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Abstract

This report presents an interactive system design flow.
The design tasks and scenarios are defined. Data displays
and the design rules to use displays are discussed. The in-
teractive design flow enables fast and extensive design ex-
ploration with minimal effort from designer’s side.

1 Introduction

In order to handle the ever increasing complexity and
time-to-market pressures in the design of system-on-chip
(SOCs) or embedded systems, design abstraction has been
raised to system level to increase productivity [1]. At the
system level, designers deal with system components which
include microprocessors, special-purpose hardware units,
memories and busses.

In general, the process of system level design can be di-
vided into two major steps:architecture exploration and
communication exploration.([2]) During architecture ex-
ploration, designers map the computation (behaviors) in the
specification onto components of a system architecture pulled
out of a component library. The design tasks in architecture
exploration include allocation of system components, map-
ping of behaviors onto components, ordering of behaviors
on each component and mapping of variables into memo-
ries. During communication exploration, designers imple-
ment the abstract communication (channels) over the ac-
tual wires of system busses based on bus protocols selected
out of a protocol library. The design tasks in communi-
cation synthesis include allocation of busses, mapping of
channels onto busses and insertion of transducers between
busses when communication goes across different busses.

In order to be able to evaluate the quality of the design at
any stage of the process, executable models describing the
design at different stages should be generated. These mod-
els can be analyzed, for example through simulation, esti-
mation, or profiling, to obtain important metrics to check

the quality of design decisions made for each task. The
starting model is aspecification model, which describes
the desired system functionality without any implementa-
tion detail. The model coming out at the end of system level
design is anarchitecture modelwhich describes the system
architecture of the design. The system architecture consists
of a network of system components connected by system
busses. Between them, there are a spectrum of intermediate
models generated after one or more tasks are performed.

In order to make appropriate design decisions at each
task, designers need to look at all kinds of information, in-
cluding characteristics profiled on the specification model,
performance metrics estimated on intermediate models (and
architecture models) and design database. Without an effec-
tive visualization of the data, it would be extremely difficult
for designers to comprehend the needed information manu-
ally. In general, the information has to be organized and vi-
sualized graphically to help designers make quick and good
decisions. For instance, a bar chart can be used to display
the numbers of operations in all behaviors, which helps de-
signers feel the computation complexity of the behaviors.
Different types of information may need to be presented
with different kinds of looks. For instance, the hierarchy of
the specification can be better displayed in the form of tree
graph than other alternatives. In the report, the graphical
form of visualizing a specific kind of information is called
a display.

1.1 Displays

We define seven basic types of displays needed for sys-
tem design (1). Different sets of displays will be used at the
different stages of the design process. At each step, specific
instances of the general displays shown here will be used
by applying them to different objects or different metrics.
In the following we will briefly introduce each display and
provide an overview of their capabilities. Specific usage of
the displays will be shown later during the discussion of the
design flow.



0

10

20

30

40

50

M
et

ric

O1 O2 O3

Design Objects

C1
C2

Components

D4: Profile Graph

O1

O2

O3

Design

O23

D1: Hierarchy Tree

Objects Mapping

C1

C1

C2

O1

O2 O3

D2: Schedule / Trace

C1 C2

T
im

e

v1 (r/w) v2 (r/w) Total
O1 7 / 5 - / 3 7 / 8
O2 18 / - - / 1 18 / 1
O3 - / 14 - / - - / 14
Total 25 / 19 - / 4

D3: Connectivity / Traffic

Component Type Parameters
C1 Type 1 …
C2 Type 2 …

D5: Component Allocation

D6: Database Selection

Type Attribute 1 Attribute 2 Attribute 3
Type 1 … … …
Type 2 … … …
Type 3 … … …

Component Utilization Time Power Cost
C1 100% 24 s 3W $15
C2 42% 10 s 15W $5
Total 71% 24 s 18W $20

D7: Design Quality Metrics

Figure 1. System Design Displays.

TheHierarchy Tree (D1) displays a tree representation
of the hierarchy of design objects. As such, it gives and
overview of the design’s composition and allows for easy
navigation and selection. In addition, the Hierarchy Tree
provides columns for mapping design objects to physical
components.

TheSchedule or Trace (D2)display shows the compo-
sition of the design objects over time. It provides immediate
insight into the execution semantics of the design and gives
feedback about timing or utilization, for example.

The Connectivity or Traffic (D3) display is related to
the communication between different objects in the design.
It is arranged as a matrix of computational objects (behav-
iors) over communication objects (variables or channels).
The matrix can be filled with either simple connectivity in-
formation or with traffic results from design profiling or es-
timation.

TheProfile Graphs (D4)chart analysis data in the form
of bar graphs. Given a set of design objects, the graphs
show the profile of the objects’ metrics on the set of pos-
sible (allocated) components. Hence, the graphs facilitate
comparison between objects and their implementation on
different components.

TheComponent Allocation (D5)andDatabase Selec-
tion (D6) dialogs are forms through which the user enters
decisions about the set of allocated components. The Database
Selection browser is the interface to the component databases.
It lets the user browse and filter the list of components and
their attributes. Out of this list, the user selects components
to allocate. The Component Allocation dialog then shows
all currently allocated components. The user can add or
delete components, and the display allows for modification
of the allocated component’s names and other parameters.

Finally, theQuality Metrics (D7) display provides feed-
back about the effects of the user’s decisions on the design
quality. After design decisions have been made, the Quality
Metrics display shows the top-level results from analysis of
the refined design, both in total and split into the contribu-
tions of each component.

1.2 Design Flow

Based on the displays, the corresponding design flow be-
comes interactive. At each task, designers are given relevant
displays. Based on the displays, design decisions are made
and new models reflecting the decisions are generated. Af-
ter analysis of the newly generated models, resulting met-
rics are shown to designers to evaluate the design quality.
If they are satisfactory, designers move on to the next task;
otherwise, design decisions are adjusted to start another it-
eration.

To describe this interactive design flow, we will divide it
into four scenarios (Figure 2).Specification tuningchanges

2
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Figure 2. Interactive Design Flow.

the specification model to expose maximal behavior level
parallelism and to reduce the specification complexity.Be-
havior mapping selects system components and maps be-
haviors onto components.Variable mapping select mem-
ory components and maps variables into memories.Chan-
nel mapping determines system busses and maps channels
onto busses.

This report describes displays needed for each scenario.
Some design rules on how to use the displays are presented
and illustrated with examples.

2 Specification Tuning

A specification model can be developed based on the
original specification written in English or in high level pro-
gramming languages. The specification model is a hierar-
chical network describing the desired system functionality.
Because the specification model is purely functional, it can
be written in many different ways, all functionally equiv-
alent. However, the quality of the specification model in
terms of parallelism and complexity has immediate influ-
ence on design decision making, which is essential to the
quality of the final design.

In order to improve the quality of the specification model,
two kinds of optimizations can be performed. One is called
parallelization optimization , which aims at exposing max-
imal parallelism at behavior level. The other is calledhier-

archy optimization, which reduces specification complex-
ity in terms of number of behaviors and the depth of the
behavior hierarchy.

2.1 Data Displays

B1

B2

B3

Design

B23

D1: Hierarchy

Behavior B1

B2 B3

D2: Parallelism

0

5

10

15

B1 B2 B3

M
O

P

0

5

10

15

20

B1 B2 B3

W
o

rd
s

v1 c2

D4.1: Operation Profile D4.3: Traffic Profile

Figure 3. Specification Tuning Displays.

The data displays needed for specification tuning are shown
in Figure 3. Hierarchy (D1) is a tree representation of
the specification models. The nodes are behaviors and the
edges represent parent-child relationships between behav-
iors. The types of nodes can be parallel, sequential, finite-
state-machine, pipeline, or leaf. The example here shows
the top level behavior Design is a sequential decomposition
of leaf behavior B1 and B23, which is a parallel decompo-
sition of leaf behaviors B2 and B3. The number of nodes
is 5 and the depth is 2.Traffic Profile (D4.3) displays, for
each behavior, the amount of communication traffic (prod-
uct of size and access frequencies in and out of a behavior)
required for variable and channel access. The example fig-
ure shows that the traffic generated by accessing variable
v1 are 5, 7, 17 Words for behaviors B1, B2 and B3, respec-
tively. The traffic generated by accessing channel c2 are 2
and 1 Words for behavior B2 and B3, respectively.Opera-
tion Profile (D4.1) displays the total number of operations
of each behavior.Parallelism (D2) displays the available
behavior level parallelism in a SpecC model. Each behavior
is represented by a rectangle. The length of each rectangle
is proportional to the number of operations of the behav-
ior it represents. The number of columns shows the max-
imal amount of available parallelism. The example shows
behavior B2 and B3 can be executed in parallel. Hierarchy
display visualizes behavior hierarchy better than parallelism

3



display does. However, Parallelism display shows the size
for each behavior in terms of number of operations, which
is not seen in the Hierarchy display.

2.2 Parallelization Optimization

It is straightforward to transform a C description into
a system specification model. For example, the functions
in the C description can be easily encapsulated into SpecC
behaviors by choosing the appropriate behavior granularity
(size of leaf behaviors). Because C language lacks the con-
structs for specifying concurrent execution, the C descrip-
tion is purely sequential at both statement level and function
level. Most system level languages provide concurrent con-
structs to specify behavior level parallelism, which can be
exploited to improve performance in the design process. In
general, it is very difficult for designers to identify all avail-
able parallelism in the C description since a thorough data
dependency analysis would be needed. In a interactive de-
sign flow, with the help of displays of profiled data, the task
of finding all potential parallelism becomes much easier.

2.2.1 Rules

Rule 1. Parallelize two sequential behaviors if there is
no dependency between them.Since Traffic Profile dis-
plays data dependency information between behaviors, we
can find out whether two sequential behaviors have depen-
dency. If they are not dependent, they must be able to be
executed in parallel with each other.

2.2.2 Example

Figure 4 gives an example of parallelization optimization.
Part a) of Figure 4 shows the Hierarchy, Parallelism and
Traffic Profile of the specification model before paralleliza-
tion. Hierarchy and parallelism graph indicate that behav-
iors A, B, C and D are specified to be executed sequentially.
However, the Traffic Profile shows that there are no depen-
dency between behavior B and behavior C. Therefore, be-
havior B can be executed in parallel with behavior C. Simi-
larly, since there is no dependency between behaviors D and
all other behaviors A, B and C, they can also be parallelized.
Part b) of Figure 4 shows the Hierarchy and Parallelism af-
ter parallelization optimization. As we can see, the pure
sequential specification was transformed into a three-way
parallel-execution through this optimization.

2.3 Hierarchy Optimization

In the specification model of a normal size design, there
could be very large number of behaviors and the behavior
hierarchy could be very deep. It is obvious that the design

D1: Hierarchy D4.3c: Traffic Profile Table
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Figure 4. Parallelization Optimization Exam-
ple.

effort is proportional to the complexity at the specification
level. In order to reduce the complexity, hierarchy optimiza-
tion can be performed. Hierarchy optimization reduces the
depth of the behavior hierarchy as well as the number of
behaviors in the specification.

2.3.1 Rules

Rule 2. Combine parent and child behaviors with same
execution types.As we mentioned earlier, each node (be-
havior) in the hierarchy tree has an associated execution
type. For each edge of the hierarchy tree, if the parent node
and the child node have the same type of execution, then the
child node is removed and all its children become new chil-
dren of the parent node. A top-down or bottom-up traversal
of the tree can be performed to check for each edge.
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2.3.2 Examples

In the example shown in Figure 5, both parent behavior
DEF and child behaviorEF are of SEQ type. Therefore,
EF is removed and its childrenE, F are promoted to be
the children ofDEF. Similarly, because both behaviorMain
andCDEF are of PAR type,CDEF is removed andC, DEF
become the children ofMain. Compared to 11 behaviors
and a hierarchy of depth 5 in the old specification, the new
specification has only 9 behaviors and a hierarchy of depth
3.

3 Behavior Mapping

After the aforementioned optimizations on the specifi-
cation model, system components will be selected and the
behaviors will be mapped onto the selected components.
Parallel behaviors on each component will also be serial-
ized because of single thread execution inside each compo-
nent. We will describe component selection and mapping
together because they are closely coupled.

3.1 Data Displays

The data displays needed for behavior mapping are shown
in figure 6. Processor Database (D6b)lists all available
processors with clock, memory, power and cost attributes.
Component Allocation (D5b)is used by designers to input
component allocation decisions.Execution Profile (D4.1b)
gives the running time of each behavior on different PEs.
Behavior Mapping (D1b), which resembles the Hierarchy
display, is used by designers to input behavior mapping de-
cisions, i.e., which behavior is mapped to which PE.Mapped
Schedule (D2b)displays a default execution order on each
PE after behaviors are mapped to PEs.PE Quality Metrics

D5b: Component Allocation
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PE2        Custom HW  100 MHz    
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Figure 6. Behavior Mapping Displays.

(D7b) gives feedback on the quality of behavior mapping
by displaying utilization, execution time information.

3.2 Component Selection and Mapping

The goal of component selection and behavior mapping
is to ensure the design meet the given constraints in terms
of time, cost, or power. The basic idea is to group behav-
iors into a number of groups and select appropriate compo-
nent for each behavior group. There are a number of ways
of grouping behaviors by considering parallelism, hierarchy
and computation complexity. In this report, we will focus
on the exploitation of the behavior level parallelism.

3.2.1 Rules

Rule 3. If no PE can execute the critical path in the origi-
nal parallelism graph within time constraint, no solution
is possible.At first, the feasibility to implement the design
is checked. Assuming there are unlimited resource (compo-
nents) available, the time to execute the critical path (height
of parallelism graph) is the lower bound of the execution

5



time of the design. If running the critical path on the fastest
available component can not meet the time constraint, there
is no solution to the design. A new specification needs to be
developed or faster components must be introduced to the
component library.

Rule 4. Determine the number of PEs by examining
the critical path and the total amount of computation.
The number of PEs can be determined by designers based
on their experience. For example, if a specification has a
critical path that is close to the total amount of operations,
two PEs including a software processor and a custom hard-
ware component may be needed. The number of PEs can
also be estimated by simply dividing the total number of
operations with the critical path length. For example, if the
critical path length is 50 MOPS and the total number of
operations is 120 MOPS, 3 PEs are needed. By slightly in-
creasing the critical path length, 2 PEs may also be enough.

Rule 5. Group behaviors by evenly distributing par-
allel behaviors among different groups and making group
1 as full as possible.After the number of groups is deter-
mined, behaviors are assigned to groups. Parallel behav-
iors are evenly distributed into different groups to take ad-
vantage of parallelism. This load-balancing heuristic can
achieve high PE utilization and minimal critical path. The
way to fill up groups will guarantee the critical path always
lies in the first group.

Rule 6. Select the lowest cost PE for each group while
timing constraints are satisfied.After behaviors are grouped,
designers select components out of component database for
each group. There can be a variety of different algorithms
for component selection under different design constraints.
A useful rule here is to select the lowest cost PE that can
satisfy the time constraint for all groups.

3.2.2 Examples
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Figure 7. Two Grouping Solutions.

The example specification shown in Figure 7 has 5-way
parallelism in the specification. The time constraint for the
design is 10 ms. The component database has three com-
ponentsPE1, PE2andPE3. For the feasibility check, let’s
assume the critical path (A-F-K-O) can be executed onPE3
within 10 ms time constraint. Now we need to find out the
number of groups for grouping behaviors. The total number
of operations can be found to be 640 MOPS, while it is 300
MOPS on the critical path. Therefore, we conclude we need
640/300 (= 3) groups. However, using only 2 groups will
not have noticeable increase of critical path length. There-
fore, we can try two different candidates. Using Rule 5,
we can come up with 2 grouping solutions with numbers of
groups being 2 and 3, respectively (Figure 7).
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Solution 1 (3-Group)

Component
Selection:

Group1 -> PE3
Group2 -> PE2
Group3 -> PE1

Proc. Clock Power Cost
PE1 60 MHz 0.5W $2
PE2 100 MHz 0.7W $5
PE3 133 MHz 1.0W $10

D6b: Processor Database

Figure 8. Component Selection for Solution 1.

For each solution, a component is selected for each group.
Solution 1 is used here for illustration. Behavior Profile dis-
plays the execution time of each group on all components
for solution 3. As we can see, group 1 must be executed on
the fastest componentPE3to meet 10 ms constraint. There-
fore PE3 is selected for group1. Since bothPE2 andPE3
can finish group 2 on time, we selectPE2 because of it is
less expensive. Similarly,PE1 is selected for group 3 (Fig-
ure 8). Then we can calculate the execution time, power
consumption and cost for both solutions and choose a better
one (Figure 9).

# of PEs Execution
time

Total
power

Total
cost

Solution1 3 8ms 2.2w $17
Solution2 2 9ms 2.0w $20

(Time constraint = 10ms) 

Figure 9. Comparison of 2 Solutions.
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3.3 Behavior Ordering

After component selection and behavior mapping, de-
signers need to order the behaviors on each PE. A default
execution order derived from the original specification can
be used as a starting point by designer for further ordering
in order to improve performance.
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D1: Hierarchy D2o: Ordered Schedule

22.5

Default Order

Figure 10. Default Order of Behaviors.

3.3.1 Rules

We suggest three important rules for behavior ordering.
Rule 7. Among all parallel behaviors, the one with

most amount of output traffic executes first.Parallel be-
haviors can be executed in any order. However it may in-
fluence the starting times of other behaviors as well as the
overall execution time of the design. By executing behav-
iors with heavy output traffic first, we can reduce the pres-
sure from their depending behaviors thus produce a better
schedule. Output Traffic Display (D4.3) shows the output
traffic for each behavior.

Rule 8. Move independent parallel behaviors into un-
utilized time slots in the same PE.

Rule 9. Move independent parallel behaviors into un-
utilized time slots in other PE.

3.3.2 Examples

We give an example to illustrate above three rules. In Fig-
ure 10, the default order is shown in Ordered Schedule and
the original hierarchy is shown in Hierarchy. By comparing
the output traffic of parallel behaviorsD andB displayed
in Traffic Profile, we conclude thatB should be executed
beforeD becauseB has greater output traffic, according to
Rule 7. Then, according to Rule 8, we can move behaviorI
to an un-utilized time slot inPE2. Finally, we use Rule 9 to
move the behaviorG from PE1to PE2based on the display

Behavior Profile. After behavior ordering, Ordered Sched-
ule is displayed in the right-bottom corner. The execution
time saved in the improved schedule is 5.5ms (25%).
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Figure 11. Improved Order of Behaviors.

4 Variable Mapping

After behaviors are mapped to PEs, variables in the spec-
ification need to be assigned to memories. Usually PEs have
their own local memories and variables can be mapped to
these local memories if space allows. If local memory space
is not sufficient, a dedicated memory component needs to be
allocated to store variables. In general, the introduction of
memory component will increase cost and area. In addition,
accessing variables in the shared memory tends to be slower
than in PE’s local memory. Therefore, it is wise to use the
local memories of allocated PEs as much as possible and
only to allocate memory component if needed.

4.1 Data Displays

The displays needed for variable mapping are shown in
figure 12.Memory Database (D6v)lists all available mem-
ory components with their size, latency, power and cost
information. Component Allocation (D5v) displays the
local memory sizes of allocated PEs. It is also used by
designers to input memory allocation decisions.Variable
Size (D4.2v)gives the storage requirement for each vari-
able. The sizes of the same variable can be different when
stored on different PEs.Variable Traffic (D4.3v) displays
the potential traffic (product of variable size and access fre-
quencies in and out of PEs) generated by each variable, if

7



PE Type Memory
PE1 Intel 8051 4 kB
PE2 Custom HW 16 kB
Mem1 SDRAM16 16 kB

Memory Size Latency Power Cost
SDRAM64   64 kB 15 ns 3.5 W $5
SDRAM16   16 kB 15 ns 1.0 W $2
DRAM128 128 kB 60 ns 7.0 W $10

D5v: Component Allocation

D6v: Memory Database

Variable Type Memory
v1 int PE1, PE2
B2.v2 Int PE1
B3.v2 Int PE2

D1v: Variable Mapping

D4.2v: Variable Size
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D4.3v: Variable Traffic

0
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PE1
PE2

Memory Utilization Usage
PE1 12.5% 1 kB
PE2  100% 512 B
Total    61% 1.5 kB

D7v: Memory Quality Metrics

Figure 12. Variable Mapping Displays.

not mapped locally.Variable Mapping (D1v) is used for
designers to input variable mapping decisions, i.e., which
variable goes to which memory.Memory Quality Met-
rics (D7v) gives feedback on variable mapping in terms of
memory utilization.

4.2 Rules

As we mentioned above, PEs’ local memories are used
as much as possible when variables are mapped. There are
two kinds of variables, local variables and global variables,
accessed by each PE. Local variables are accessed internally
by a single PE while global variables are accessed by multi-
ple PEs. Each variable will potentially generate some traffic
(defined as product of number of accesses and variable size)
if the variable is not mapped to the PE that accesses it. In or-
der to minimize the traffic among PEs, we will give higher
priority to variables with more traffic when assign them to
PE’s local memories.

Rule 11. PEs’ local memories are utilized before mem-
ory components are.We want to utilize PEs’ local memory
as much as possible. Variables are assigned to the allocated
global memory component only if the available local mem-
ory space is not sufficient.

Rule 12. Local variables are assigned before global
variables. Local variables should be assigned to their ac-
cessing PE as much as possible to reduce access time.

Rule 13. Variables are assigned in the descending or-
der of potential traffics. The variables that potentially gen-
erate most traffic are assigned to local memories to reduce
access time and traffic over busses.

Rule 14. Allocate the lowest cost memory from mem-
ory component database to hold all unmapped variables.
At stated in Rule 11, some variables may not be mapped

to PE’s local memories due to memory space limit. In this
case, a global memory component is needed for storing these
unmapped variables. Usually, the lowest cost memory is se-
lected while size requirement is satisfied.

4.3 Examples

D5v: Component Allocation

PE Type Memory

PE1 Intel 8051

PE2 Custom HW 16 kB

4 kB

D6v: Memory Database

Memory Size

SDRAM8 8 kB

SDRAM16 16 kB 15 ns

15 ns

PowerLatency Cost

0.5 W $1

1.0 W $2

D4.3v: Variable Traffic
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Variable Type Memory

PE1.v1 array
PE2.v2 PE2

PE1

array
array
array
array

v3
v4
v5

PE2

PE2
Unmapped

D7v: Memory Quality Metrics

Memory Utilization Usage

PE1            75 %          3 kB

PE2            94 %        15 kB

Mem1         75 %          6 kB
Total           83 %        24 kB

Mem1 SDRAM8 8 kB

Figure 13. Variable Mapping Example.

An example is shown in Figure 13. First, according to
Rule 11 and Rule 12, we map PE1 and PE2’s local vari-
ables (v1, v2)to their local memories respectively. After the
mapping,PE1 has 1kB local memory space left andPE2
has 10kB local memory space left. Three global variables,
v3, v4 and v5, are accessed by both componentPE1 and
PE2. We start to assign them in the order of their potential
traffics shown in Variable Traffic display.v3 is assigned to
PE2only, becausePE1has only 1kB free space left, which
is not big enough forv3. v4 can not be assigned to either
PE1or PE2because of its size. However,v5 can be barely
assigned toPE2.

Now, v4 with size 6kB is not mapped to any local mem-
ory. According to Rule 14, a SDRAM8 memory component
Mem1is selected to holdv4. Finally, the Memory Quality
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Metrics shows the utilization information of all three mem-
ories.

5 Channel Mapping

At this stage, the communication between PEs is through
variable channels. Since in the architecture model, the con-
nection among PEs are busses, we need to select busses
to connect PEs and map variable channels to the selected
busses. For a design consisted of a number of PEs, usually
more than one bus is needed. Transducers are then needed
to interface between different bus protocols. Our goal here
is to minimize the use of transducers and the communica-
tion over transducers. The basic approach to bus allocation
problem is to cluster PEs and select bus for each PE cluster.
Then the mapping of variable channels to busses becomes
automatic.

5.1 Data Displays

The displays needed for channel mapping are shown in
figure 14.Channel Profile (D4.2c)gives the transfer time
needed for the selected busses to send a channel message.
Channel Traffic (D4.3)presents traffic (product of size and
number of messages in and out PEs) generated by each
channel. Protocol Database (D6c)lists all available bus
protocols with bus width, clock, and cost attributes.Bus
Schedule (D2c)shows the starting time and duration of
each channel message on each bus.Bus Allocation (D5c)is
used by designers to input bus allocation decisions.Chan-
nel Mapping (D1c) is used by designers to input channel
mapping decision, i.e., which channel is mapped to which
bus(ses).Bus Quality Metrics (D7c) shows feedback on
channel mapping in terms of utilization, traffic, and so on.

5.2 Rules

The following are the most important rules for channel
mapping.

Rule 14. Cluster components by closeness and com-
patibility. The closeness can be defined as either the num-
ber of channels or the total amount of traffic between PEs.
The compatibility indicates whether two PEs can communi-
cate using a common bus protocol. While custom PEs can
be connected to any protocol (thus are compatible with all
other PEs), IP or microprocessors usually can only accept
their own fixed bus protocols.

Rule 15. Select bus protocol for each cluster.After
clustering, the PEs in each cluster are allocated a bus to
connect among them. If the cluster includes a PE with a
fixed protocol, this protocol is then selected to connect all
PEs in the cluster. If all PEs are synthesizable, we can select
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Bus Type

Bus1      Handshake

D6c: Protocol Database

Bus Width

AMBA            32-bit    66 MHz   8 MB/s   $5

CostRateClock

PCI                32-bit    33 MHz   10 MB/s $15
ColdFire         16-bit    30 MHz   2 MB/s   $10
Handshake      8-bit    async        -           $5

D1c: Channel Mapping

Channel Size
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Bus Utilization

Bus1            1%             24 B       8 s       8B/s

RateTimeTraffic

Total            1%             24 B       32 s     8B/s

Figure 14. Channel Mapping Displays.

a bus protocol from the protocol database by consideration
the tradeoff between cost and performance.

Rule 16. Introduce transducers between different pro-
tocols. With busses selected, variable channels are then
mapped to allocated busses. For channels that connect PEs
both in the same cluster, they are mapped to the correspond-
ing bus directly. For channels connecting PEs in two differ-
ent clusters, they are mapped to both busses of the two clus-
ters and a transducer is inserted between these two busses.

5.3 Examples

In the example shown in Figure 15, 5 PEs are connected
with 4 channels. The closeness, defined as the amount of
traffic, and compatibility (shown with asterisk) are tabu-
lated. We start to cluster PEs by looking at closeness and
compatibility. For example,PE1andPE2are clustered to-
gether because they are closest and compatible. In the same
way,PE4andPE5form a cluster andPE3 itself becomes a
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Figure 15. Channel Mapping Example.

cluster. SincePE1 has its own bus protocol, that protocol
(Bus1) is used betweenPE1andPE2. PE4andPE5are all
custom component, thus a flexible decision can be made to
select the desired bus (Bus3). For IP componentPE3, its
own bus protocol (Bus2) is used. ChannelC1 is mapped to
Bus1because its connect PEs in the same cluster. By the
same reason, channelC4 is mapped toBus3. On the other
hand,C2 is mapped to bothBus1andBus2with transducer
IF2 in between becausePE1andPE4are in different clus-
ters. Similarly,C3 is mapped to bothBus1andBus3with
transducerIF1 in between. The final channel mapping re-
sult is shown in Figure 16.

PE3
(IP)

PE2
(HW)

PE1
(Proc)

PE5
(HW)

PE4
(HW)

IF1

IF2

Bus1

Bus2

Clustering
PE1, PE2 -> Bus1
PE3          -> Bus2
PE4, PE5 -> Bus3

Channel Mapping
C1 -> Bus1
C2 -> Bus1, Bus2
C3 -> Bus1, Bus3
C4 -> Bus3

Final Architecture

Bus3

Figure 16. Channel Mapping Result.

6 Conclusions

In this report, we presented the tasks of system level de-
sign. An interactive design flow can help designers perform
these tasks. The displays and suggested rules to use the dis-
plays at each design step were described and illustrated with
examples. Designers are not limited to the aforementioned
rules. New rules can be added to utilize the displays for

better design results. As we can seen, the flow enables ex-
tensive architecture exploration with minimum design effort
from designers.
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