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Abstract

In system-on-chip design, automating design reuse is one of the most important issues. Since most Intellectual Proper-
ties(IP) are provided by different vendors, they have different interface schemes, and different data rates. In order to automate
design reuse, methods for combining system components with incompatbile I/O and interface protocols, must be developed.
Furthermore design interfaces between interacting components is an error-prone task. In this report, we propose the in-
terface architecture in which queues are used for data transfers between components with incompatible protocols. We also
describe a method to generate system interface from the protocol specification.
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Interface Synthesis from Protocol Specification

Dongwan Shin and Daniel Gajski
Center for Embedded Computer Systems

University of California, Irvine

Abstract

In system-on-chip design, automating design reuse is one
of the most important issues. Since most Intellectual Prop-
erties(IP) are provided by different vendors, they have dif-
ferent interface schemes, and different data rates. In order
to automate design reuse, methods for combining system
components with incompatbile I/O and interface protocols,
must be developed. Furthermore design interfaces between
interacting components is an error-prone task. In this re-
port, we propose the interface architecture in which queues
are used for data transfers between components with incom-
patible protocols. We also describe a method to generate
system interface from the protocol specification.

1. Introduction

Advances in the VLSI industry and design methodol-
ogy have allowed the complexity of a single chip to contain
more than millions of transistors. The increasing complex-
ity of VLSI design and market pressures in the complex
system-on-chip(SOC) have forced designers to consider
reuse of Intellectual Property(IP) blocks [Mis01]. Since
most IPs, however, are proivided by different vendors, and
they have different interface scheme, and different data
transfer rates, composition of these components should be
developed. It is error-prone task and one of the most impor-
tant part of system integration.

The basic purpose of an interface syntheis is to generate
interfaces between incompatible components. Data could
be transferred at different bit widths, operating frequencies,
transfer rates and so on. In this report, we propose novel
queue-based interface scheme, which general enough to ac-
comodate any component protocols

The rest of this report is organized as follows: section 2
gives a brief description of previous and related work. Sec-
tion 3 describes our interface architecture and canonical
model of queue. Section 4 gives an overview of our protocol
specification model. We will takes a closer look at synthe-
sis step for out interface architecture. Section 6 shows the
synthesis results by our method using examples. Section 7

concludes this report with a brief summary and future work.

2. Related work

The problem of interface synthesis between system com-
ponents with incompatible protocols has been addressed in
the literature. In [BK87], the event graph was introduced to
establish the correct synchronization and data sequencing.
The limitation of this approach is that the two protocols
should be made compatible by assigning the labels manu-
ally to the data on both sides, since the protocol specifica-
tion is given at low level of abstraction using waveforms.

In [LV94], signal transition graph was introduced for
protocol specification and the hardware interface is synthe-
sized with asynchronous logic. In [NG95], the protocol
specification is decomposed into five basic operations(data
read/write, control read/write, time delay), while the proto-
col is represented as an ordered set of relations whose exe-
cution is guarded by a condition or by a time delay. Finally,
relations between two protocols are grouped into a set of
relation groups which transfer the same amount of data.

In [SM98], the interface architecture provides a mech-
anism for implementing communication through the stan-
dard interface and enables the composition of synchronous
blocks and provides hooks for optimizing system perfor-
mance by prioritizing component communication. They
have assumed that communicating components utilize the
same data types. Interfaces between blocks with multiple
busses can be generated when the control of these busses
is separate. Futhermore, by communicating data through
input and output buffers with separate read and write func-
tionality, components can be connected that operate at dif-
ferent frequencies.

In [PRSV98], the two protocols are described using reg-
ular expressions and are translated into corresponding de-
terministic finite automata. Then interface protocol can be
synthesized as an FSM by production computation algo-
rithm. In this approach, the correspondence between pieces
of data on the two sides is automatically resolved. How-
ever, the limitation of this approach is that the two commu-
nicating parties are driven by the same clock. In [PCPK00],
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this limitation is overcome by inserting additional states and
edges in the FSM and introducing a queue in the protocol
converter.

3. Interface architecture

Our interface architecture is basically composed of syn-
chronous system interfaces as shown in Figure 1. The sys-
tem components(PE1 and PE2) may operate at different
frequencies and at different data rates. Our interface ar-
chitecture includes a buffer(queue) to smoothen the burst
data transfer requests and two state machines(FSMD) to
transform incompatible protocols between system compo-
nents and the buffer. Futhermore, by communicating data
through the state machines with queue, the system compo-
nents which operate at different bit widths and at different
frequencies can be easily connected.

In our interface architecture, system components(PE1
and PE2) in Figure 1 are directly connected to its corre-
sponding state machines and will transfer data to other com-
ponent through the state machines. The state machines are
responsible for receiving(sending) data from(to) the corre-
sponding system components and writing(reading) the data
to(from) the queues. The operating frequency of the state
machine will be the same as the corresponding system com-
ponent so as to reduce synchronization overhead of proto-
cols which occurs by operating at different frequency.

FSMD
(clk1)

FSMD
(clk2)

PE1
(clk1)

PE2
(clk2)

Interface

Queue

Figure 1. The interface architecture for components
with incompatible protocols

3.1. Communication scheme

Since all transactions between system components are
performed through queues which are controlled by state ma-
chines, we have to consider two inteface protocols, the pro-
tocol between state machines and queues and the protocol
between system components and state machines. In other
words, state machines should handle two interface proto-
cols: one for system components and the other for queues.
The state machines will perform following:

1. receive data from the producer(system component
sending data) and store them into an internal buffer

2. write data from internal buffer into queue at proper
time.

3. read data from the queue and store into it internal
buffer to send them to the consumer(system compo-
nent receving data which the producer sent)

4. send data to the consumer

The bit width and depth of the queue should be determined
for lossless data transfer. In order to reduce the number
of transfers between state machines and the queue, the bit
width of the queue is determined as follows:

bwQ � max�bws�bwr�

where bws is bit width of the producer and bwr is bit width
of the consumer. If the bit width is selected to less than bwQ,
the state machines must write and read data more often than
that of bwQ.

The depth of queue will be determined to minimize the
size of queue by following formula:

Qn � max�0�Qn�1 ��Pn�Cn��

where Qn is the depth of queue in time n. Pn represents the
amount of produced data in time n and Cn represents the
amount of consumed data in time n. The depth of queue
will be the maximum of Qn.

The state machines will be responsible for merging and
slicing the data to make them suitable for the queue. Dur-
ing the transfer, part of data will be temporarily stored in the
state machines, which means the state machines should con-
tain the internal buffer. The bit width of internal buffer will
be maximum bit width of two communicating parties(same
as bit width of the queue, bwQ), which reduces the number
of data transfers between the state machines and queue.

The interface protocol between state machines and
queues will be fixed because the queue interface is pre-
defined. But the interface protocol between system com-
ponents and state machines will be varied depending on the
protocol of system components.

Figure 2 shows the interface communication scheme be-
tween the state machines and a queue with a single I/O
port. When two state machines share one queue and the
data can be transfered bidirectionally, the handshaking be-
tween them is needed. Then, the producer must generate a
signal to let the consumer read the data in the queue. Also,
comsumer must send signal to let the producer know that
he has read data. If two queues are used for storing data, or
data transfers occur only in one direction, handshking pro-
tocol is no longer needed as shown shown in Figure 3. In
addion, if the queue with separate I/O port is selected for
storing data, the handshaking between state machines is not
needed.
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Figure 3. The interface communication scheme using
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3.2. Queue model

Queue is frequently used to smoothen bursts in the re-
quests for a service [Gaj97]. It stores the surplus data which
will eventually be read in the same order it was written in.
System components like processors, ASICs which send data
to each other, in the sense that when data production mo-
mentarily exceeds the data consumption, queue must be in-
serted between the producer and the consumer. Of course,
in such cases the data production rate cannot exceed the
consumption rate indefinitely, since that would require an
infinite queue. On the contrary, both rates on an average,
must be the same. However, production and consumption
bursts do occassionally occur, and the size of the queue de-
termines how large a burst can be tolerated.

To facilitate data transfer between system components,

we make our own queues which are general enough to in-
clude the specific queues, distributed by various vendors.
Our implemenation of a queue is shown in Figuire 4. In our
implemenation, a queue can have one or two I/O ports(QIO
or QIn and QOut) for data. It also has several input con-
trol signals: ReadEnable, WriteEnable, and Reset.
When ReadEnable is equal to 1, the queue will output
the data which has been stored for the longest time, taking
it from the front of queue. Similarly, when WriteEnable
is equal to 1, the data will be added to the back of the queue.
ReadEnable and WriteEnable are never equal to 1 at
the same time.

Queue also has several control outputs which are used to
control the producer and the consumer. When the queue is
full, the signal Fullwill have a value of 1, which will warn
the producer that any further data sent to the queue will be
discarded. When Empty becomes 1, it warns the consumer
that no data has yet arrived. When the producer(consumer)
writes(read) the data in the queue, QReady become 1,
which warns the other can not use the queue, because some-
one is using it. For queue with separate read and write port,
QReadReady and QWriteReady are needed to prevent
mulitple producers from accessing the queue at the same
time.

Our queue is implemented with a memory to store large
data. The clock period of the queue is frequently less than
the memory read access time. In this case, the consumer
does not know when it can read data from the queue. To
tackle this problem, DataReady signal is implemented.
When DataReady is equal to 1, the queue generate the
read data for the consumer. Similarly, when memory write
time is longer than the clock period of the queue, the pro-
ducer does not know when it must deassert control signal
for writing data to queue. For this, WriteDone signal is
implemented. When the WriteDone is equal to 1, the data
are written to queue, and the consumer can deassert control
signals. If read/write operation can be performed in one
clock cycle, DataReady and WriteDone are not needed
for implementation because they are useful for only multi-
cycle read/write operation.

3.3. Queue Timinig Diagram

In order to generate a queue model from the memory
timing constraints, we have to schedule the timing con-
straints based on given clock period of the queue. Given
timing constraints of the memory and the clock period of
the queue, queue generation reduces to the task of generat-
ing a state machine that implements the given queue func-
tionality and satisfies the timing constraints. This requires
scheduling of memory timing constraints into clock cycles
such that no constraint is violated. Therefore, the FSMD
implementation selects instances of the given timing ranges
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Queue

ReadEnable

WriteEnable
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CLK
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Full
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QIO

(a) Queue with a single I/O port

Queue
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WriteEnable

Reset

CLK

Empty
Full

DataReady
WriteDone

QReadReady

QWriteReadyQOut

QIn

(b) Queue with two I/O ports

Figure 4. Queue block diagram

based on the granularity given by the queue clock. Finally
the queue description will be generated for integration in
interface synthesis.

Figure 5 shows the read/write timing diagram of queue
with a single I/O port, which contains 1 port memory, which
is shown in Figure 4 (a). In this figure the MEM/ denotes
the signals are ports of memory. For example MEM/Addr
means the Addr port(Address port) of the memory. Figure 6
shows the read/write timing diagram of queue with 2 I/O
ports which contains 2 port memory which is shown in Fig-
ure 4(b). We developed queue generation algorithm [SG02]
to generate FSMD model for queue from timing specifica-
tion of the given memory, which is beyond the scope of this
report and refer to this report [SG02].

4. Protocol specification

In order to generate the interface automatically, the tool
has to accept the information about protocols. The timing
diagram information is informal and sometimes ambiguous
for a tool to understand its meaning. So in the first place,
protocols must be described in a form usable by the synthe-

S1 S2 S3 S3 S4 S4 S5 S1

WriteEnable

CLK

MEM/CS

MEM/RW

MEM/Addr

QIO

WriteDone

QReady

S1 S2 S2 S3 S3 S4 S4 S1

ReadEnable

CLK

MEM/CS

MEM/RW

MEM/Addr

QIO

DataReady

QReady

Tas/cp

Twpw/cp

Tah/cp

Toh/cp

Tacc/cp

Write Timing of Queue with 1 I/O port

Read Timing of Queue with 1 I/O port

Figure 5. Timing diagram of a Queue with a single I/O
port

sis tool and also suitable for simulation.
Both system component interface and bus protocol must

be described in a form which provides complete informa-
tion to match the protocols. This form would not only in-
clude the temporal information of signals but also the causal
relationships between them with associated delay. At least,
three aspects have to be included: interface port or bus
wire information(name, bit width, direction), protocol se-
queuece, and timing.

We propose a formal model, called Protocol Sequence
Graph, PSG from now on, which can be used by synthesis
algorithm, that captures the minimal necessary set of fea-
tures representing the interface and its associated commu-
nication protocol.

4.1. Protocol sequence graph

Protocol sequence graph is designed for describing the
detailed data transfer and synchronization operations of a
communication protocol. In PSG, a protocol will be decom-
posed to several transactions, which are atomic communi-
cation operations. Each transaction can be represented by a
PSG. Usually, an interface communication protocol involv-
ing two parties should be represented by two complemen-
tary PSGs: one for sending and the other is receiving. The
interface protocol specified by a PSG may formally be de-
scribed in terms of communication actions, which are data
changes of signals:

Definition 1 Let A be a basic action defined as:

4
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Figure 6. Timing diagram of a Queue with two I/O
ports

A � s � v

where s is signal,� is operator, v is a value to be trans-
ferred

The value v can be one of followings:

� 0(level high), 1(level low), �(level toggling), x(don’t
care) and z(high impedence)

� �(rising edge) and�(falling edge)

� #(valid address/data signal) and �(invald address/data
signal)

To represent relationships(conditions for input signals or
assignments for output signals) between signals and values,
we use four operators as shown:

� ?: check value of an input signal

� !: assign value to an output signal

� �: read address/data from a bus

� �: write address/data to a bus

Each operator has its dual which can be viewed as a com-
plementary operation. The duality of any of these actions
can be found by obtaining the inverse relation between as-
signment statement and waiting statement of signal events.

The operator ? is dual to operator !, and operator � to op-
erator �. Specifically, actions can be divided into control
related actions(?, !) and data related actions(�, �).

Communication actions can be grouped if they have no
timing relationships and can be executed at the same time.
These communication actions are called composite actions
which makes one node in PSG.

Definition 2 Protocol Sequence Graph G(A, E) is directed
graph, where vertices A are composite actions, which
are labeled with signal names combined with associ-
ated value and arcs E represent the causal relations and
temporal relations between vertices. Each vertex of
PSG is either labeled with conditions for input signals
or assignments for output signals.

The PSG has two special no-action nodes: source and sink.
The PSG becomes polar graph by introducing the source
and sink node. The polar graph the single entry and sin-
gle exit property, which makes easy to find start and end of
protocol.

Usually specific timing information must be annotated in
arcs besides the causal relationship information. The anno-
tation arcs are used to denote the timing relations between
two vertices of the PSG. The timing relations must include
the propagation delay and timing constraint between two
vertices and clock information. All timing annotations are
denoted by (min, max) to express the interval between the
minimum and the maximum time constraint or delay. The
annotation used on input signal vertices can be interpreted
as (setup, hold) to denote the setup and hold time constraints
for the input condition relative to the local clock. For out-
put signal vertices the annotations denote the propagation
delays relative to the local clock.

We demonstrate how PSG can be used to model interface
protocol using two examples: one is double handshaking
protocol and the other is Queue interface protocol.

4.1.1 Double handshaking protocol

In this section, we will show how to make PGS from pro-
tocol specification of asynchronous protocol, double hand-
shaking protocol, whose block diagram and timing diagram
is shown in Figure 7 and in Figure 8 respectively. Write op-
eration begins with the master(producer) initiating the trans-
fer by putting Addr and Data out through the address bus
and data bus, while asserting the Req signal and waiting for
the Ack signal from the slave(consumer). As soon as the
slave detects the Req signal, it loads the Addr and Data
and asserts the Ack. The master can then deassert the Req
signal while the Addr and Data signal can be invalidated.
To begin next transaction, the slave has to deassert its Ack
signal.

For read operation, communication begins with the mas-
ter initiating the transfer by putting Addr out through the

5



Master Slave

ABus[15:0]

DBus[31:0]

Req

Ack

Figure 7. Block diagram of 4-phase double handshak-
ing protocol

address bus, while asserting the Req signal and waiting for
the Ack signal and valid data from the slave. As soon as the
slave detect the Req signal, it writes data through data bus
and asserts the Ack. After The master reads the data from
the data bus, it deasserts the Req signal while the Addr and
Data signal can be invalidated. To begin next transaction,
the slave has to deassert its Ack signal.

The protocol specification and master side PSG of the
double handshaking protocol is shown in Figure 9. The
method msend() describes the master write protocol in
SpecC, and the method mrecv() does the master read pro-
tocol. The corresponding PSGs are shown on the right in
Figure 9. Timing constraints are specified for the events
on the wires by enclosing the code driving and sampling
the wires in a do-timing construct. The constraints are
specified as ranges between the labels in the code sequence.
For example, according to the protocol timing diagram the
range between T1 and T2 is from 5 to 8 time units. The dot
node at the top of PSG is source node and sink node is at
the bottom of PSG. Similar to the master side of the proto-
col, the slave side can be specified as shown in Figure 10).
The protocol of the slave side is dual of that of master side
because the slave side will be the counterpart of the master
interface. Therefore, the slave side protocol will be gener-
ated automatically through interface synthesis.

4.1.2 Queue interface protocol

In this section, we will show how to make PGS from proto-
col specification of synchronous protocol, queue interface
protocol which will be used in our interface architecture,
whose timing diagram is shown in Figure 5. The queue is
slave during transaction between system components.

Write operation begins with the master(producer) initi-
ating the transfer by putting the data through QIO while
asserting the WriteEnable signal and waiting for the
WriteDone signal from the queue(consumer). As soon
as the queue detect the WriteEnable signal, it loads the
data through data bus and asserts the WriteDone. The
master can then deassert the WriteEnable signal while
the data bus can be invalidated. To begin next transaction,

Req

Ack

 valid dataDBus

 valid addrABus

 valid dataDBus

 valid addrABus

Req

Ack

write cycle

read cycle

T1 T2 T3 T4

T1 T2 T3 T4

(5,8) (3,5)

(5,8) (3,5)

Figure 8. Timing diagram of 4-phase double hand-
shaking protocol

the queue has to deassert its WriteDone signal.

For read operation, communication begins with the
master initiating the transfer by while asserting the
ReadEnable signal and waiting for the DataReady sig-
nal and valid data from the queue. As soon as the queue de-
tects the DataReady signal, it writes the data through data
bus and asserts the DataReady. After The master reads
the data from the data bus, it deasserts the ReadEnable
signal. To begin next transaction, the queue has to deassert
its DataReady signal.

The protocol specification for synchronous protocol is
represented by FSMD construct in SpecC. Each state has
actions and transition depending on the conditions of inputs
and current state, which is shown in Figure 11. The method
Qwrite() describes the queue write protocol in SpecC,
and the method Qread() does the queue read protocol in
terms of the queue. The corresponding PSGs are shown on
the right in Figure 11. Similar to the Queue interface pro-
tocol, the master side of the queue interface protocol can be
specified as shown in Figure 12. The protocol of the master
side is dual of that of the queue because the queue interface
is counterpart of the master interface. Therefore, the mas-
ter side protocol will be generated automatically from our
queue model through interface synthesis.

6



T2 Ack ? 1 ;

T4 Ack ? 0 ;

T1
ABus <- # ;
DBus <- # ;
Req ! 1 ;

T3
ABus <- Z ;
DBus <- Z ;
Req ! 0 ;

msend()

msend() {
  do {
    T1: ABus = addr;
          DBus = data;
          Req = 1;
    T2: wait(Ack == 1);
    T3: ABus = Z;
          DBus = Z;
          Req = 0
    T4: wait(Ack == 0);
  } timing {
    range(t1; t2; 5; 8);
    range(t3; t4; 3; 5);
  }
}

T2
DBus -> # ;
Ack ? 1 ;

T4 Ack ? 0 ;

T1
ABus <- # ;
Req ! 1 ;

T3
Req ! 0 ;
ABus <- Z ;

mrecv()

mrecv() {
  do {
    T1: ABus = addr;
          Req = 1;
    T2: data = DBus;
          wait(Ack == 1);
    T3: ABus = Z;
          Req = 0;
    T4: wait(Ack == 0);
  } timing {
    range(t1; t2; 5; 8);
    range(t3; t4; 3; 5);
  }
}

Figure 9. Protocol specification for double handshak-
ing protocol(master)

T1

T2

T3

ABus -> #  ;
DBus -> # ;
Req ?1 ;

 Ack ! 1 ;

Req ? 0 ;

T4 Ack ! 0 ;

srecv()

ssend() {
  do {
    T1: addr = ABus;
         wait(Req == 1);
    T2: DBus = data;
          Ack = 1;
    T3: wait(Req == 0);
    T4: Ack = 0;
  } timing {
    range(t1; t2; 5; 8);
    range(t3; t4; 3; 5);
  }
}

T1

T2

T3

ABus -> #  ;
Req ?1 ;

DBus <- #  ;
Ack ! 1 ;

Req ? 0 ;

T4 Ack ! 0 ;

ssend()

srecv() {
  do {
    T1: addr = ABus;
          data = DBus;
          wait(Req == 1);
    T2: Ack = 1;
    T3: wait(Req == 0);
    T4: Ack = 0;
  } timing {
    range(t1; t2; 5; 8);
    range(t3; t4; 3; 5);
  }
}

Figure 10. Protocol specification for double handshak-
ing protocol(slave)

5. Interface synthesis

Interface synthesis process is intended to insert interface
transducers between system components with different pro-
tocols. The interface formed when duals are found for each
action in original protocol specifications and are used to
form the new interface behavior, first for the sending pro-
tocol, then, for the receiving protocol. In this way, we allow
the capture of data from one component, the FIFO queue of
transmitted data and the transmission to the other compo-
nent.

In this section, we will demonstrate the interface synthe-
sis algorithm which generates our proposed interface archi-
tecture.

5.1. Problem definition

Given:

swrite() {
  fsmd(clk) {
    S1: WriteDone = 0;
          QReady = 1;
          if (WriteEnable == 1)
              goto S2;
          else
              goto S1;
    S2: data = QIO;
          WriteDone = 1;
          QReady = 0;
          Empty = X;
          Full = X;
          if (WriteEnable == 0)
              goto S1;
          else
              goto S2;
  }
}

S1

S2

WriteDone ! 0 ;
QReady ! 1 ;
WriteEnable ? 1 ;

QIO -> # ;
WriteDone ! 1 ;
QReady ! 0 ;
Empty ! X ;
Full ! X ;
WriteEnable ? 0 ;

swrite()

S1

S2

DataReady ! 0 ;
QReady ! 1 ;
WriteEnable ? 0 ;
ReadEnable ? 1  ;

QIO <- # ;
DataReady ! 1 ;
QReady ! 0 ;
Empty ! X ;
Full ! X ;
ReadEnable ? 0 ;

sread() sread() {
  fsmd(clk) {
    S1: DataReady = 0;
          QReady = 1;
          if (WriteEnable == 0 &&
              ReadEnable == 1)
              goto S2;
          else
              goto S1;
    S2: QIO = data;
          DataReady = 1;
          QReady = 0;
          Empty = X;
          Full = X;
          if (ReadEnable == 0)
              goto S1;
          else
              goto S2;
  }
}

Figure 11. Protocol specification for Queue interface
protocol

Qwrite() {
  fsmd(clk) {
    S1: if (WriteDone == 0 &&
              QReady == 1)
              WriteEnable = 1;
              goto S2;
          else
              goto S1;
    S2: QIO = data;
          if (WriteDone == 1 &&
             QReady == 0)
              WriteEnable = 0;
              goto S1;
          else
              goto S2;
  }
}

S1

S2

WriteDone ? 0 ;
QReady ? 1 ;

QIO <- # ;
WriteDone ? 1 ;
QReady ? 0 ;

Qwrite()

S1

S2

DataReady ? 0 ;
QReady ? 1 ;

QIO -> # ;
DataReady ? 1 ;
QReady ? 0 ;

Qread()

WriteEnable ! 1 ;

WriteEnable ! 0 ; ReadEnable ! 0 ;

WriteEnable ! 0 ;
ReadEnable ! 1 ;

Qread() {
  fsmd(clk) {
    S1:
          if (DataReadyDone == 0 &&
              QReady == 1)
              WriteEnable = 0;
              ReadEnable = 1;
              goto S2;
          else
              goto S1;
    S2: data = QIO;
          if (DataReady == 1 &&
             QReady == 0)
              goto S1;
              ReadEnable = 0;
          else
              goto S2;
  }
}

Figure 12. Protocol specification for Queue interface
protocol(master)

1. Protocol descriptions of two communicating par-
ties(producer and consumer)

2. Bit width and size for the selected memory

3. Clock period TQclk of the queue

Determine:

1. FSMDs for state machines

2. FSMD for the queue

Conditions:

1. Timing constraints are met.

5.2. Algorithm for interface synthesis

Algorithm 1 shows the interface synthesis algorithm
from given protocol specifications and clock period of the
selected queue. In this algorithm, there are two major
tasks: MakeDual() and Schedule(). The method
MakeDual transforms the protocol sequence graph of orig-
inal protocol specification to the corresponding dual proto-
col sequence graph, which can be done by replacing the
operators in actions with their duals.

The method Schedule() generates the FSMD from
the PSG based on the producer and the consumer clocks.
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Actually, the PSG from the synchronous protocol specifica-
tion is not needed to be scheduled because its PSG is already
a FSMD. Therefore, the PSG from the asynchronous pro-
tocol specification will be scheduled based on the selected
producer and consumer clocks. In other word, the schedul-
ing of PSG selects instances of the given timing ranges
based on the granulairty given by the component clock such
that no timing constraint is violated. During the scheduing
of PSG, some action nodes will be collapsed into a complex
action node based on causal relationship. For example, in
msend() in 9, two nodes T1 and T2 can be collapsed into
one state because the actions in T1will not be changed until
T2. In the same way, two nodes T3 and T4 can be collapsed
into one state.

The method GenerateQueue() will generate the
queue based on the selected memory and the clock of the
queue [SG02]. The generated producer interface FSMD,
consumer interface FSMD and queue interface FSMD
should be collapsed into a single FSMD to obtain in-
terface FSMD. According to the bit width of the pro-
ducer/consumer interface and bit width of the selected
queue, the producer/consumer interface FSMD will be
replicated by � bwQ

bwS
	.

The method AddFSMD() will collapse the producer
and queue interface FSMDs(FMSDSi, FSMDQi) into the
transducer interface FSMD for the producer(FSMD T S).
In the same way, the consumer and queue interface
FSMD(FSMDRi, FSMDQi) will collapse into the transducer
interface FSMD for the consumer. Finally we have two FS-
MDs for transducer: the producer interface FSMD and the
consumer interface FSMD in the tranducer.

6. Examples

We select the parity encoder as an example to show our
interface synthesis approach. The parity encoder is uti-
lized as error detection and error correction coding in data
communication. The operation of parity encoder is shown
in Figure 13. The parity encoder is activated by start
signal, and gets data as input, and generates done sig-
nal and even parity output. The parity encoder is com-
posed of two behaviors: one’s counter(Ones) and even
parity checker(Even). The former computes the number
of ones for the 32 bit wide data, and the later generates
even parity bit by examining the output(ocount) of one’s
counter. These two behaviors communicate through the
channel(MasterBus and SlaveBus), which contains the
interface protocol specification for even parity checker and
one’s counter.

This communication model will be refined into RTL
model through protocol inlining and RTL synthesis of the
behaviors and interface generation for channels [GZD�00].
The communicating behaviors in the parity encoder can be

Algorithm 1 GenerateInterface(PSGS�A�V �, PSGR�A�V �,
TQclk)

// Generate Queue FSMD
PSGQ�A�V � = GenerateQueue(TQclk);
// get the dual of producer PSG
PSGSi�A�V � = MakeDual(PSGS�A�V �);

5: PSGRi�A�V � = MakeDual(PSGR�A�V �);
PSGQi�A�V � = MakeDual(PSGQ�A�V �);
// schedule the PSG based on the clock of the producer.
FMSDSi = Schedule(PSGSi);
// add the producer FSMD(FSMDSi) to interface FSMD

10: for i = 1 to �
bwQ
bwS

	 do
AddFSMD(FSMDT S, FSMDSi);

end for
// schedule the PSG based on TQclk

FMSDQi = Schedule(PSGQi, TQclk);
15: // add the queue FSMD(FSMDQi) to interface FSMD

AddFSMD(FSMDT S, FMSDQi);
// add the queue FSMD(FSMDQi) to interface FSMD
AddFSMD(FSMDT R, FMSDQi);
FMSDRi = Schedule(PSGRi);

20: // add the consumer FSMD(FSMDRi) to interface
FSMD
for i = 1 to � bwR

bwQ
	 do

AddFSMD(FSMDT R, FSMDRi);
end for

implemented by various system components with different
protocols. We selected 4 protocols: double handshaking
protocol, ColdFire processor interface, ARM9TDMI pro-
cessor interface and TMS320C50 DSP processor interface.
The parity encoder will be implemented by the composition
of 4 protocols which will be explained in following sec-
tions. The abstract FSMD description of the synthesized
parity encoder will be shown in Figure 14. In this FSMD
description, each node corresponds to interface method of
the selected protocol which will be described in more detail
in following sections. The FSMD is generated through pro-
tocol inlining and scheduling of RTL synthesis from non-
inlined communication model. The FSMD for the even par-
ity checker(Even) is composed of 2 execution parts(EX1
and EX2), a master send part(msend) to send data through
the bus and a master receive part(mrecv) to receive data
from the bus.

In the same way, the FSMD for one’s counter consists
of a execution part(EX1) and a master send part(msend)
and a master receive part(mrecv). The generated trans-
ducer will be composed of 2 communicating FSMDs with
one queue: the one(FMSD1) is for interfacing with the even
parity checker and the other(FSMD2 is for interfacing with
the one’s counter. The FSMD1 consists of a slave receive
part(srecv) to get data from the master, a slave send part to

8



msend

mrecv

Even

EX1

EX2

FSMD1

Qwrite

Qread

srecv

ssend

FSMD2

ssend

srecv

Qread

Qwrite

EX1

msend

Ones

mrecv

Figure 14. FSMD for parity encoder(double handshaking protocol)

behavior Even(in bit[31:0] Inport,
    out bit[31:0] Outport, signal in start,
    signal out done, MasterBus bus)
{
    void main(void) {
        bit[31:0] ocount;
        bit[31:0] data;
        bit[31:0] mask;

        while (1) {
            done = 0;
            mask = 1;
            data = Inport;
            wait(start == 1);
            bus.write(data);

           ocount = bus.read();

           Outport = ocount & mask;
           done = 1;
        }
    }
};

behavior Ones(SlaveBus bus)
{
    void main(void) {
        bit[31:0] data;
        bit[31:0] ocount;
        bit[31:0] mask;
        bit[31:0] temp;

        while (1) {
            data = bus.recv();
            ocount = 0;
            mask = 1;

           do {
                temp = data & mask;
                ocount = ocount + temp;
                data = data >> 1;
             } while(data != 0);
             bus.send(ocount);
        }
    }
};

data

ocount

Figure 13. Non-inlined communication model of par-
ity encoder

send data to master(ssend), a queue write part(Qwrite)
to store data from the master to the queue and a queue read
part(Qread) to get data from the queue. The FSMD2 has
the same composition as the FSMD1 except for their order-
ing.

In this figure, the dotted line represents the transaction of
data between system components and interface FSMDs. For
example, the data(data) sent from the even parity checker
to ones counter will be transfered through msend in Even,
srecv and Qwrite in FSMD1, Qread and msend in
FSMD2, finally srecv in Ones. The data ocount from
one’s counter to even parity checker will be transferred

through the same path in the reverse direction.

6.1. ColdFire processor interface

The even parity checker(Even) is implemented by Cold-
Fire processor [Inc01] and the one’s counter(Ones) is im-
plemented by ASIC using double handshaking protocol as
shown in Figure 15. Though ColdFire processor has 32
bit wide data bus, we reduced it to 8 bit wide in order
to generate transducer with different bit widths for exper-
iment. Since they are connected by incompatible interface
protocols, the transducer should be introduced to transfer
data. ColdFire Processor interface protocol, whose tim-
ing diagram is shown in Figure 16. The bus transaction
in ColdFire processor interface protocol is split into two
phases: address phase and data pahse. During address
phase, the address(MADDR) and attribute signal(MRWB) is
driven. The MRWB output signal is provided to indicate
whether the current cycle is a read(low) or a write(high).
The address phase signal(MAPB) is asserted to show that
the bus is in address phase. During the data phase, data
phase signal(MDPB) is asserted until the bus cycle termi-
nates with a transfer acknowledge(MTAB). On a write cy-
cle, the write data bus(MWDATA) is driven for the entire data
phase. On a read cycle, the bus master samples the read data
bus(MRDATA) concurrently with MTAB at the rising clock
edge.

For memory accesses which requires more than one cy-
cle, the processor can be halted using MTAB. This signal
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FSMD
(clk1)

Even
(ColdFire:

clk1)

Ones
(HandShaking

: clk2)

MADDR[31:0]

MRDATA[7:0]

MWDATA[7:0]

MAPB

MDPB
FSMD
(clk2)

ready1

ack_ready1

ready2

ack_ready2

start

ack_start

OneBus[31:0]

done

ack_done

Queue
(clk3)

MRWB

MTAB

INTC

Figure 15. Transaction between ColdFire processor
and handshaking protocol

halts the processor during the data phase. The MTAB signal
should be driven high at the end of data phase if read/write
operation is done.

The protocol specification for synchronous protocol is
represented by FSMD construct in SpecC. Each state has
actions and transition depending on the conditions of inputs
and current state, which is shown in Figure 17. The method
mwrite() describes the write protocol in SpecC, and the
method mread() does the read protocol. The correspond-
ing PSGs are shown on the right in Figure 17. Through the
interface synthesis, the counterpart of the ColdFire proces-
sor interface can be derived by extracting the dual of orig-
inal protocol, which is shown in Figure 18. The ColdFire
processor interface protocol is synchronous, then schedul-
ing of the PSG is to make each action become a node in
the PSG to corresponding state in FSMD. Generated inter-
face FSMDs are shown in Figure 19. In this figure, two
FSMDs(FSMD2 and Ones) are not changed because Ones
uses the same double handshaking interface protocol as the
example in previous section. The state S1 and S2 is Cold-
Fire master bus interface protocol in Even FSMD. The cor-
responding states in transducer are S0 and S1 in FSMD1.
The state R1 and R2 in FSMD1 are dual states of R1 and R2
in Even FSMD.

6.2. ARM9TDMI processor interface

The even parity checker(Even) is implemented by
ASIC using double handshaking protocol and the one’s
counter(Ones) is implemented by ARM9TDMI [Inc00]
processor as shown in Figure 20. The ARM9TDMI has
separate instruction and data interface. This allows concur-
rent instruction and data accesses, and greatly reduces the
CPI of the processor. For optimal performance, single cycle
memory accesses for both interfaces are required, although
the core can be wait-stated for non-sequential accesses, or

MAPB

CLK

Write Timing

MDPB

MRWB

MADDR

MWDATA

MTAB

address phase data phase

MAPB

CLK

Read Timing

MDPB

MRWB

MADDR

MRDATA

MTAB

address phase data phase

Figure 16. Timing diagram of ColdFire processor in-
terface protocol

slower memory systems.
For both instruction and data interfaces, the

ARM9TDMI process core uses pipelined addressing.
The address and control signals are generated the cycle
before the data transfer takes place, giving any decode logic
as much advance notice as possible. All memory access are
generated from GCLK.

For each interface there are types of memory access:
non-sequential, sequential, internal, coprocessor transfer
for the data interface. These accesses are determined by
InMREQ and ISEQ for the instruction interface, and by
DnMREQ and DSEQ for the data interface.

For memory accesses which requires more than one cy-
cle, the processor can be halted by using nWAIT. This sig-
nal halts the processor, including both the instruction and
data interface. The nWAIT signal should be driven low by
the end of phase 2 in which GCLK is high to stall data inter-
faces(it is inverted and ORed with GCLK to stretch the inter-
nal processor clock). The nWAIT signal must only change
during phase 2 of GCLK.

The timing diagram for ARM9TDMI processor interface
protocol is shown in Figure 21. Data transfers take place in
the memory stage of the pipeline. DnRW indicates the di-
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S1

E2
Outport = ocount
              & mask;
done = 1;

E1
done = 0;
mask = 1;
data = Inport;

S2

MAPB = 1 ;
MDPB = 0 ;
MRWB = 0 ;
MWDATA = data[7:0];

start == 1

MADDR = addr;
MAPB = 0 ;
MDPB = 1 ;
MRWB = 0 ;

R0

R1

MAPB = 1;
MDPB = 1;
MRWB = 1 ;
MADDR = addr;

MAPB = 1 ;
MDPB = 1 ;
MRWB = 0 ;

INT == 1

R2

MAPB = 0 ;
MDPB = 1 ;
MRWB = 1 ;
ocount[7:0]  = MRDATA;

S0

S1
data[7:0] = MWDATA;
MTAB == 1

MAPB == 0 && MDPB == 1
&& MRWB == 0

R1

QReadEnable = 0;
ack_ready2 = 0;
INT = 1; addr =
MADDR;

MAPB == 0 && MDPB == 1
&& MRWB == 1

R2
MRDATA = data[7:0];
MTAB = 1;

Q0

Q1 QWriteEnable = 1;
QIO = data;

QWriteEnable = 0;

QFull != 1 && QReady == 1

QWriteDone == 1

Q2

Q3

ready1 = 0;
QReadEnable = 0;
ack_ready2 = 0;

QWriteEnable = 0;
ready1 = 1;

ack_ready1 == 1

QEmpty != 1 &&
QReady == 1 && Ready2 == 1

Q4
QReadEnable  = 1;
data = QIO;
ack_ready2 = 1;

QDataReady == 1

Even(ColdFire) FSMD1

MTAB == 1

MTAB == 1

MAPB == 1 && MDPB == 0
&& MRWB == 1

Q1

Q0

QReadEnable = 0;
ready2 = 0;
ack_ready1 = 0;

S1
QReadEnable = 0;
OneBus = data;
start = 1;

ack_ready1 = 1;
QReadEnable = 1;
data = QIO;

QDataReady == 1

ack_start == 1

Q4

Q5 ready2 = 0;

QWriteEnable = 0;
ready2 = 1;

ack_ready2 == 1

R1

R2 ack_done = 1;

ack_done = 0;
data = OneBus

done == 1

done == 0

Q2

Q3
QIO = data;
QWRiteEnable = 1

ack_done = 0;
QWriteEnable = 0;

QFull != 1 && QReady == 1

QEmpty != 1 &&
QReady == 1 && Ready1 == 1

QWriteDone == 1

S2 start = 0;

S2

S1
ack_start = 0;
data = OneBus;

E1 ocount = 0;
mask = 1;

ack_start = 1;

start == 0

E3

R1 OneBus = ocount;
done = 1;

ocount = ocount
             + temp;
data = data >> 1;

ack_done == 1

R2 done = 0;

start == 1

E2 temp = data
           & mask;

data == 0

ack_start == 0

FSMD2 Ones(handshaking)

MAPB == 1 &&
MDPB == 0 && MRWB == 0

addr = MADDR;

Figure 19. FSMD for parity encoder(ColdFire Processor)

mwrite() {
  fsmd(clk) {
    S1: MADDR = addr;
          MAPB = 0;
          MDPB = 1;
          MRWB = 0;
          goto S2;
    S2: MAPB = 1;
          MDPB = 0;
          MRWB = 0;
          MWDATA = data;
          if (MTAB == 1)
            goto S1;
          else
            goto S2;
  }
}

S1

S2

MADDR <- #  ;
MAPB ! 0 ;
MDPB ! 1 ;
MRWB ! 0 ;

MAPB ! 1 ;
MDPB ! 0 ;
MRWB ! 0 ;
MWDATA <- # ;
MTAB ? 1 ;

mwrite()

S1

S2

MADDR <- #  ;
MAPB ! 0 ;
MDPB ! 1 ;
MRWB ! 1 ;

MAPB ! 1 ;
MDPB ! 0 ;
MRWB ! 1 ;
MRDATA -> # ;
MTAB ? 1 ;

mread() mread() {
  fsmd(clk) {
    S1: MADDR = addr;
          MAPB = 0;
          MDPB = 1;
          MRWB = 1;
          goto S2;
    S2: MAPB = 1;
          MDPB = 0;
          MRWB = 1;
          data = MRDATA;
          if (MTAB == 1)
            goto S1;
          else
            goto S2;
  }
}

Figure 17. Protocol specification for ColdFire proces-
sor interface

rection of transfer, low for reads and high for writes. The
signal becomes valid at approximately the same time as the
data address bus. For read cycle, DDIN must be driven with
valid data for the falling edge of GCLK at the end of phase 2.
For write cycle, data will become valid in phase 1 in which
GCLK is low, throughout phase 2. Figure 22 shows the pro-
tocol specification and PSG for ARM9TDMI processor in-
terface. The method mwrite() describes the write inter-
face protocol in SpecC, and the method mread() does the
read interface protocol. The corresponding PSGs are shown

S1

S2

MADDR -> #  ;
MAPB ? 0 ;
MDPB ? 1 ;
MRWB ? 1 ;

MAPB ? 1 ;
MDPB ? 0 ;
MRWB ? 1 ;
MRDATA <- # ;
MTAB ! 1 ;

swrite()
swrite() {
  fsmd(clk) {
    S1: addr = MADDR;
          if (MAPB == 0 &&
              MDPB == 1 &&
              MRWB == 1)
              goto S2;
         else
             goto S1;
    S2: if (MAPB == 1 &&
              MDPB == 0 &&
              MRWB == 1) {
              MRDATA = data;
              MTAB = 1;
              goto S1;
           }
          else
              goto S2;
  }
}

S1

S2

MADDR -> #  ;
MAPB ? 0 ;
MDPB ? 1 ;
MRWB ? 0 ;

MAPB ? 1 ;
MDPB ? 0 ;
MRWB ? 0 ;
MWDATA -> # ;
MTAB ! 1 ;

sread()
sread() {
  fsmd(clk) {
    S1: addr = MADDR;
          if (MAPB == 0 &&
              MDPB == 1 &&
              MRWB == 0)
              goto S2;
         else
              goto S1;
    S2: if (MAPB == 1 &&
              MDPB == 0 &&
              MRWB == 0)  {
              data =MWDATA;
              MTAB = 1;
              goto S1;
           }
          else
              goto S2;
  }
}

Figure 18. Dual of the ColdFire processor interface
protocol

on the right in Figure 22. Through the interface synthe-
sis, the counterpart of the ARM9TDMI processor interface
can be derived by extracting the dual of original protocol,
which is shown in Figure 23. The ARM9TDMI processor
interface protocol is synchronous, then scheduling of the
PSG is to make each action become a node in the PSG to
corresponding state in FSMD. Generated interface FSMDs
are shown in Figure 24. In this figure, two FSMDs(FSMD1
and Even) are changed into double handshaking protocol
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S0

S1 ack = 1;

ack = 0;
ready1 = 0;
data = EvenBus;

req == 1

req == 0

R1

QReadEnable = 0;
ack_ready2 = 0;
ack = 0;
INT = 1;
data = DBus;

req == 1

R2 ack = 1;

req == 0

Q0

Q1 QWriteEnable = 1;
QIO = data;

QWriteEnable = 0;

QFull != 1 && QReady == 1

QWriteDone == 1

Q2

Q3

ready1 = 0;
QReadEnable = 0;
ack_ready2 = 0;

QWriteEnable = 0;
ready1 = 1;

ack_ready1 == 1

QEmpty != 1 &&
QReady == 1&& Ready2 == 1

Q4
QReadEnable  = 1;
data = QIO;
ack_ready2 = 1;

QDataReady == 1

Q1

Q0

QReadEnable = 0;
ready2 = 0;
ack_ready1 = 0;

S1
QReadEnable = 0;
nIRQ = 1;
DDIN = data[7:0];

ack_ready1 = 1;
QReadEnable = 1;
data = QIO;

QDataReady == 1

DnRW == 0 &&
DDEN == 0

Q4

Q5 ready2 = 0;

QWriteEnable = 0;
ready2 = 1;

ack_ready2 == 1

R1
addr = DA;
data[7:0] = DD;

Q2

Q3
QIO = data;
QWRiteEnable = 1

ack_done = 0;
QWriteEnable = 0;

QFull != 1 && QReady == 1

QEmpty != 1 &&
QReady == 1 && Ready1 == 1

QWriteDone == 1

S2

S1
DnRW = 1;
DDEN = 1;

E1 ocount = 0;
mask = 1;

nWAIT = 1

E3

R1

DA = addr;
DD = ocount[7:0];
DnRW = 1 ;
DDEN = 1 ;

ocount = ocount
             + temp;
data = data >> 1;

R2

nIRQ == 1

E2 temp = data
           & mask;

data == 0

FSMD1 FSMD2 Ones(ARM9TDMI)

DA = addr;
DnRW = 0 ;
DDEN = 0 ;
data[7:0] = DDIN;

S2

DA = addr;
DnRW = 0 ;
DDEN = 0 ;
data[15:8] = DDIN;

nWAIT==1

nWAIT==1

nWAIT==1

DA = addr;
DD = ocount[15:8];
DnRW = 1 ;
DDEN = 1 ;

S1

E2
Outport = ocount
              & mask;
done = 1;

E1
done = 0;
mask = 1;
data = Inport;

S2 EvenBus = Z ;
req = 0 ;

start == 1

EvenBus = data;
req = 1;

ack == 1

ack == 0

R0

R1 req = 1;
data = EvenBus;

req = 0;

INT == 1

ack == 1

R2 req = 0;

ack == 0

Even(handshaking)

nWAIT = 1;

DnRW == 1 &&
DDEN == 1

Figure 24. FSMD for parity encoder(ARM9TDMI)
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ready1
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(clk3)

DA[31:0]

DD[7:0]

DDIN[7:0]

DnRW

DDEN

nWAIT

nIRQ

req

ack

EvenBus[31:0]

INT

Figure 20. Transaction between ARM9TDMI proces-
sor and handshaking protocol

with 32-bit wide bus. The state S1 is the read protocol of
ARM9TDMI processor interface in Ones FSMD. The cor-
responding state in transducer are S2 in FSMD2. The state
R1 in FSMD2 are dual state of R1 in Ones FSMD.

6.3. TMS320C50 DSP processor

The even parity checker(Even) is implemented by
TMS320C50 DSP processor [Inc98] and the one’s
counter(Ones) is implemented by ColdFire processor as
shown in Figure 25. The TMS320C50 supports a wide
range of system interfacing requirements. Program, data,
and I/O address spaces provide interface to memory and
I/O, maximizing system throughput. The full 16-bit address
and data bus, along with the PS, DS, and IS space select
signals, allow addressing of 64K 16-bit words in each of the
three spaces. I/O design is simplified by having I/O treated
the same way as memory. I/O devices are mapped into the
I/O address space using the processor external address and
data buses in the same manner as memory-mapped devices.

The TMS320C50 external parallel interface provides
various control signals to facilitate interfacing to the de-
vice. The timing diagram for TMS320C50 DSP processor
interface is shown in Figure 26. The R/W output signal is
provided to indicate whether the current cycle is a read or
a write. The STRB output signal provides a timing refer-
ence for all external cycles. For convenience, the device
also provides the RD and the WE output signals, which indi-
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nWAIT
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Figure 21. Timing diagram of ARM9TDMI processor
interface protocol

cate a read and a write cycle, respectively, along with tim-
ing information for those cycles. The availability of these
signals minimizes external gating necessary for interfacing
external devices to the TMS320C50 interface to memory
and I/O devices of varying speeds is accomplished by using
the READY line. When transactions are made with slower
devices, the TMS320C50 processor waits until the other de-
vice completes its function and signals the processor via the
READY line. Once a ready indication is provided back to
the TMS320C50 from the external device, execution con-
tinues. The bus request(BR) signal is used in conjunction
with the other TMS320C50 interface signals to arbitrate ex-
ternal global-memory accesses. Global memory is external
data-memory space in which the BR signal is asserted at the
beginning of the access. When an external global-memory
device receives the bus request, the external device responds
by asserting the READY signal after the global memory ac-
cess is arbitrated and the global access is completed.

Figure 27 shows the protocol specification and PSG
for TMS320C50 DSP processor interface. The method
mwrite() describes the write interface protocol in SpecC,
and the method mread() does the read interface proto-
col. The corresponding PSGs are shown on the right in
Figure 27. Through the interface synthesis, the counterpart
of the TMS320C50 DSP processor interface can be derived
by extracting the dual of original protocol, which is shown

mwrite() {
  fsmd(clk) {
    S1: DA = addr;
          DD = data;
          DnRW = 1;
          DDEN = 1;
          if (nWAIT == 1)
              goto S2;
          else
              goto S1;
    S2: DA = Z;
          DD = Z;
          DnRW = 0;
          DDEN = 0;
          goto S1;
  }
}

S1

S2

DA <- # ;
DD <- # ;
DnRW ! 1 ;
DDEN ! 1 ;
nWAIT ? 1 ;

DA <- Z ;
DD <- Z ;
DnRW ! 0 ;
DDEN ! 0 ;

mwrite()

S1

S2

DA <- # ;
DnRW ! 0 ;
DDEN ! 0 ;
DDIN -> # ;
nWAIT ? 1 ;

DA <- Z ;
DnRW ! 1 ;
DDEN ! 0 ;

mread()
mread() {
  fsmd(clk) {
    S1: DA = addr;
          DnRW = 0;
          DDEN = 0;
          data = DDIN;
          if (nWAIT == 1)
              goto S2;
          else
              goto S1;
    S2: DA = Z;
          DnRW = 1;
          DDEN = 1;
          goto S1;
  }
}

Figure 22. Protocol specification for ARM9TDMI
processor interface

swrite() {
  fsmd(clk) {
    S1: addr = DA;
          if (DnRW == 0 &&
              DDEN == 0)
              DDIN = data;
              nWAIT = 1;
              goto S2
          else
              goto S1;
    S2: if (DnRW == 1 &&
              DDEN == 1)
              goto S1;
          else
              goto S2;
  }
}

S1

S2

DA -> # ;
DDIN <- # ;
DnRW ? 0 ;
DDEN ? 0 ;

DnRW ? 1 ;
DDEN ? 0 ;

swrite()

nWAIT ! 1 ;

S1

S2

DA -> # ;
DD -> # ;
DnRW ? 1 ;
DDEN ? 1 ;

DnRW ? 0 ;
DDEN ? 0 ;

sread()

nWAIT ! 1 ;

sread() {
  fsmd(clk) {
    S1: addr = DA;
          data = DD;
          if (DnRW == 1 &&
              DDEN == 1)
              nWAIT = 1;
              goto S2;
          else
              goto S1;
    S2: if (DnRW == 0 &&
              DDEN == 0)
              goto S1;
          else
              goto S2;
  }
}

Figure 23. Dual of ARM9TDMI processor interface
protocol

in Figure 28. The TMS320C50 DSP processor interface
protocol is synchronous, then scheduling of the PSG is to
make each action become a node in the PSG to correspond-
ing state in FSMD. Generated interface FSMDs are shown
in Figure 29. In this figure, two FSMDs(FSMD2 and Ones)
are changed into ColdFire processor with 32-bit wide bus.
The state S1 is the read protocol of ARM9TDMI proces-
sor interface in Even FSMD. The corresponding states in
transducer are S0 in FSMD1. The state R1 in FSMD1 are
dual state of R1 in Ones FSMD.

7. Conclusion and future work

This report shows our queue-based interface architec-
ture, which is general enough to accommodate any target
interface. In our architecture, queues are used to smoothen
the burst data transfer requests and to transform incom-
patible protocols. Specifically, protocols were captured in
SpecC language, the protocol specification must be refined
into transducer and component interface for later synthesis.
Then, method to generate system interface from the proto-
col specification has been described. Future work will in-
clude a detailed analysis and experiment with protocol and
transducer generation, namely optimization techniques to
allow for higher performance during communication. Fi-
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READY == 1 ;
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data[7:0] = D ;
READY == 1 ;

WEB == 0 && RDB == 1
&& STRB == 0

R1
QReadEnable = 0;
ack_ready2 = 0;
INTC = 1;

WEB == 1 && RDB == 0
&& STRB == 0

R2

Q0

Q1 QWriteEnable = 1;
QIO = data;

QWriteEnable = 0;

QFull != 1 && QReady == 1

QWriteDone == 1

Q2

Q3

ready1 = 0;
QReadEnable = 0;
ack_ready2 = 0;

QWriteEnable = 0;
ready1 = 1;

ack_ready1 == 1

QEmpty != 1 &&
QReady == 1 && Ready2 == 1

Q4
QReadEnable  = 1;
data = QIO;
ack_ready2 = 1;

QDataReady == 1

Even(TMS320C50) FSMD1

Q1

Q0

QReadEnable = 0;
ready2 = 0;
ack_ready1 = 0;

S1
QReadEnable = 0;
INT = 1;
addr = MADDR;

ack_ready1 = 1;
QReadEnable = 1;
data = QIO;

QDataReady == 1

Q4

Q5 ready2 = 0;

QWriteEnable = 0;
ready2 = 1;

ack_ready2 == 1

R1

R2

Q2

Q3
QIO = data;
QWRiteEnable = 1

ack_done = 0;
QWriteEnable = 0;

QFull != 1 && QReady == 1

QEmpty != 1 &&
QReady == 1 && Ready1 == 1

QWriteDone == 1

S2

S2

S1 MAPB = 1;
MDPB = 1;

E1 ocount = 0;
mask = 1;

E3

R1

ocount = ocount
             + temp;
data = data >> 1;

R2

INT == 1

E2 temp = data
           & mask;

data == 0

FSMD2 Ones(ColdFire)

MADDR = addr;
MAPB = 0 ;
MDPB = 1 ;
MRWB = 1 ;

S2

MAPB = 1 ;
MDPB = 0 ;
MRWB = 1 ;
data = MRDATA;

MTAB == 1

MADDR = addr;
MAPB = 0 ;
MDPB = 1 ;
MRWB = 0 ;

MAPB = 1 ;
MDPB = 0 ;
MRWB = 0 ;
MWDATA = ocount;

READY == 1
A = addr;
D = data[15:8] ;
WEB = 0 ;
RDB =1 ;
STRB = 0 ;

READY == 1

READY == 1
A = addr;
ocount[15:8] = D ;
WEB = 1;
RDB = 0 ;
STRB = 0 ;

READY == 1

addr = A;
D = data[7:0] ;
READY == 1 ;

MTAB == 1

MAPB == 0 && MDPB == 1
&& MRWB == 1

MAPB == 1 && MDPB == 0
&& MRWB == 1

MRDATA = data;
MTAB  = 1;

MAPB == 0 && MDPB == 1
&& MRWB == 0

MAPB == 1 && MDPB == 0
&& MRWB == 0

MRDATA = data;
MTAB  = 1;

addr = MADDR;

Figure 29. FSMD for parity encoder(TMS320C50)
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Figure 25. Transaction between TMS320C50 DSP
processor and ColdFire processor

nally, this work is intended to be integrated into system de-
sign methodology under development at CADLAB of Uni-
versity of California, Irvine.
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