andy= seq(:::;y2), thenz 6= y2 sincez does not

follow condition 4. if z 6 /y2, we have by definitionz
M
< y2.

Hence,z
M
6� x, sincey2

M
< x by definition ofpredecessor. if

z/y2, we revisit this proof recursively.
if z/ y1 and y = par(b1;b2:::), then by condition 5,

z 6= b1;z 6= b2:::. If z/ b1;orz/ b2:::, we revisit this proof
recursively.

if seq(x; :::) /H(M) ,then by definition ofpredecessor,

if z
M
< x, we havez

M
< seq(x; :::) . By Condition 2,z

M
6�

seq(x; :::). Therefore, there exists behaviory3, such that

y3
M
< seq(x; :::) andz

M
< y3. Thusy3

M
< x, by definition. Hence

z
M
6� x.

if par(:::;x; :::) /H(M) ,then by definition ofpredeces-

sor, if z
M
< x, we havez

M
< par(:::;x; :::) . By Condition 3,

z
M
6� par(:::;x; :::). Therefore, there exists behaviory4, such

thaty4
M
< par(:::;x; :::) andz

M
< y4. Thusy4

M
< x, by defini-

tion. Hencez
M
6� x.

We have shown thatz cannot be animmediate predeces-
sor of x if it does not follow any of the conditions in the
theorem. Therefore, animmediate predecessorof x must
follow at least one of the conditions.

Hence proved.

Theorem 4 (Canonical form) Any system model M =
H(M), C(M) is equivalent to a canonical model M0, which is
a parallel composition of all leaf behaviors in M, and each
leaf behavior in M0 has a synchronization constraint from
all its immediate predecessors in M.

H(M0) = par(Lea f s(H(M)));

C(M0) = fx! yjx
M
� y;x;y2 Lea f s(H(M))g

The proof is as follows. We start with a specification
model M of the system. We can assume that at the specifi-
cation level, the designer is free to model the system behav-
ior as any arbitrary hierarchical composition of behaviors.
Thus, we can assume that there are no synchronization con-
straints between behaviors in M.

M = H(M);C(M); whereC(M) = fg

In order to reach the canonical model0,we perform the
following steps. Starting at the top of hierarchy H(M),

1. Convertseqnodes topar using theorem 1.

2. Re-arrange synchronization constraints using axioms
3 and 3.

3. Repeat from 1 till all composite nodes are parallel and
synchronization constraints are between leaf behav-
iors.

Let there be behaviorb 2 Lea f s(H(M)). if 9x/H(M)
such thatseq(:::x;b; :::)/H(M), thenpar(:::x;b:::)/H(M0).
If x 2 Lea f s(H(M)), thenx! b 2 C(M0). By theorem 3,

x
M
� b.
if x 62 Lea f s(H(M)), then we have two cases

6

1. x = seq(x1;x2; :::;xn). In this case, when we con-
vert seq(:::x;b; :::) to par(:::x;b; :::), we add the syn-
chronization constraintx! b to C(M). By axiom 3,
this constraint is replaced byxn ! b. By theorem 3,

xn
M
� b.

2. x= par(x1;x2; :::;xn). In this case, when we convert
seq(:::x;b; :::) to par(:::x;b; :::), we add the synchro-
nization constraintx! b to C(M). By axiom 3, this
constraint is replaced byx1 ! b;x2 ! b; :::;xn ! b.

By theorem 3,x1
M
� b;x2

M
� b; :::;xn

M
� b.

Therefore, for the caseseq(:::x;b; :::) /H(M), the only
synchronization constraints added toC(M) for behaviorb

arefx! bjx
M
� b;x;b2 Lea f s(H(M))g

Next, we consider the case whenseq(b; :::) /H(M). By
theorem 3, anyimmediate predecessorof b is animmediate
predecessorof seq(b; :::). Let us assume that a synchroniza-
tion constraintx! seq(b; :::) is added toC(M) such that

x
M
� seq(b; :::). Using theorem 3, we havex

M
� b. Also, us-

ing axiom 3, the synchronization constraintx! seq(b; :::)

added toC(M) is replaced byx
M
� b. Therefore, by induc-

tive reasoning, for the caseseq(b; :::)/H(M), the only syn-
chronization constraints added toC(M) for behaviorb are

fx! bjx
M
� b;x;b2 Lea f s(H(M))g

Finally, we have the case whenpar(:::;b; :::)/H(M). As
in the previous scenario, by theorem
refipred, anyimmediate predecessorof b is an immediate
predecessorof par(:::;b; :::). Let us assume that a syn-
chronization constraintx! par(:::;b; :::) is added toC(M)

such thatx
M
� par(:::;b; :::). Using theorem 3, we have

x
M
� b. Also, using axiom??, the synchronization con-

straint x ! par(:::;b; :::) added toC(M) is replaced by

x
M
� b, amongst other constraints. Therefore, by inductive

reasoning, for the casepar(:::;b; :::) /H(M), the only syn-
chronization constraints added toC(M) for behaviorb are

fx! bjx
M
� b;x;b2 Lea f s(H(M))g

Using the above three cases, we have shown that in gen-
eral

C(M0) = fx! yjx
M
� y;x;y2 Lea f s(H(M))g

If we look at the steps in reaching the canonical form,
note that theorem 1 is used to convert allseqexpressions
to par expressions. So, finally the hierarchy of the model
M will have only par expressions. Now, using axiom 2 we
can remove all compositepar behaviors, since none of the
composite behaviors have any synchronization constraints
(as shown above). Therefore, after flattening, we have

H(M0) = par(Lea f s(H(M)))

Hence proved.

3.3 Validation of Partitioning refinement

As mentioned in the beginning of this section, we are
interested in proving the correctness of our partition re-
finement algorithm. Towards that end, we established and
proved the above theorems. Using these theorems and the
basic axioms of the Model Algebra, we prove the correct-
ness of the partitioning refinement algorithm.

Theorem 5 (Partitioning refinement) Model Mp gener-
ated by partitioning refinement of specification model M,
is functionally equivalent to M.

The proof is as follows:

M = H(M);C(M)

Mp = H(Mp);C(Mp)

Let M0 = par(Lea f s(M));

x! yjx
M
� y;x;y2 Lea f s(M)

We have
M0 = M;using theorem 4

For modelMp, we have

H(Mp) = par(PE1;PE2:::;PEn)

8i;1� i � n

FlatteningPEi using theorem 4 we get

Mp = par(PE1; :::par(partitioni); :::PEn);

= C(Mp)[x! yjx
Mp
� y;x;y2 partitioni

This implies,

H(M0

p) = par(par(partition1); par(partition2);

� � � ; par(partitionn))

= par(partition1; partition2; :::; partitionn)

using axiom 2

= par(
n[

i=1

partitioni);

since partitions are disjoint

= par(Lea f s(M))

= H(M0) using theorem 2

7

For the synchronization constraints in the refined model,
we have

C(M0

p) = C(Mp)[f
n[

i=1

fx! yjx
Mp
� y;

x;y2 partitionigg;

using theorem 4

= C(M)[f
n[

i=1

fx! yjy2 partitioni;x
M
� y;

x2 (Lea f s(H(M))� partitioni)gg[

f
n[

i=1

fx! yjx
Mp
� y;x;y2 partitionigg

= C(M)[f
n[

i=1

fx! yjy2 partitioni;x
M
� y;

x2 (Lea f s(H(M))� partitioni)gg[

f
n[

i=1

fx! yjx
M
� y;x;y2 partitionigg;

sincePEi is a copy of H(M)

= C(M)[f
n[

i=1

fx! yjy2 partitioni;x
M
� y;

x2 Lea f s(H(M))gg

= C(M)[fx! yjx
M
� y;x;y2 Lea f s(H(M))g

= C(M0)

Therefore,
M0

p = M0

=)Mp = M

Hence proved.

4 Conclusion

In this report, we presented an algebra and a formal ver-
ification scheme based on model refinement. This is a new
concept wherein we perform formal verification in a sys-
tem design process by deriving one model from another,
rather than the traditional way of comparing two indepen-
dently written models. We showed how models at differ-
ent abstraction levels may be expressed in the proposed
model algebra and how their transformations can be proved
to be correct. The system design partitioning produced a
new model that was derived from the specification model
through a series of well defined refinement steps. A theo-
rem was established and proved to show that this refinement
produced a model that is functionally equivalent to the spec-
ification model.

This approach to system level design validation shows
a lot of promise. In the future, we will try to expand the

algebra to incorporate modeling capabilities like memory,
data transactions etc. This will enable us to develop theo-
rems that will be used to verify more general and complex
refinement algorithms.

References

[1] D. Gajski, R. Domer, A. Gerstlauer, and J. Peng.Sys-
tem Design with SpecC. Kluwer Academic Publishers,
January 2002.

[2] D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and
S. Zhao.SpecC: Specification Language and Method-
ology. Kluwer Academic Publishers, January 2000.

[3] J. Peng, S. Abdi, and D. Gajski. Automatic model re-
finement for fast architecture exploration. InProceed-
ings of the Asia-Pacific Design Automation Conference,
pages 332–337, January 2002.

8

