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Abstract-- Today, control algorithms are being more and more 
sophisticated due to the customer and governments demands. 
Then, their real-time implementation becomes a difficult 
task and needs more and more specific hardware systems 
with dedicated processors and usually systems-on-chip 
(SOCs). 
With the ever-increasing complexity and time-to-market 
pressures in the design of these specific control systems, a 
well-defined design methodology is more than even 
necessary. 
In this paper we present a seamless approach for the design of 
control systems for power electronics and electric drives. We 
discuss the case of a DC system Control and describe in 
details different stages undergone. Generalization to others 
systems can be done easily using the same steps and 
transformations.  
 
Index terms-- Co-design, Embedded Systems, Control, Electric 
process. 
 

I. INTRODUCTION 

 
Today, variable speed motor control systems have a wide 
range of applications from industrial robotics to domestic 
washing machines, each with a specific set of requirements. 
Therefore, Motor control is being a vast market (estimated 
to be $5 billion annually for motors and motor controllers 
[1]) and the motor control industry is being a strong 
aggressive sector. Each industry to remain competitive has 
to answer the customer and governments demands for lower 
cost, greater reliability, environmental concerns regarding 
power consumption, emitted radiation and requirements for 
greater accuracy. This is achievable only by the use of 
sophisticated control systems [2,3,4].  
The shortest time-to-market is a pressing requirement, 
consequently development time of new algorithms and new 
control device and debugging them must be minimized. This 
requirement can be satisfied only by using a well-defined 
System-level design methodology and by reducing the 
migration time between the algorithm development language 
and the hardware specification language. 
 

The goal of this work is to introduce a new seamless 
approach for the development of complex control systems. 
This approach will be discussed using an application of the 
DC motor control. A generalization of this study to any 
other control system can be done easily using the same 
steps discussed in the following sections. 
The control device will be described in four models, which 
represent four different levels of abstraction in our design 
approach [5,6]. All these models are executable and 
validated by simulation. 

 
The rest of the paper is organized as follows: We first begin 
with a brief presentation of the used approach. Then we 
describe an executable specification model of the control 
system and we discuss the refinement of this model into 
architecture model, which accurately reflects the system 
architecture. Based on the retained architecture model, 
communication protocols between the system components 
are defined and communication model is developed. 

II. DESIGN APPROACH 

 
Managing the complexity at higher levels of abstraction is 
not possible without having a very well-defined system-
level design flow. Therefore, in this project we propose a 
new seamless approach, which is a set of models and 
transformations on the models (Figure 1). The models 
written in programming language (SpecC language) are 
executables descriptions of the same system at different 
levels of abstraction in the design process. The 
transformations are a series of well-defined steps through 
which the initial specification is gradually mapped onto a 
detailed implementation description ready for 
manufacturing. 
This new approach is based on 4 well-defined models, 
namely a specification model, an architecture model, a 
communication model, and finally, an implementation model. 
After each design step, the design model is statically 
analyzed to estimate certain quality metrics such as 
performance, cost, and power consumption. Analysis and 
estimation results are reported to the user and back-
annotated into the model for simulation and further 
synthesis. 



In this paper we focus on the synthesis flow which contains 
the steps of specification, architecture exploration and 
communication synthesis. Implementation can then be done 
easily using standard tools. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Design Approach 

III. SPECIFICATION 

 
The system design process starts with the specification 
model written by the user to specify the desired system 
functionality. This model is a purely functional, abstract 
model that is free of any implementation details. 
  
Figure 2 shows the specification model of the DC control 
system in SpecC language. The used control algorithm 
(CTL_Alg) is composed of two control loops: an outer 
motion loop (M_Alg) and an inner current loop (C_Alg). Each 
of them is specified in a separate sub-behavior and 
associated to a clock-behavior that generated the 
synchronization event to activate the corresponding control 
loop at the predefined periodic step.  
The I/O modules necessary for the control device 
functioning are specified in two behaviors: the PWM 
behavior represents the PWM1 module functioning while 
the ACQ behavior represents the information acquisition 
modules.  
The PWM behavior generates two complementary signals C0 
and  C1 with the same frequency as the current control 
module clock and according to the puls e width value α (for 
C0) obtained by the current control behavior. 
The current acquisition behavior (Acqi) captures the current 
value (Nim obtained from the used ADC2 component) and 

                                                                 
1 Pulse Width Modulation 
2 Analog to Digital Converter 

computes its average value over the current control period 
(im). While the speed acquisition behavior (AcqΩ) computes 
the speed value (Ωm) from the two signals S0 and S1 
generated by the optical incremental encoder (sensor used 
on the process under control). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Specification model of the control device 

 
As shown on figure 2, the SpecC specification describes the 
control device functionality in a clear and precise manner. 

IV. ARCHITECTURE EXPLORATION 

 
Architecture exploration is the first part of the system 
synthesis process that develops system architecture from 
the specification model. The purpose of architecture 
exploration is to map the computational parts of the 
specification onto the components of system architecture. 
The steps involved in this process are allocation, 
partitioning and scheduling. Through this process, the 
specification model is gradually refined into the architecture 
model.  

A. Allocation 
 
The first task of the architectural exploration process is the 
allocation of a system target architecture consisting of a set 
of components and their connectivity. Allocation selects the 
number and types of processing elements (PEs), memories 
and busses in the architecture, and it defines the way PEs 
and memories are connected over the system busses. 
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Components and protocols are taken out of a library and can 
range from full-custom designs to fixed IPs3.  
After an architecture has been allocated, the first step in 
implementing the specification on the given architecture is 
to map the specification model behaviors onto the 
architecture’s processing elements.  
For the control device application, usually the I/O modules 
are done by hardware modules (ADC, Timers, …) while the 
control algorithm is implemented in a standard  processor. 
The retained model is composed of a processor core 
(DSP56600 core) running control algorithm and a hardware 
component (ASIC) for the I/O functions (Figure3).  
 
 
 
 
 
 
 
 
 

Figure 3: Architecture models after behavior partitioning  

 
Formerly local variables used for communication between 
behaviors mapped to different components now become 
global, system-level variables (α, im, Ωm). 

B. Variable Partitioning 
 
After behavior partitioning, communication between 
behaviors mapped to different PEs is performed via global, 
shared variables. Global variables have to be assigned to 
local memory in the PEs or to a dedicated shared memory 
component. In the refined model after variable partitioning, 
global variables are replaced with abstract channels and 
code is inserted into the behaviors to communicate variable 
values over those channels. 

In our application, we use local copies of these variables in 
each PEs (Figure 4). Updated data values are communicated 
between ASIC and DSP through 3 abstract channels (Cα, Cim 
and CΩm).  

 
 

 
 
 
 
 

Figure 4: Architecture model after variable partitioning  
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C. Scheduling 
 
Scheduling determines the execution order of behaviors that 
execute on inherently sequential PEs. Scheduling may be 
done statically or dynamically [7].  
 
Figure 5 shows the scheduling of the parallel control 
algorithm running on the DSP core. Due to the dynamic 
timing relation between motion loop and current loop tasks, 
a dynamic scheduling scheme is implemented. The motion 
control represents the main program, which executes in 
periodic manner (Ts=20ms). Whenever a new current period 
arrives (Tc=284µs), the main task is interrupted in order to 
execute the current control. 
 
 
 
 
 
 
 
 

Figure 5: Architecture model after scheduling 

 
According to this scheduled model and in order to simplify 
synchronization for communication, all exchanges are done 
at the beginning of each current control loop which means 
at each period Tc (Figure 6). The Ωm value will be then a 
local variable of the DSP as well as Iref. 

 
Exchanges synchronization can be done by an external clock 
(Figure 5) or by an event generated by the ASIC and 
precisely by the PWM module since it will integrate a 
temporization function at the period of Tc. 
 
 
 
 
 
 
 

Figure 6: Modification of variable partitioning 

D. Channel Partitioning 
 
Channel partitioning is the process of mapping and 
grouping the abstract, global communication channels 
between components onto the busses of the target 
architecture. In the refined model, additional top-level 
channels are used to represent system busses. Then 
channel partitioning is reflected by hierarchically grouping 
and encapsulating the abstract, global channels under the 
top-level bus channels (Figure 7). 
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Figure 7: Architecture model after channel partitioning 

V. COMMUNICATION SYNTHESIS 

 
The purpose of communication synthesis is to refine the 
abstract communication in the architecture model into an 
actual implementation over the wires of the system busses. 
This requires insertion of communication protocols for the 
busses, synthesis of protocol transducers to translate 
between incompatible protocols, and inlining of protocols 
into hardware and software.  

A. Protocol Insertion 
 
During the protocol insertion, a description of the protocol 
is taken out of the protocol library in the form of a protocol 
channel and inserted into the corresponding virtual system 
bus channel (Figure 8).  
 
The abstract communication primitives provided of the bus 
channel are rewritten into an implementation using the 
primitives provided by the protocol layer. The outer 
application layer of the bus channel implements the required 
semantics over the actual bus protocol. This includes tasks 
like synchronization, arbitration, bus addressing, data 
slicing, and so on.  
 
All the abstract bus channels in the model are replaced with 
their equivalent hierarchical combinations of protocol and 
application layers that implements the abstract 
communication of each bus over the actual protocol for that 
bus. 
 
 
 
 

Figure 8: Protocol insertion principle 

 
In this example, after protocol insertion, the processor is the 
central component and the master of the system bus. The 
software on the processor initiates all data transfers on the 
processor bus from and to the hardware component. 
However, these exchanges are initiated either by an external 

clock or by the hardware component that send an event (IT) 
at each Tc period to the processor by triggering its interrupt 
in order to execute the exchanges process (Figure 9). 

 
 
 
 
 
 
 
 

Figure 9: HW/SW Synchronization diagrams 

The protocol channel in the system bus and the wrapped 
processor model describe and implement the DSP56600 bus 
protocol according to its timing diagram [8], shown in figure 
10.  

B. Protocol Inlining 
 
Protocol inlining is the process of inlining the channel 
functionality into the connected components and exposing 
the actual wires of the busses. The communication code is 
moved into the components where it is implemented in 
software or hardware. On the hardware side, FSMDs that 
implement the communication and bus protocol 
functionality are synthesized. On the software side, bus 
drivers and interrupt handlers that perform the 
communication using the processor’s I/O instructions are 
generated or customized. 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 10: Protocols of the DSP56600 external bus 

 
The communication model obtained after protocol inlining is 
shown in Figure 11. For the ASIC, communication primitives 
are inlined into the exchanges sub-behavior. Therefore, 
exchanges SFSMD model is created and inserted into the 
ASIC SFSMD model [Figure 12].  
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Figure 11: Communication model after protocol inlining 

The exchanges hardware module synchronizes with the DSP 
by raising the processor’s interrupt line IRQC in its first 
state S1 until a transfer with the address of the custom 
hardware is recognized. Then the WR control signal is 
sampled until a falling edge has been detected that signals 
the beginning of a bus write cycle. Communication 
continues at the same manner for two read cycles. 
The obtained communication model is validated and is ready 
for use directly to generate the implementation model. The 
leaf behaviors of the design model will be fed into different 
tools in order to obtain their implementation [9]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12: HW Communication SFSMDs 

VI. CONCLUSIONS 

 
In this paper we introduce a new seamless approach for the 
design of control systems of Power Electronics and Electric 
drives processes. We presented the study of a DC motor 

drive, which can be easily generalized to any other process 
control. 
We have shown the various steps that gradually refines the 
initial specification down to an actual communication model 
ready for implementation and manufacturing. 
 The well-defined nature of the presented approach models 
and transformations helps focusing design efforts on central 
issues, provides the basis for design automation tools, and 
enables application of formal methods. 
The use of the same language for the specification and for 
the design process reduces significantly the time-to-market 
by minimizing largely communication among designers and 
customers. 
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