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Abstract

System level synthesis is widely seen as the solution for closing the productivity gap in system design. High level system
models are used in system level synthesis for early design exploration. While real time operating systems (RTOS) are an
increasingly important component in system design, specific RTOS implementations can not be used directly in high level
models. On the other hand, existing system level design languages (SLDL) lack support for RTOS modeling. In this paper we
propose a RTOS model built on top of existing SLDLs which, by providing the key features typically available in any RTOS,
allows the designer to model the dynamic behavior of multi-tasking systems at higher abstraction levels to be incorporated
into existing design flows. Experimental result shows that our RTOS model is easy to use and efficient while being able to
provide accurate results.
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Abstract

System level synthesis is widely seen as the solution
for closing the productivity gap in system design. High
level system models are used in system level synthesis for
early design exploration. While real time operating systems
(RTOS) are an increasingly important component in system
design, specific RTOS implementations can not be used di-
rectly in high level models. On the other hand, existing sys-
tem level design languages (SLDL) lack support for RTOS
modeling. In this paper we propose a RTOS model built
on top of existing SLDLs which, by providing the key fea-
tures typically available in any RTOS, allows the designer
to model the dynamic behavior of multi-tasking systems at
higher abstraction levels to be incorporated into existing
design flows. Experimental result shows that our RTOS
model is easy to use and efficient while being able to provide
accurate results.

1. Introduction

In order to handle the ever increasing complexity and
time-to-market pressures in the design of systems-on-chip
(SOCs), raising the level of abstraction is generally seen as
a solution to increase productivity. Various system level de-
sign languages (SLDL) [Spe, Sys] and methodologies have
been proposed in the past to address the issues involved
in system level design. However, most SLDLs offer little
or no support for modeling the dynamic real-time behav-
ior often found in embedded software. In the implementa-
tion, this behavior is typically provided by a real time op-
erating system (RTOS) [QNX, VxW]. At an early design
phase, however, using a detailed, real RTOS implementa-
tion would negate the purpose of an abstract system model.
Furthermore, at higher levels, not enough information might
be available to target a specific RTOS. Therefore, we need
techniques to capture the abstracted RTOS behavior in sys-
tem level models.

In this paper, we address this design challenge by intro-

ducing a high level RTOS model for system design. It is
written on top of existing SLDLs and doesn’t require any
specific language extensions. It supports all the key con-
cepts found in modern RTOS like task management, real
time scheduling, preemption, task synchronization, and in-
terrupt handling [C.B99]. On the other hand, it requires
only a minimal modeling effort in terms of refinement and
simulation overhead. Our model can be integrated into the
existing system level synthesis flows to accurately evalu-
ate a potential system design (e.g. in respect to timing con-
straints) for early and rapid design space exploration.

The rest of this paper is organized as follows: Section 2
gives an insight into the related work on software modeling
and synthesis in system level design. Section 3 describes
how the RTOS model is integrated with the system level
design flow. Details of the RTOS model, including its inter-
face and usage as well as the implementation are covered in
Section 4, Section 6 and Section 7. Experimental results are
shown in Section 8 and Section 9 concludes this paper with
a brief summary and an outlook on future work.

2. Related Work

A lot of work recently has been focusing on automatic
RTOS and code generation for embedded software. In
[G+01], a method for automatic generation of application-
specific operating systems and corresponding application
software for a target processor is given. In [Cor00], a way of
combining static task scheduling and dynamic scheduling
in software synthesis is proposed. While both approaches
mainly focus on software synthesis issues, their papers do
not provide any information regarding high level modeling
of the operating systems integrated into the whole system.

In [T+01], a technique for modeling fixed-priority pre-
emptive multi-tasking systems based on concurrency and
exception handling mechanisms provided by SpecC is
shown. However, their model is limited in its support for
different scheduling algorithms and inter-task communica-
tion, and its complex structure makes it very hard to use.

Our method is similar to [D+00], where they present
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a high-level model of OS called SoCOS. The main differ-
ence is that our RTOS model is written on top of existing
SLDLs whereas SoCOS requires its own proprietary simu-
lation engine. By taking advantage of the SLDL’s existing
modeling capabilities, our model is simple to implement yet
powerful and flexible, and it can be directly integrated into
any system model and design flow supported by the chosen
SLDL. Besides, while their model focused on task concur-
rency issues, our model is mainly focused on simulating the
real time activities(task preemption,interrupt handling,real
time scheduling)since real time analysis is a critical task in
embedded software design. As a result, our RTOS model
has to contain much more complex and complete services
related with real time issues.

3. Design Flow

System level design is a process with multiple stages
where the system specification is gradually refined from an
abstract idea down to an actual implementation. This re-
finement is achieved in a stepwise manner through several
level of abstraction. After each step, a refined system model
allows validation of the implementation detail introduced.

Figure 1 shows a typical system level design flow. The
system design process starts with the specification model
written by the designer to specify the desired system func-
tionality. During system synthesis, the specification func-
tionality is then partitioned onto multiple processing el-
ements (PEs), some or all of the concurrent processes
mapped to a PE are statically scheduled, and a communi-
cation architecture consisting of busses and bus interfaces
is synthesized to implement communication between PEs.
Note that during communication synthesis, interrupt han-
dlers will be generated inside the PEs as part of the bus
drivers.

Due to the inherently sequential nature of PEs, processes
mapped to the same PE need to be serialized. Depending on
the nature of the PE and the data inter-dependencies, pro-
cesses are scheduled statically or dynamically. In case of
dynamic scheduling, in order to validate the system model
at this point, a representation of the dynamic scheduling im-
plementation, which is usually handled by a RTOS in the
real system, is required. Therefore, a high level model of
the underlying RTOS is needed for inclusion into the system
model during system synthesis. The RTOS model provides
an abstraction of the key features that define a dynamic
scheduling behavior independent of any specific RTOS im-
plementation.

The dynamic scheduling step in Figure 1 refines the un-
scheduled system model into the final architecture model.
Based on the selected scheduling strategy, a corresponding
RTOS model is imported from the library. Processes are
converted into tasks with assigned priorities. Synchroniza-
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Figure 1. Design flow.

tion as part of communication between processes is refined
into OS-based task synchronization.

The resulting model can be validated through simulation
or verification to evaluate different dynamic scheduling ap-
proaches as part of system design space exploration. From
the simulation result, we can check wether the timing con-
straint as well as the resource constraint are met or not. If
the model fails to meet the constraints, we can either change
the scheduling algorithm, assign different priorities to the
tasks, or change the software/hardware partitioning to get a
different system model. This simulation and adjusting pro-
cess continues until we find a system partitioning in which
the software model can satisfy all the relevant timing and
resource constraints.

In the backend, each PE in the architecture model is then
implemented separately. Custom hardware PEs are synthe-
sized into a RTL description. Bus interface implementa-
tions are synthesized in hardware and software. Finally,
software synthesis generates code from the PE description
of the processor in the architecture model. During this pro-
cess, services of the RTOS model are mapped onto the API
of a specific off-the-shelf or custom RTOS. At the same
time, tasks generated in the dynamic scheduling step are
converted into RTOS-dependent compilable C code for the
chosen processor. Finally, the C code is then compiled into
the processor’s instruction set and linked against the RTOS
libraries to produce the final executable.
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Figure 2. Modeling layers.

4. The RTOS Model

As mentioned previously, the RTOS model is imple-
mented on top of an existing SLDL kernel. Figure 2 shows
the modeling layers at different steps of the design flow. In
the specification model (Figure 2(a)), the application is a
serial-parallel composition of SLDL processes. Processes
communicate and synchronize through variables and chan-
nels. Channels are implemented using primitives provided
by the SLDL core and are usually part of the communica-
tion library provided with the SLDL.

In the architecture model (Figure 2(b)), the RTOS model
is inserted as a layer between the application and the SLDL
core. The SLDL primitives for timing and synchroniza-
tion used by the application are replaced with correspond-
ing calls to the RTOS layer. In addition, calls of RTOS
task management services are inserted. The RTOS model
implements the original semantics of SLDL primitives plus
additional details of the RTOS behavior on top of the SLDL
core. Existing SLDL channels (e.g. semaphores) from the
specification are reused by refining their internal synchro-
nization primitives to map to corresponding RTOS calls.
Using existing SLDL capabilities for modeling of extended
RTOS services, the RTOS library can be kept small and ef-
ficient. Later, as part of software synthesis in the backend,
channels are implemented by mapping them to an equiva-
lent service of the actual RTOS or by generating channel
code on top of RTOS primitives if the service is not pro-
vided natively.

Finally, in the implementation model (Figure 2(c)), the
compiled application linked against the real RTOS libraries
is running in an instruction set simulator (ISS) as part of the
system co-simulation in the SLDL.

We implemented the RTOS model on top of the SpecC
SLDL [Spe]. In the following sections we will discuss the
interface between application and the RTOS model, the re-
finement of specification into architecture using the RTOS
interface, and the implementation of the RTOS model be-
havior.

1 interface RTOS {
2 /* OS management */
3 void init( void );
4 void start( int sched_alg);
5 void interrupt_return( void );
6 /* Task managment */
7 proc task_create( char *name, int type,
8 sim_time period, sim_time wcet);
9 void task_terminate( void );

10 void task_sleep( void );
11 void task_activate(proc tid);
12 void task_endcycle( void );
13 void task_kill(proc tid);
14 proc par_start( void );
15 void par_end(proc p);
16 /* Event handling */
17 evt event_new( void );
18 void event_del(evt e);
19 void event_wait(evt e);
20 void event_notify(evt e);
21 /* Time modeling */
22 void time_wait(sem_time nsec);
23 };

Figure 3. Interface of the RTOS model.

4.1 RTOS Interface

Figure 3 shows the interface of the RTOS model. The
RTOS model provides four categories of services: operating
system management, task management, event handling, and
time modeling.

Operating system management mainly deals with initial-
ization of the RTOS during system start whereinit initial-
izes the relevant kernel data structures whilestart starts the
multi-task scheduling. In addition,interrupt return is pro-
vided to notify the RTOS kernel at the end of an interrupt
service routine.
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Task management is the most important function in
the RTOS model. It includes various standard rou-
tines such as task creation (taskcreate), task termination
(task terminate, taskkill ), and task suspension and acti-
vation (tasksleep, taskactivate). Two special routines
are introduced to model dynamic task forking and joining:
par start suspends the calling task and waits for the child
tasks to finish after whichpar endresumes the calling task’s
execution. Our RTOS model supports both periodic hard
real time tasks and non-periodic real time tasks. In model-
ing of periodic tasks,taskendcyclenotifies the kernel that a
periodic task has finished its execution in the current cycle.

Event handling re-implements the semantics of SLDL
synchronization events in the RTOS model. SpecC events
are replaced with RTOS events (allocated and deleted
through eventnew and eventdel). Two system calls
eventnotify andeventwait are used to replace the SpecC
primitives for eventnotify and eventwait .

During simulation of high level system models, the log-
ical time advances in discrete steps. SLDL primitives (such
as waitfor in SpecC) are used to model delays. For
the RTOS model, those delay primitives are replaced by
time wait calls which model task delays in the RTOS while
enabling support for modeling of task preemption.

4.2 Scheduling in the abstract RTOS model

Real world embedded systems usually consist of com-
putational activities having different characteristics. For
example, tasks may be periodic,aperiodic, time-driven,and
event driven and may have different levels of criticalness.
However, in our abstract RTOS model, only two classes of
tasks are considered:

• RT PERIODIC : Periodic hard real time tasks,having
a critical deadline,

• RT APERIODIC : Non periodic real time tasks, hav-
ing a fixed priority.

Periodic hard real time tasks are the highest priority tasks
, they are scheduled using the earliest deadline first(EDF)
algorithm, whereas non periodic real time tasks are ex-
ecuted in background based on their priority. However,
other options of scheduling algorithm,such as first-come-
first-serve algorithm, round robin algorithm for non peri-
odic real time tasks can also be integrated in our abstract
RTOS model. Generally, our abstract RTOS model can in-
clude any kind of scheduling mechanism, it is up to the user
to select the real time scheduling algorithms for the design.

4.3 The extended RTOS service layer

As the extension to the basic RTOS service layer, we add
some pre-defined channels to be used in task synchroniza-

1 behavior task0(RTOSLIB os) implements Init
2 {
3 proc me;
4 void init( void )
5 {
6 me=os.task_create("task0",
7 RT_APERIODIC,3,2);
8 }
9

10 void main( void )
11 {
12 int a;
13 //task0 code start
14 os.task_activate(me);
15

16 //...code block1
17 os.time_wait(200);
18 if (a > 0){
19 //...code block2
20 os.time_wait(300);
21 } else {
22 //...code block3
23 os.time_wait(200);
24 }
25

26 //...code block4
27 os.time_wait(500);
28

29 //task0 code end
30 os.task_terminate();
31 }
32 };

Figure 4. Example code of a task

tion and communication. These are the features that most
RTOS will offer, so later when we implement the software
model , we can convert these channels directly to the actual
RTOS system calls. These channels and their functionalities
are described in Table 1.

5. Preemptive multi-task system modeling

By using the RTOS model, multi-task systems can be
specified in higher level easily. In this section, we start by
showing the timing granularity in high level modeling, then
we illustrate system modeling by an small example.

5.1 Timed computation and granularity

In our methodology, during the system synthesis, after
behaviors have been partitioned onto processing elements

4



Channels in the extended RTOS layer

c semaphore protected access to shared resources
c mutex protected access to one shared resource
c mailbox message passing services between tasks
c critical section protected access to a critical section
c queue message queues

Table 1. Channels used for inter-task communication
and synchronization in the extended RTOS service
layer

of a system architecture, the concept of time is introduced
into the model. The computation represented by the be-
haviors is refined to include execution times on the target
components. Behavior execution delays can be based on es-
timated execution times derived from a model of the target
component. Alternatively, execution delays can describe a
timing budget allocated for different behaviors. These bud-
gets will later serve as timing constraints for the behavior
implementation on the target PEs.

Execution times can be specified on different levels of
granularity, ranging from the statement level to the behav-
ior level. Execution delays at the behavior level are used
to model average or worst-case execution times of the cor-
responding behavior. On the other hand, execution times
at the basic-block level can accurately model even data-
dependent delays. In our software modeling, we choose
to have the granularity of one basic-block, for it is the best
trade off between the statement level granularity and the be-
havior level granularity.

Execution time is introduced into the system model for
feedback during simulation. This is accomplished by in-
serting time delay statements as timing annotations to the
behaviors. In addition to validation and verification, these
timing annotations will also serve as constraints for the
scheduling.

5.2 Task modeling

A task is a preemptable function runs from its input ports
to its output ports. Usually, the task will be divided into sev-
eral basic-blocks. Inside these basic blocks, codes are exe-
cuted sequentially from begin to end, without any branch
instructions inside the basic blocks. At the end of each
basic-block, atime wait statement is inserted to represent
the execution delay of the codes inside the basic-block.

The reason for modeling task code in this way is that,
to our simulation engine, the only way of advancing sim-
ulation time is by usingtime wait function, all other code
executions are carried out in zero time. So thetime wait is
used to model the delay of codes in a basic-block . Also, all

the tasks can only be preempted at the boundary of basic-
blocks,i.e. it is inside thetime wait or other system call that
the context switch happens.

Figure 7 is what a typical task would looks like: the task
is modeled as a behavior, there’s two functions inside the
behavior, functioninit is used to create the task and function
mainis the main body of the task. There’s four basic-blocks
insidemain, block 1 is all the code before the if statement
and block 2 and block 3 are two branches of the if statement,
the code after the if statement is block 4. Thetime wait
statement inside each block represents the execution time
of the codes above it.

5.3 Modeling example

We demonstrate how to model the preemptive multi-task
system using our abstract RTOS model by an example. Ap-
pendix A is the code modeling a preemptive system con-
sisting of three non-periodic real time tasks(task0,task1 and
task2)(line 5,28,55). The priority of task0, task1 and task2
are 3,2 and 1 (line 12,35,62) with task0 having the lowest
priority and task2 having the highest priority. Task0 is ex-
ecuted sequentially and the code is divided into two code
blocks, with two time delay statementtime wait(20) (line
20) andtime wait(30) (line 22) to model the execution time
of these two blocks. Task1 is waiting on a semaphore sem1
(line 43) to to start its execution. And there’s two code
blocks inside task1 with the delay of 30 (line 46) and 40
nano seconds (line 49) respectively. Finally, task2 has two
code blocks,the first block has delay time of 10 nano sec-
onds (line 71) and after task2 finishes executing the first
block, it waits on semaphore sem2 (line 74) before continu-
ing to execute the second block, which has delay time of 30
nano seconds (line 77).

The three tasks are running concurrently on a proces-
sor,which is modelled by the par statement (line 96) in the
TASKS behavior. Also, there are two interrupts e1 and
e1,they are modelled by thetry {...} interrupt (e1,e2){... }
(line 143,144) statement in behavior Processor. These two
interrupts will evoke the interrupt service routine behavior
ISR (line 104), which will release the semaphore sem1 (line
111) and sem2 (line 116) to make task1 and task2 continue
execution.

Figure 5 is the simulation timing of the model. Initially,
when the system starts, it selects the task with the high-
est priority,i.e task2 to execute. When task2 finishes code
block1 at time 10, it waits on the semaphore sem2 and the
scheduler selects the next highest priority task, i.e. task1, to
execute. Task1 starts the execution and wait on semaphore
sem1. Finally, the lowest priority task task0 is selected to
execute. It executes the first block and finishes at time 30.
Meanwhile, the first interrupt e1 occurs at time 20 and the
interrupt service routine releases semaphore sem1 so that
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Figure 5. Gantt chart of the multi-task model simulation result

task1 can continue execution. So at time 30 the scheduler
chooses task1, which has higher priority than task0, to ex-
ecute. Task1 executes its first code block and stops at time
60. During this time period, the second interrupt e2 hap-
pens at time 50 and the interrupt service routine releases
semaphore sem2 and puts task2 into the ready queue. At
time 60, task2 is the task with the highest priority in the
ready queue and is scheduled to execute. It executes the
second code block and terminates at time 90. After that,
task1 continues execution and terminates at time 130. Fi-
nally, task0 executes and terminates at time 160.

As we can find in the above example, behavior Tasks,
ISR and Processor are three most important behaviors in
the software system model. Behavior Tasks contains all the
tasks in the system, behavior ISR is used to model the inter-
rupt service routine and behavior Processor is the container
behavior for the whole system. All the tasks are created(yet
not activated)in behavior Tasks. And later, these tasks can
be activated at proper time according to the system specifi-
cation. In the above example, the three tasks are activated at
the same time inside the par statement. But it’s not always
the case that all the tasks are activated simultaneously in-
side a par statement, it is up to the designer to choose when
the tasks should be activated. We can, of course, activate
task0 first and later activate task1 and task2 simultaneously
in a par statement for the three-task system example shown
above.

6. Model Refinement

In this section, we will illustrate application model re-
finement based on the RTOS interface presented in the pre-
vious section through a simple yet typical example (Fig-
ure 6). The unscheduled model (Figure 6(a)) executes be-
havior B1 followed by the parallel composition of behav-
iorsB2andB3. BehaviorsB2andB3communicate via two
channelsc1 andc2 while B3 communicates with other PEs
through a bus driver. As part of the bus interface implemen-
tation, the interrupt handlerISRfor external events signals

the main bus driver through a semaphore channelsem.
The output of the dynamic scheduling refinement pro-

cess is shown in Figure 6(b). The RTOS model implement-
ing the RTOS interface is instantiated inside the PE in the
form of a SpecC channel. Behaviors, interrupt handlers and
communication channels use RTOS services by calling the
RTOS channel’s methods. Behaviors are refined into three
tasks.TaskPE is the main task which executes as soon as
the system starts. WhenTaskPE finishes executingB1, it
spawns two concurrent child tasks,TaskB2 andTaskB3,
and waits for their completion.

6.1 Task refinement

Task refinement converts parallel processes/behaviors in
the specification into RTOS-based tasks in a two-step pro-
cess. In the first step (Figure 7), behaviors are converted
into tasks, e.g. behaviorB2 (Figure 7(a)) is converted into
TaskB2 (Figure 7(b)). A methodinit is added for construc-
tion of the task. Allwaitfor statements are replaced with
RTOS time wait calls to model task execution delays. Fi-
nally, the main body of the task is enclosed in a pair of
taskactivate/ task terminatecalls so that the RTOS kernel
can control the task activation and termination.

The second step (Figure 8) involves dynamic creation of
child tasks in a parent task. Everypar statement in the
code (Figure 8(a)) is refined to dynamically fork and join
child tasks as part of the parent’s execution (Figure 8(b)).
Theinit methods of the children are called to create the child
tasks. Then,par startsuspends the calling parent task in the
RTOS layer before the children are actually executed in the
par statement. After the two child tasks finish execution
and thepar exits, par end resumes the execution of the
parent task in the RTOS layer.

In summary, for a model withP par statements,T tasks,
andW waitfor statements in task bodies, task refinement
requires modification ofW + 2T code lines and adding of
4P+4T lines of code.
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Figure 6. Model refinement example.

6.2 Synchronization refinement

In the specification model, all synchronization in the ap-
plication or inside communication channels is implemented
using SLDL events. Synchronization refinement replaces
all events and event-related primitives with corresponding
event handling routines of the RTOS model (Figure 9).
All event instances are replaced with instances of RTOS
eventsevtandwait / notify statements are replaced with
RTOSeventwait / eventnotify calls. For a model withE
events andN/W wait / notify statements, synchroniza-
tion refinement requires changes inE+N+W lines of code.

After model refinement, both task management and syn-
chronization are implemented using the system calls of the
RTOS model. Thus, the dynamic system behavior is com-
pletely controlled by the the RTOS model layer.

7. Implementation

The RTOS model library is implemented in 2000 lines of
SpecC channel code. Task management in the RTOS model
is implemented in a customary manner [C.B99] where tasks
transition between different states and a task queue is as-

sociated with each state. Task creation (taskcreate) allo-
cates the RTOS task data structure andtaskactivateinserts
the task into the ready queue. Thepar start method sus-
pends the task and calls the scheduler to dispatch another
task whilepar endresumes the calling task’s execution by
moving the task back into the ready queue.

Event management is implemented by associating addi-
tional queues with each event. Event creation (eventnew)
and deletion (eventdel) allocate and deallocate the corre-
sponding data structures in the RTOS layer. Blocking on
an event (eventwait) suspends the task and inserts it into
the event queue whereaseventnotify moves all tasks in the
event queue back into the ready queue.

In order to model the time-sharing nature of dynamic
task scheduling in the RTOS, the execution of tasks needs
to serialized according to the chosen scheduling algorithm.
The RTOS model ensures that at any given time only one
task is running on the underlying SLDL simulation ker-
nel. This is achieved by blocking all but the current task on
SLDL events. Whenever task states change inside a RTOS
call, the scheduler is invoked and, based on the scheduling
algorithm and task priorities, a task from the ready queue is
selected and dispatched by releasing its SLDL event. Note
that replacing SLDL synchronization primitives with RTOS
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1 behavior B2() {
2 void main( void ) {
3 ...
4 waitfor (500);
5 ...
6 }
7 };

(a) specification model

1 behavior task_B2(RTOS os)
2 implements Init {
3 proc me;
4 void init( void ) {
5 me = os.task_create("B2",
6 APERIODIC, 0, 500);
7 }
8 void main( void ) {
9 os.task_activate(me);

10 ...
11 os.time_wait(500);
12 ...
13 os.task_terminate();
14 }
15 };

(b) architecture model

Figure 7. Task modeling.

calls is necessary to keep the internal task state of the RTOS
model updated.

In high level system models, simulation time advances
in discrete steps based on the granularity ofwaitfor
statements used to model delays (e.g. at behavior or basic
block level). The time-sharing implementation in the RTOS
model makes sure that delays of concurrent task are accu-
mulative as required by any model of serialized task execu-
tion. However, additionally replacingwaitfor statements
with corresponding RTOS time modeling calls is necessary
to accurately model preemption. Thetime wait method is
a wrapper around thewaitfor statement that allows the
RTOS kernel to reschedule and switch tasks whenever time
increases, i.e. in between regular RTOS system calls.

Normally, this would not be an issue since task state
changes can not happen outside of RTOS system calls.
However, external interrupts can asynchronously trigger
task changes in between system calls of the current task
in which case proper modeling of preemption is important
for the accuracy of the model (e.g. response time results).
For example, an interrupt handler can release a semaphore
on which a high priority task for processing of the external
event is blocked. Note that, given the nature of high level

1 ...
2 /* two parallel behaviors */
3 par
4 {
5 b2.main();
6 b3.main();
7 }
8 ...

(a) specification model

1 ...
2 task_b2.init();
3 task_b3.init();
4 /* two parallel tasks */
5 os.par_start();
6 par
7 {
8 task_b2.main();
9 task_b3.main();

10 }
11 os.par_end();
12 ...

(b) architecture model

Figure 8. Task creation.

models, the accuracy of preemption results is limited by the
granularity of task delay models.

Figure 10 illustrates the behavior of the RTOS model
based on simulation results obtained for the example from
Figure 6. Figure 10(a) shows the simulation trace of the un-
scheduled model. BehaviorsB2 andB3 are executing truly
in parallel, i.e. their simulated delays overlap. After execut-
ing for time d1, B3 waits until it receives a message from
B2 through the channelc1. Then it continues executing for
time d2 and waits for data from another PE.B2 continues
for time (d6 +d7) and then waits for data fromB3. At time
t4, an interrupt happens andB3 receives its data through the
bus driver.B3executes until it finishes. At timet5, B3sends
a message toB2 through the channelc2which wakes upB2
and both behaviors continue until they finish execution.

Figure 10(b) shows the simulation result of the architec-
ture model for a priority based scheduling. It demonstrates
that in the refined modeltaskB2 andtaskB3 execute in an
interleaved way. SincetaskB3 has the higher priority, it
executes unless it is blocked on receiving or sending a mes-
sage from/totaskB2 (t1 throught2 andt5 throught6), wait-
ing for an interrupt(t3 throught4), or it finishes (t7) at which
points execution switches totaskB2. Note that at timet4,
the interrupt wakes uptaskB3andtaskB2 is preempted by
taskB3. However, the actual task switch is delayed until
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(b) architecture model

Figure 10. Simulation trace for model example.

1 channel c_queue()
2 {
3 event eReady, eAck;
4 void send(...)
5 { ...
6 notify eReady;
7 wait (eAck);
8 ...
9 }

10 };

(a) before

1 channel c_queue(RTOS os) implements Init
2 {
3 evt eRdy, eAck;
4 void send(...)
5 { ...
6 os.event_notify(eRdy);
7 os.event_wait(eAck);
8 ...
9 }

10 };

(b) after

Figure 9. Synchronization refinement.

unsched. arch. impl.

Lines of Code 13,475 15,552 79,096
Execution Time 24.0 s 24.4 s 5 h

Context switches 0 326 326
Transcoding delay 9.7 ms 12.5 ms 11.7 ms

Table 2. Vocoder experimental results.

the end of the discrete time stepd6 in taskB2 based on the
granularity of the task’s delay model. In summary, as re-
quired by priority based dynamic scheduling, at any time
only one task, the ready task with the highest priority, is
executing.

8. Experimental Results

We applied the RTOS model to the design of a voice
codec for mobile phone applications [G+99]. Table 2 shows
the results for this vocoder consisting of two tasks for en-
coding and decoding running in software. For the imple-
mentation model, the model was compiled into assembly
code for the Motorola DSP56600 processor and the RTOS
model was replaced by a small custom RTOS kernel. The
transcoding delay is the latency when running encoder and
decoder in back-to-back mode and it is related to response
time in switching between encoding and decoding tasks.

The results shows that refinement based on the RTOS
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model requires only a minimal effort. Refinement into the
architecture model took less than one hour by hand and
required changing or adding 104 lines or less than 1% of
code. The simulation overhead introduced by the RTOS
model is negligible while providing accurate results. Com-
pared to the huge complexity required for the implemen-
tation model, the RTOS model enables early and efficient
evaluation of dynamic scheduling implementations.

9. Summary and Conclusions

In this paper, we proposed a RTOS model for system
level synthesis. To our knowledge, this is the first attempt
to model RTOS features at such high abstraction levels in-
tegrated into existing languages and methodologies. The
model allows the designer to quickly validate the dynamic
real time behavior of multi-task systems in the early stage
of system design by providing accurate results with min-
imal overhead. It is designed in such a way that makes
the refinement from the unscheduled specification model
to the RTOS based architecture model as easy as possi-
ble. Using a very small number of system calls, the RTOS
model is capable of providing all key features found in
any standard RTOS: dynamic task creation/termination, real
time scheduling, task synchronization, preemption and in-
terrupt handling. These are features not available in current
SLDLs. Currently the RTOS model is written in SpecC be-
cause of its simplicity. However, the concepts can be ap-
plied to any SLDL (SystemC, Superlog) with support for
event handling and modeling of time.

Future work includes development of tools for automatic
refinement of the unscheduled model into an architecture
model and for software synthesis of target-specific applica-
tion code linked against off-the-shelf or custom-generated
RTOS libraries from the architecture model.
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A. Preemptive multi-task system modeling

1 #include "global.sh"
2 #include <sim.sh>
3 import "c_semaphore";
4

5 behavior task0(RTOSLIB os) implements Init
6 {
7 proc me;
8 void init( void )
9 {

10 //task0 is aperiodic realtime task
11 //the priority of task0 is 3
12 me=os.task_create("task0",RT_APERIODIC,3,0);
13 }
14

15 void main( void )
16 {
17 os.task_activate(me);
18

19 //code block 1
20 os.time_wait(20);
21 //code block 2
22 os.time_wait(30);
23

24 os.task_terminate();
25 }
26 };
27

28 behavior task1(i_semaphore sem1,RTOSLIB os) implements Init
29 {
30 int me;
31 void init( void )
32 {
33 //task1 is aperiodic realtime task
34 //the priority of task0 is 2
35 me=os.task_create("task1",RT_APERIODIC,2,0);
36 }
37

38 void main( void )
39 {
40 os.task_activate(me);
41

42 //wait for the semaphore
43 sem1.acquire();
44

45 //code block 1
46 os.time_wait(30);
47

48 //code block 2
49 os.time_wait(40);
50

51 os.task_terminate();
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52 }
53 };
54

55 behavior task2(i_semaphore sem2,RTOSLIB os) implements Init
56 {
57 int me;
58 void init( void )
59 {
60 //task2 is aperiodic realtime task
61 //the priority of task0 is 1
62 me=os.task_create("task2",RT_APERIODIC,1,0);
63 }
64

65 void main( void )
66 {
67

68 os.task_activate(me);
69

70 //code block 1
71 os.time_wait(10);
72

73 //wait for the semaphore
74 sem2.acquire();
75

76 //code block 2
77 os.time_wait(30);
78

79 os.task_terminate();
80 }
81 };
82

83 behavior Tasks (i_semaphore s1,i_semaphore s2,RTOSLIB os)
84 {
85

86 task0 t0(os);
87 task1 t1(s1,os);
88 task2 t2(s2,os);
89

90 void main( void )
91 {
92 t0.init();
93 t1.init();
94 t2.init();
95 os.start();
96 par {
97 t0.main();
98 t1.main();
99 t2.main();

100 }
101 }
102 };
103

104 behavior ISR(i_semaphore s1,i_semaphore s2,RTOSLIB os)
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105 {
106 int i=0;
107 void main( void )
108 {
109 if (i ==0) {
110 printf("Interruputed at time %s ! \n", time2str(now()));
111 s1.release();
112 i++;
113 }
114 else {
115 printf("Interruputed at time %s ! \n", time2str(now()));
116 s2.release();
117 i=0;
118 }
119 os.ireturn();
120 }
121 };
122

123 behavior Processor( in event e1 , in event e2)
124 {
125 const unsigned long N=0;
126

127 SpecC_OS specc_osapi;
128

129 c_semaphore s1( ((N)), specc_osapi);
130 c_semaphore s2( ((N)), specc_osapi);
131

132

133 Tasks body(s1,s2,specc_osapi);
134 ISR isr(s1, s2,specc_osapi);
135

136

137

138 void main( void )
139 {
140 specc_osapi.init();
141 s1.init();
142 s2.init();
143 try { body.main();}
144 interrupt (e1,e2) {isr.main(); } ;
145

146 }
147 };
148

149 behavior Stimulus( out event e1, out event e2)
150 {
151 void main( void )
152 {
153 waitfor (20);
154 notify e1;
155 waitfor (30);
156 notify e2;
157 }
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158 };
159

160 behavior Main()
161 {
162 event e1,e2;
163 Processor dsp56000(e1,e2);
164 Stimulus stimulus(e1,e2);
165

166 int main( void )
167 {
168 par {
169 dsp56000.main();
170 stimulus.main();
171 }
172 }
173 };
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