
Scheduling in RTL Design Methodology

Dongwan Shin and Daniel Gajski

Technical Report ICS-01-65
July 1, 2001

Center for Embedded Computer Systems
Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

fdongwans,gajskig@ics.uci.edu

1

Scheduling in RTL Design Methodology

Dongwan Shin and Daniel Gajski

Technical Report ICS-01-65
July 1, 2001

Center for Embedded Computer Systems
Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

fdongwans,gajskig@ics.uci.edu

Abstract

This report describes the scheduling algorithm in RTL design methodology. The proposed scheduling algorithm is based
on resource constrained list scheduling, which considers the number of function units, storage units, busses and ports of
storage units in each control step, and supports the pipelined/multicycle operations and storage units, such as pipelined
register files and latched memory.

2

Contents

1. Introduction 1

2. Motivation 1

3. The architecture of the proposed RTL refinement tool 2
3.1. The Accellera RTL semantics . 2
3.2. The architecture of the RTL refinement tool . 2
3.3. Target Architecture . 2

4. Internal representation for RTL design methodology 3
4.1. Control/Data Flow Graph . 3

5. Scheduling Algorithm 3
5.1. Problem Definition .. 4
5.2. Proposed Scheduling Algorithm 4

5.2.1 Resource Utilization table 5
5.2.2 Priority function . 6

5.3. Scheduling process by example . 6

6. Experimental Results 7

7. Conclusion 7

i

List of Figures

1 RTL design refinement flow . 2
2 Bus based architecture . 3
3 CDFG for unmapped(style 1) RTL description) . 3
4 Algorithmic State Machine for Square Root Approximation 6
5 Target datapath organization for Square Root Approximation . 7
6 CDFG for Square root approximation . 7
7 Scheduling process for Square Root Approximation . 8

ii

Scheduling in RTL Design Methodology

Dongwan Shin and Daniel Gajski
Center for Embedded Computer Systems

Information and Computer Science
University of California, Irvine

Abstract

This report describes the scheduling algorithm in RTL
design methodology. The proposed scheduling algorithm is
based on resource constrained list scheduling, which con-
siders the number of function units, storage units, busses
and ports of storage units in each control step, and sup-
ports the pipelined/multicycle operations and storage units,
such as pipelined register files and latched memory.

1. Introduction

With the ever increasing complexity and time-to-market
pressures in the design of embedded systems, designers
have moved the design to higher levels of abstraction in or-
der to increase productivity. However, each design must be
described, eventually, at the lower level(e.g. layout masks)
through various refinement processes. Register transfer
level(RTL) refinement has been recognized as one of the
major design methodology.

The high-level synthesis involves the transformation of
behavioral description of the design into a set of intercon-
nected RT components which satisfy the behavior and some
specified constraints, such as the number of resources, tim-
ing and so on. Three major synthesis tasks are applied dur-
ing the transformation: allocation, scheduling, and bind-
ing. Allocation determines the number of the resources,
such as storage units, busses, and function units, that will
be used in the implemenation. Scheduling partitions the
behavioral description into time intervals. Binding assigns
variables to storage units(storage binding), assigns opera-
tions to function units(function binding), and interconnec-
tions to busses(connection binding).

This report focuses on the scheduling in our RTL de-
sign methodology. We developed the scheduling algo-
rithm based on list scheduling heuristic to consider the
number of function units, storage units, busses and ports
of storage units in each control step, and to support the
pipelined/multicycle operations and storage units, such as
pipelined register files and latched memory.

The rest of this report is organized as follows: section 2
describes the motivation of RTL design methodology and
refinement tool. In section 3 describes the RTL design
methodology and the program flow of the proposed RTL
refinement tool. Section 4 takes a closer look at the schedul-
ing algorithm. Section 6 shows the experimental result.
Section 7 concludes this report with a brief summary and
future work.

2. Motivation

Many researches for High-level synthesis [GDLW92]
have been done since 1980s. Currently, many commer-
cial and academical high-level synthesis tools exist in elec-
tronic design automation market but the design community
wouldn’t integrate them into its design methodology and
design flow, because 1) they can support only several lim-
ited architectures, 2) they lack interaction between tools and
the designers, and 3) the quality of the generated design is
worse than that of mannual design. To make them pop-
ularly used in design community, we should tackle these
problems. The proposed RTL design methodogy, which
is proposed by Accellera C/C++ Working Group [Acc01]
supports the more advanced architecture like bus-based ar-
chitecture instead of mux-based architecture, whose per-
formance is not good in large design and provides the in-
teraction between designer and refinement tool to tackle
these problems. To support interaction between designer
and refinement tool, we use the finite state machine with
data(FSMD) for RTL description and define 5 styles of RTL
description according to the refinement steps.

As already mentioned, the target architecture of our
high-level synthesis is bus-based universal processor ar-
chitecture [Acc01], in which the function/storage units are
pipelined or multi-cycled. The storage units can be com-
posed of registers, register files and memories with different
latency and pipeline scheme. In other word, target archi-
tecture can have heterogenous in terms of storage units. It
makes the problems for the refinement hard to solve and
scheduling and binding of the refinement should be ex-

1

tended to integrate pipelined or multi-cycle function/storage
units in the target architecture.

3. The architecture of the proposed RTL re-
finement tool

This section describes the RTL semanatics [Acc01] and
the architecture of the RTL refinement tool which generates
the exposed-control RTL from behavioral RTL.

3.1. The Accellera RTL semantics

The RTL design is modeled by Finite State Machine with
Data(FSMD) [Acc01], which is FSM model with assign-
ment statements added to each state. The FSMD can com-
pletely specify the behavior of an arbitrary RTL design. The
variables and functions in FSMD may have different inter-
pretations which in turn defines several different styles of
RTL semantics.

The proposed RTL semantics by Accellera [Acc01] has
5 different styles of RTLs, such as unmapped RTL(style 1),
storage mapped RTL(style 2), function mapped RTL(style
3), connection mapped RTL(style 4) and exposed-control
RTL(style 5). The unmapped RTL specifies the operations
performed in each clock cycle with explicitly modelling
the units in the component’s datapath and is obtained by
scheduling the operations into clock cycles. The exposed-
control RTL explicity models the allocation of RTL com-
ponents, the scheduling of data transfers into clock cycles,
and the binding of operations, variables and assignments
to functional units, storage units, busses and has explicitly
exposed controllers. The storage mapped RTL models the
binding of variables to storage units. The function mapped
RTL specifies the binding of functions and variables to
functional units and storage units respectiviely. The con-
nection mapped RTL models the connections between func-
tional units and storage units. These models can also repre-
sent the refinement steps like scheduling, storage binding,
function binding and connection binding in RTL refinement
from unmapped RTL(style 1) to exposed-control RTL(style
5). However, due to the interdependence of scheduling, al-
location, and binding, the order of three steps should be in-
terchangeable to get the exposed-control RTL.

3.2. The architecture of the RTL refinement tool

The Figure 1 describes the RTL refinement flow in RTL
design environment. The RTL refinement tool uses the
FSMD/CDFG as the internal data structure to read, write,
and refine the design models. To get the CDFG data
structure, we uses the C++/SpecC/HDL as input [Acc01].
The RTL refinement tool also reads the RTL description

Scheduling

Storage Binding

Function Binding

Connection Binding

FSMD/
CDFG

RTL Description
(style 1~4)

C++/SpecC/HDL
Compiler

Library

RTL Code
Generator

RTL Description
(style 1~5)

Figure 1. RTL design refinement flow

in C++/SpecC/HDL and generates FSMD/CDFG as inter-
nal representation for refinement. Every refinement step is
based on FSMD. The SpecC RTL generator makes the each
style RTL description as the result of each refinement step.
For example, RTL refinement tool reads the style 1 RTL
SpecC code and generates FSMD/CDFG and performs stor-
age binding and then generates the style 2 RTL description.

The FSMD/CDFG is FSMD represenation, in which
each state has its own Control/Data Flow Graph(CDFG).
The scheduling task separates the state into sub-states based
on resource constraint. The storage/function/connection
binding are performed considering every state transition.

The netlist mapper generates the style 5 exposed-control
RTL in HDL or SpecC language from style 4 RTL. The style
5 exposed-control RTL in HDL can be used as input for
gate-level synthesis like Synopsys Design Compiler.

The RTL component library has the information about
datapath modules such as ALU, multiplier, register file,
memory and bus. It is also written in SpecC language.
When the each synthesis step is performed, it refers the RTL
component library to get the information about resource
constraint. The RTL refinement tool reads and maintains
the RTL component library.

3.3. Target Architecture

Our architecture is shown in Figure 2. It’s composed of
function units, register files, memories, multiplexers, busses
and bus drivers. Function units performs operations such
as multiplication, addition, and so on. Storage units stores
data from function units or other storage units through the

2

Register
File 1

Register
File 2

Memory

Bus 1

Bus 2

mux

ALU

Register Register

Register

* /

Register Register

Register

Bus 3

mux

Bus 4

Datapath
Output

control
signals from
control unit

Datapath
Input

Figure 2. Bus based architecture

busses. All data transfers are achieved through busses. The
function unit can have the registers at the input and output of
it. The controller will determine the next state of the execu-
tion based on status signals and input signals, and generate
the control signals for datapath, which will be implemented
to FSM.

4. Internal representation for RTL design
methodology

The RTL design is represented by FSMD, which has a
set of states and transition among them. Each state has its
own CDFG.

4.1. Control/Data Flow Graph

This section describes the CDFG representation, which
is selected for internal data representation for RTL design.
The CDFG is the hierarchical graph which has the data flow
information to describe the operations and their depepen-
cies and has the control flow information which is related
to branching and iteration constructs. The CDFG has been
used for the internal representation of high-level synthesis
tool since mid-1980s and has many variations. It can be hi-
erachical or non-hierarchical, polar or non-polar, and cyclic
or acyclic.

We made the novel CDFG structure to represent the RTL
description and to perform the RTL refinement steps. Our
CDFG is hierarchical, acyclic polar graph, which is shown
in Figure 3. The acyclic graph makes it easy to imple-
ment the graph algorithm, because it has no loop. The polar
graph has the single-entry and single exit property using no-
operation(source node/sink node in our graph) and makes it

+

S

if

S

=

S

S

S

=

S
S0 S1

state state

T
F

C

storage node
bus node

c

a b

for

=

i

S

S

0

<

i 32

S

+

i 1

S

S S

tmp i

C1 C2 C3

B

^=

d[I:I]

S

S

d[I:I]

e[I:I]

==

start

S

S

ctrl

0

// Behavioral RTL(style1)
a=b+c;
for(I = 0; I < 32; I=I+1)
 d[I:I] ^= e[I:I];
if (start == 0)
 state = S0;
else
 state = S1;

Figure 3. CDFG for unmapped(style 1) RTL descrip-
tion)

easy to build hierachical graph. The nodeS in Figure 3 rep-
resents the no-operation node. The topS is the source node
and the bottomS is the sink node.

In this graph, the edge has the dependency information
between nodes such as control dependency and data depen-
dency. The node has all information except the flow in-
formation. The node is decomposed of the non-hierachical
node and the hierarchical node. The non-hierachical node
has the datapath operation information such as operation
node to perform arithmetic/logic operation, storage node to
store the data, bus node to transfer the data between func-
tional unit and storage unit, control node to generate the
status information of datapath, and state transition node to
store state transition information in finite state machine. In
Figure 3 shows the operation node which is the white circle
node, storage node which is the shaded rectangular node,
bus node which is the small shaded circle node between
operation node and storage node. The hierachical node is
divided to the module node to represent the structural hi-
erarchy in the RTL description, branch node to represent
branching information and loop node to represent the it-
eration information. The branch node(if node) and loop
node(for node) are shown in Figure 3.

5. Scheduling Algorithm

In proposed RTL design methodology, the scheduling
plays a major role in refining from behavioral RTL to
exposed-control RTL by re-scheduling each state in FSMD

3

in the behavioral RTL description. The Scheduling is done
in the corresponding CDFG in each state. Because resource
allocation like number of FUs, the ports of storage units
and buses, is given by the designer, the resource-constrained
scheduling should be done.

In addition, our scheduling algorithm performs compo-
nent type selection. The aim of this task is reduce the num-
ber of states at minimal hardware cost. Our scheduling al-
gorithm allows for resources to be shared amongst multiple
operations, while component selection allows a mixture of
fast and slow components to be used in the design. The
components are selected such that the fast and expensive
components are used for critical operations, and the slower
ones are used for non-critical operations.

5.1. Problem Definition

Given:

1. A behavior represented by hierarchical control/data
flow graph CDFG(V, E) for each state, where V is a set
of vertices representing operations, storages, busses,
and hierarchical nodes such as branch and loop.

2. A component library containing functional units, stor-
age units and busses characterized by type, area, delay,
and pipeline states. In addition, storage units have the
number of read/write ports.

3. clock period and resource allocation for the behavior,
such as number of function units, storage units, busses
and read/write ports of storage units.

Determine:

1. control step of each node in a behavior

2. type selection for each node but hierarchical node

Such that:

1. the number of constrol steps is minimized.

2. the resource allocation constraint is satisfied.

5.2. Proposed Scheduling Algorithm

We extend resource-constrained list scheduling algo-
rithm to schedule the CDFG with pipelined operation and
multi-cycle operation with different types. The proposed
scheduling algorithm is shown in Algorithm 1.

The propsed scheduling algorithm gets CDFG(G), initial
control stepli and resource utilization tableRl ;k and returns
the last control step of the CDFG. In scheduling algorithm,
we use several lists and table as following:

� resource utilization tableRl ;k: has the number of re-
sourcesk, which are used at control stepl . It will be
explained in detail in Section 5.2.1.

� candidate operationsSl ;k: are those opearations of type
k whose prodecessors have already scheduled early
enough, so that the corresponding opreations are com-
pleted at control stepl .

� unfinished operationUl ;k: are those operations of type
k that started at earlier cycles and whose execution is
not finished at control stepl . If the execution delay of
an operation is 1 or less, the operation should not be
included in the set of unifinished operations.

The nodev0 is the source node andv
�1 is the sink node.

In the proposed scheduling algorithm, there are several
functions as follows:

� GetSchedulableNode(G, Sl ;k, Rl ;k): find the node
which can meet resource constraint in ready nodes list.
It will be shown in 2

� UpdateResUtilTab(vk, Rl ;k): updates the resource uti-
lization tableRl ;k using scheduling information of hi-
erarchical nodevk. If vk is branch node, the largest
number of the used resources of the branch will be se-
lected to update resource utilization information.

� functionSetDelay(v, tk) : assigns the delay of the
nodev to the delay of the typetk of the function/storage
unit.

� functionScheduleNode(v, l) : specifies the start
time of nodev at the control stepl , and the the end time
of the nodev will be the addition ofl and the delay of
nodev.

� function UpdateReadyNode(Sl ;k, v, l) : up-
dates ready nodes listSl ;k with the effect of scheduing
of v at the control stepl .

� function UpdateScheduledNodes(v) : will ap-
pend scheduled nodesv to the scheduled nodes list
Ul ;k.

� function UpdateUnfinishedNodes(Ul ;k, v,
l) : will updates the unfinished nodes by using the
scheduled nodev and the specified control stepl ;

� function AppendNode(List, v),
RemoveNode(List, v) : appends/removes v
to(from) a set of nodesList.

In the proposed scheduling algorithm, types of the stor-
age unit will be assigned to the storage node(type selection
of storage node) if the storage node is selected as candidate
node among ready nodes list according to the cost function.

4

If the storage node belongs to the critical path of the CDFG,
it will be assigned to the fastest cost storage unit with least
cost. The number of ports of storage units and busses which
are used in the specified control step, will be determined
when the node is scheduled, because the function unit will
use the ports and the busses in order to read data at the start
time and to write data at the end time of the node. In other
word, the data transfer will occur at the start and the end of
execution of the node. The read time of the storage node
will be changed according to the start time of execution of
the node nodes, which will read data from the storage node.
The write time of the storage node is the same as the end
of the execution of the node, which will write data to the
storage node.

The function GetSchedulableNode(G, Sl ;k,
Rl ;k) utilizes the resource utilization table to find the node
which can meet resource constraint in ready nodes list. It
have to look ahead control step to check available resources
for nodes because operation node and storage node can be
multicycled or pipelined. When the function unit type of an
operation node is selected, storage unit type of the storage
node, which is output of the operation node to write value,
also determined. It is composed of the following functions:

� GetWriteStroageNode(vk) : returns the storage
node wherevk will write a variable.

� GetReadStorageNode(vk, lr) : returns the stor-
age node wherevk will read a variable. If thelr is 0(1),
it return left(right) side of input variables of operation
nodevk.

� HasReadPorts(l , rk, num) : checks if storage
unit type rk hasnumnumber of available read ports
in control stepl .

� HasWrite(l , rk, num) : checks if storage unit
typerk hasnumnumber of available write ports in con-
trol stepl .

� HasBus(l , num) : checks if there isnumnumber of
available busses in control stepl .

� SelectType(v, l) : returns the availabe resource
type for nodevk at control stepl .

� UpdateFU(l , k): updates the number of available func-
tion unit of typek by numat control stepl .

� UpdateReadPorts(l , rk, num): updates the number of
available read ports of storage unitrk by numat control
stepl .

� UpdateWritePorts(l , wk, num): updates the number of
available write ports of storage unitwk by numat con-
trol stepl .

� UpdateBus(l , num): updates the number of available
busses bynumat control stepl .

Algorithm 1 LIST RC(G, li , Rl ;k): List scheduling algo-
rithm

Initialize the unfinished operationsUl ;k = fg;
Initialize the stepl = li ;
SetDelay(v0, 0);
ScheduleNode(v0, l);

5: UpdateReadyNodes(Sl ;k, v0, l);
while (Sl ;k or Ul ;k is not empty)do

vk = GetSchedulableNode(G;Sl ;k;Rl ;k);
if (vk == NULL) then

l = l +1;
10: UpdateReadyNodes(l);

UpdateUnfinishedNodes(l);
UpdateScheduledNodes(l);
continue;

else if(vk is a bus/port/ctrl node)then
15: SetDelay(v0, 0);

ScheduleNode(v0, l);
else if(vk is a branch node)then

dc = LIST RC(conditional subgraph ofvk, l , Rl ;k)
- l ;
db = LIST RC(false/true subgraph ofvk, l + dc,
Rl ;k) - l �dc;

20: SetDelay(vk, dc+db);
UpdateResUtilTable(vk, Rl ;k);

else if(vk is a function call node)then
db = LIST RC(function body subgraph ofvk, l ,
Rl ;k) - l ;
SetDelay(vk, db);

25: UpdateResUtilTable(vk, Rl ;k);
else if(vk is a storage node)then

ScheduleNode(vk, l);
end if
RemoveNode(Sl ;k, vk);

30: if (the delay ofvk is more than 1)then
AppendNode(Ul ;k, vk);

else if(the delay ofvk is 0) then
UpdateReadyNodes(vk);

end if
35: end while

5.2.1 Resource Utilization table

In order to consider the multicycled or pipelined opera-
tions(operation nodes and storage nodes) in the proposed
scheduling, we utilize the resource utilization table, which
has the number of resources which are not used in spec-
ified control step for function units, storage units, busses
and read/write ports of each storage unit.

5

Algorithm 2 GetSchedulableNode(G, Sl ;k, Rl ;k): find
schedulable node in ready nodes list

for (all nodes(vk in ready nodes listSl ;k) do
wk = GetWriteStroageNode(vk)
if (vk) is assignment operation nodethen

rk = GetReadStorageNode(vk, 0)
5: if (HasReadPorts(l , rk, 1) and HasBus(l , 1)) then

SetDelay(vk, 1);
ScheduleOp(vk, l);
UpdateReadPorts(l , rk, 1);
UpdateWritePorts(l , wk, 1);

10: UpdateBus(l , 1);
end if

else
r0k = GetReadStorageNode(vk, 0);
r1k = GetReadStorageNode(vk, 1);

15: if HasReadPorts(l , r0k, 1) and HasReadPorts(l ,
r1k, 1) and HasBus(l , 2)) then

k = SelectType(vk, l);
r = SelectType(wk, l +dk�1);
if (dk is 1 and HasBus(l , 3)) then

UpdateFU(l , k);
20: UpdateReadPorts(l , r, 1);

UpdateWritePorts(l , r, 1);
UpdateBus(l , 3);
ScheduleOp(vk, l);
ScheduleOp(wk, l +1);

25: else if(dk is more than 1 and HasBus(l +dk�1,
1)) then

UpdateFU(l , k);
UpdateReadPorts(l , r, 1);
UpdateWritePorts(l +dk�1, r, 1);
UpdateBus(l , 2);

30: UpdateBus(l +dk�1, 1);
ScheduleOp(vk, l);
ScheduleOp(wk, l +dk);

end if
end if

35: end if
end for

t1 = |a|;
t2 = |b|;

t5 = x - t3;

t6 = t4 + t5;

z = max(t6, x);

Start=1

a = in1;
b = in2;

Done = 1; out = z;

Yes

No

x = max(t1, t2);
y = min(t1, t2);

t3 = x >> 3;
t4 = y >> 1;

S0

S1

S2

S3

S4

S5

S6

S7

a = in1; b = in2;
x = max(|a|,|b|);y = min(|a|,|b|);
z = max((0.875 * x + 0.5 * y), x);
out = z;

Figure 4. Algorithmic State Machine for Square Root
Approximation

5.2.2 Priority function

The list scheduling algorithms are classified according to
the selection step. A priority list of the operations is used
in choosing among the operations, based on some heuristic
measure. Our proposed algorithm has two priority func-
tions. One is for node selection among ready nodes list.
The other is for resource type selection from library.

1. node selection: the priority list is sorted by urgency,
mobility, number of successors in decreasing order to
select the node among the ready nodes list.

2. type selection: to select type of operation/storage
nodes, cost function in library is utilized. The designer
selects cost function according to the latency of unit,
size of unit, whether or not it’s pipelined.

The ready nodes list is sorted by the priority list for node
selection and The resource utilization table is sorted by the
priority list for type selection.

5.3. Scheduling process by example

To explain the proposed scheduling algorithm, the square
root approximation is shown in Figure 4, which calculates
the square root of two values approximately. It takes two
input variables and generates one output result. The Fig-
ure 5 shows the target datapath organization for the square
root approximation, which consists of an input latched
ALU(ALU0), an output latched ALU(ALU1), a register
file and 3 busses. The function unit ALU0 can perform
addition/subtraction/right shift operations in 2 cycles, and
ALU1 can calculate absolute value and min/max value in 2

6

ALU0

x

ALU1

y

z

output

in1 in2

Figure 5. Target datapath organization for Square Root
Approximation

cycles. The regiser file with two read ports and one write
port is neither pipelined nor latched.

Figure 6(a) shows the CDFG which is generated from the
ASM in Figure 4. The CDFG has 3 assignment nodes for
input/output operations and 9 ALU operations. The storage
nodes and bus nodes are omitted in Figure 6.

Figure 7 shows the scheduling step according to the pro-
posed scheduling algorithm. The 1st column represents the
control steps. The next 3 columns represent the ready op-
erations for each type of function unit. The next 4 columns
represent the resource utilization table, which has the num-
ber of resources used in each control step. In BUS column,
the left value shows the number of buses which is used to
transfer the result of function units to storage units, the right
value shows the number of buses which is used to trans-
fer the input data for function units from storage units. In
RF column, the 1st value represents the number of the used
write ports, and the other value shows the number of the
used read ports in register file. The last two columns repre-
sents the scheduled operations and unfinished operation in
current control step.

According to the proposed scheduling algorithm, all
nodes in CDFG are scheduled using the this table. The
latency of the scheduled CDFG is 16 control steps. The
scheduled CDFG is shown in Figure 6(b).

6. Experimental Results

We implemented the internal representation for the RTL
description on 9000 lines of C++ code and our scheduling
algorithm on 1000 lines of C++ code. Our scheduling al-
gorithm is integrated in the RTL refinement system, which

| |

>>

max

_

v1 v2

v3 v4

v5

v7

| |

max

>>
v6

v8+

max
v9

:= :=
a1 a2

:=
a3

(a) Un-
scheduled
CDFG

| |

>>

max

_

v1

v2

v3
v4

v5

v7

cs0

cs1
cs2

cs3

| |

max

>> v6

v8+

max

cs4

cs5

v9

cs6

cs7

cs8

cs9

cs10
cs11
cs12

P0

P1

P0

a1

a2

a3

:=

:=

:=

(b) Scheduled CDFG

Figure 6. CDFG for Square root approximation

can perform the scheduling, storage binding, function bind-
ing and connection binding in arbitrary order.

We applied the scheduling alogrithm to one’s counter,
square root approximation, matrix mulipication of DCT de-
sign and Chen DCT in jpeg encoder which are shown in
Appendix??. Table 1 shows the resource allocation such
as number of ALU, shifter, multiplier, storage units and
busses, and number of read/write ports of storage units. In
this table, the number and character in parenthesis repre-
sents the delay of the unit and whether or not the unit is
pipelined(p) or not(n). The storage unit column has number
of read ports(r) and write ports(w) of storage units. Table 2
show the scheduling results for each example. It has num-
ber of states and ports/bus utilization in state.

7. Conclusion

This report has shown the scheduling algorithm in the
RTL design methodology, which is based on the resource
constrained list scheduling, which considers the number of
function units, storage units, busses, and ports of storage
units in each control step. The scheduling algorithm sup-
ports the pipelined/multicycle operations and storage units,
such as pipelined register files and latched memory. The
scheduling algorithm is integrated in the RTL refinement
system. Experimental results for several examples show

7

Table 1. resource allocation for examples
ALU shift mult RF bus

example num num num num num
(d/p) (d/p) (d/p) (d/p/r/w)
1(1/n) 1(1/n) - 1(0/n/2/1) 3
2(1/n) 1(1/n) - 3(0/n/2/1) 6

ones(4) 2(1/n) 1(1/n) - 1(1/p/2/1) 3
2(2/p) 1(2/p) - 2(0/n/2/1) 4
2(2/p) 1(2/p) - 3(0/n/2/1) 4
1(1/n) 1(1/n) - 1(0/n/2/2) 3
2(1/n) 1(1/n) - 2(0/n/2/1) 6

SRA(6) 1(2/p) 1(2/p) - 1(0/n/2/1) 3
1(2/p) 1(2/p) - 2(0/n/2/1) 3
1(2/n) 1(2/n) - 2(0/n/2/1) 4
1(1/n) 1(1/n) 1(2/p) 1(0/n/2/1) 3
2(1/n) 1(1/n) 1(2/p) 3(0/n/2/1) 6

MAT(13) 1(2/p) 1(2/p) 1(4/p) 2(0/n/2/1) 3
1(2/p) 1(2/p) 1(4/p) 2(1/p/2/1) 3
2(2/p) 2(2/p) 1(4/p) 3(1/p/2/1) 4
1(1/n) 1(1/n) 1(2/p) 3(0/n/2/1) 8
2(1/n) 2(1/n) 2(2/p) 4(0/n/2/1) 10
3(1/n) 2(1/n) 2(2/p) 4(0/n/2/1) 14

DCT(16) 3(1/n) 2(1/n) 2(2/p) 4(1/p/2/1) 10
1(2/p) 1(2/p) 1(4/p) 3(1/p/2/1) 7
2(2/p) 2(2/p) 2(2/p) 4(1/p/2/1) 10
3(2/p) 2(2/p) 2(2/p) 4(1/p/2/1) 10

Table 2. number of states and resource utilization
example states rport wports busses

9 0.9/3 0.7/1 1.7/3
5 1.6/6 1.2/3 3/6

ones 10 0.8/2 0.6/1 1.5/3
8 1.0/4 0.8/2 1.9/4
7 1.1/6 0.9/3 2.1/4
18 0.9/2 0.6/2 2.2/3
17 1.0/4 0.6/2 1.8/6

SRA 29 0.6/2 0.4/1 1.0/3
26 0.7/4 0.5/2 1.2/3
26 0.7/4 0.5/2 1.2/4
44 0.6/2 0.7/1 2.1/4
38 0.9/6 0.7/3 1.7/6

MAT 63 0.5/4 0.4/2 1.0/3
88 0.4/4 0.3/2 0.7/3
86 0.4/6 0.3/3 0.8/4
135 1.4/6 1.1/3 3.3/8
88 2.2/8 1.7/4 5.1/10
77 2.5/8 2.0/4 5.9/14

DCT 103 1.9/8 1.5/4 4.4/10
198 1.0/6 0.8/3 2.3/7
154 1.2/8 1.0/4 2.9/10
146 1.0/8 1.0/4 3.1/10

Ready Operations Resource Utilization Table

Ass
ign

ALU0 ALU1 ALU0
(1)

ALU1
(1)

BUS
(3)

RF
(1/2)

Scheduled

Operations

Unfinished

Operations

P0 A1,A2 1/0 A1
P1 A2 1/0 A2

CS0 V1,v2 0
0

0
1

0/0
0/2

0/0
1/2 V1

CS1 V2 0
0

0
1

0/1
0/3

1/0
1/2

V2 V1

CS2 0
0

0
0

0/1
0/1

1/0
1/0

V2

CS3 V3,v4 0
0

0
1

0/0
0/2

0/0
1/2 V3

CS4 V4 0
0

0
1

0/1
0/3

1/0
1/2 V4

V3

CS5 V5 0
1

0
0

0/1
2/1

1/0
1/2 V5

V4

CS6 V6 0
1

0
0

1/0
3/0

1/0
1/2 V6

V5

CS7 V7 0
1

0
0

1/0
3/0

1/0
1/2 V7

V6

CS8 0
0

0
0

1/0
1/0

1/0
1/0

V7

CS9 V8 0
1

0
0

0/0
2/0

0/0
1/2 V8

CS10 0
0

0
0

1/0
1/0

1/0
1/0

V8

CS11 V9 0
0

0
1

0/0
0/2

0/0
1/2 V9

CS12 0
0

0
0

0/1
0/1

1/0
1/0

V9

P0 A3 1/1 A3

Figure 7. Scheduling process for Square Root Approx-
imation

that proposed scheduling algorithm generates efficient re-
sults under resource constraints.

References

[Acc01] Accellera C/C++ Working Group. RTL Se-
mantics:Draft Specification. Feburary 2001.

[GDLW92] D. Gajski, N. Dutt, S. Lin, and A. Wu.High
Level Synthesis: Introduction to Chip and Sys-
tem Design. Kluwer Academic Publishers,
1992.

8

