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Abstract

This report describes the function binding algorithm in RTL synthesis. It describes the RTL design
methodology and implement our function binding algorithms in our RTL design refine tool. We proposed
two algorithms here, one  algorithm is based on the clique partitioning algorithm and the other is based on
the seed constructive based algorithm. Our algorithms are resource constraint algorithm and they are
focused to minimize the cost ofinterconnections needed for the datapath and can be performed at different
RTL refine steps.
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Abstract
This report describes the function binding
algorithm in RTL synthesis. It describes the RTL
design methodology and implement our function
binding algorithms in our RTL design refine tool.
We proposed two algorithms here, one
algorithm is based on the clique partitioning
algorithm and the other is based on the seed
constructive based algorithm. Our algorithms
are resource constraint algorithm and they are
focused to minimize the cost ofinterconnections
needed for the datapath and can be performed at
different RTL refine steps.

1 Introduction

With the ever increasing complexity and time-to-
market pressures in the design of embedded
systems, designers have moved the design to
higher levels of abstraction in order to increase
productivity. However, each design must be
described, eventually, at the lowest level (e.g.
layout masks) through various synthesis
processes.  Register-transfer level (RTL)
synthesis has been recognized as one of the
major design methodology.

RTL synthesis involves the transformation of
behavioral description of the design into a set of
interconnected RT components which satisfy the
behavior and some specified constraints, such as
the number of resources, timing etc. Three major
synthesis tasks are applied during the
transformation: allocation, scheduling and
binding.  Allocation determines the number of
resources, such as registers, buses, and function
units, that will be used in the implementation.
Scheduling partitions the behavioral description
into time intervals. Binding assigns variables to
storage units (register binding), assigns
operations to function units (function binding),
and interconnections to buses (bus binding).

 This report focuses on the function binding in
our RTL synthesis approach.  The purpose of
function binding is to map the operations in
behavioral description into a set of selected
functional units and minimize the cost of the

design. In this report, we will present our
function binding algorithm, which is based on
clique partitioning algorithm [GWDL92]. This
algorithm attempts to minimize the complexity
of the interconnection by bind operations with
the same inputs or outputs to the same functional
unit. Our algorithm can be performed at any
styles of the RTL implementation model and
determine the exact mapping of the operations
into the function units.

The rest of this report is organized as follows:
section 2 is the motivation of this project, section
3 describes the RTL design methodology and its
implementation model with different styles.
Section 4 and 5 describes our data structure and
function binding algorithm. Experimental results
for our algorithms are given in section 6 and
conclusions are made in section 7.

2 Motivation
Much research for High-level/RTL synthesis has
been done since 1980s. Currently, many
commercial and academical High-level/RTL
synthesis tools exists in Electronic Design
Automation (EDA) industry but the design
community wouldn’t integrate them into its
design methodology and design flow, because
1)they can support only several limited
architecture, 2) they are lack of interaction
between them and the designers, 3) the quality of
the design which they generated is worth  than
that of manual design. TO make them popularly
used in the design, we should tackle these
problems. Our RTL synthesis approach supports
the more advanced architecture like bus-based
architecture, as shown in figure 1, instead of the
mux-based architecture whose performance is
not good in large design.
Our RTL deisgn refinement tool also provides
the interaction between designer and refinement
tool. To support this interaction, we use the finite
state machine with datapath (FSMD) as our RTL
implementation model representation and define
5 different styles of RTL[Acc01] description
according to the RTL refinement steps. The
function binding algorithm in our approach
should minimize the function units and the
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interconnection in a datapath and can be
performed in different styles of RTL
implementation model accordingly.

3 RTL design methodology

The RTL design is modeled by Finite State
Machine with Datapath (FSMD) [Acc01], which
is FSM model with assignment statements added
to each state. The FSMD can completely specify
the behavior of an arbitrary RTL design. The
variables and functions in FSMD may have
different interpretations which in turn defines
several styles of RTL semantics.

The register-transfer level (RTL) implementation
model has two views: a behavioral RTL view
and a structural RTL view [GERS00]. The
behavioral RTL specifies the operations
performed in each clock cycle with explicitly
modeling the units in the component's datapath
and is obtained by scheduling the operations in
the C code into clock cycles. The structural RTL
view of the implementation model explicitly
models the allocation of RTL components, the
scheduling of register transfers into clock cycles,
and the binding of operations, variables and

assignments to functional units, register,
memories and components busses. The RTL
implementation model can be divided into 5 well
defined styles as behavior RTL (style 1),
Storage-mapped RTL (style 2), function-mapped
RTL (style 3), Connection-mapped RTL (style
4), and structural RTL (style 5).  These different
styles represent the different refinement steps
like scheduling, register binding, function
binding and bus binding from behavior RTL
(style 1) to structural RTL (style 5) as Figure 1
shows.

Figure 2 describes the RTL refine flow in our
RTL design methodology.  We generate the
FSMD/CDFG as our internal representation for
refinement. Each refine step is based on this
FSMD model, which contains a list of states and
each state has its own Control/Data Flow Graph
(CDFG)[DshinG01]. The scheduling task
separates the state into sub-state based on
resource constraint. The storage, function, and
interconnection binding are performed
considering each state transition. However, due
to the interdependence of scheduling, allocation,
and binding, the order of these three binding
steps should be interchangeable to get the RTL
implementation model in different styles.

Register
F i l e  1

Register
F i l e  2

M e m o r y

Bus  1
Bus  2

mux

A L U

Register Register

Register

* /

Register Register

Register

Bus  3
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control unit
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                                                                   Figure 1. Bus-based target architecture
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The netlist mapper generates the style 5 exposed-
control RTL from style 4 RTL. Then the style 5
RTL description can be used as input for gate-
level synthesis tool such as Synopsys Design
Compiler.

Scheduling

Storage Binding

Function Binding

Connection Binding

FSMD/
CDFG

RTL Description
(style 1~4)

C++/SpecC/HDL
Compiler

Library

RTL Code
Generator

RTL Description
(style 1~5)

       Figure 2 RTL design refinement flow

The RTL component library has the information
about datapath modules, such as ALUs,
multipliers, register files, memories and buses.
When each synthesis step is performed, it refers
to the RTL component library to get the
information about resource constraint.

4 Internal representation
Our RTL model is represented by FSMD, which

has a set of states and transition among them.
Each state has its own CDFG. This section
describes the CDFG representation, which is
selected for internal data representation for our
RTL model.
The CDFG is the hierarchical graph which has
the data flow information to describe the
operations and their depepencies and has the
control flow information which is related to
branching and iteration constructs. The CDFG
has been used for the internal representation of
highlevel synthesis tool since mid1980s and
has many variations. It can be hierachical or
nonhierarchical, polar or nonpolar, and cycle or
acycle.
We made the novel CDFG structure to represent
the RTL model and to perform the RTL
refinement steps. Our CDFG is hierarchical,
acyclic polar graph, which is shown in Figure 3.
Given a behavioral RTL description shows as
follows:

      // Behavioral RTL(style1)
            a=b+c;

for(I = 0; I < 32; I=I+1)
    d[I:I] ^= e[I:I];

if (start == 0)
    state = S0;

else
    state = S1;

we generate a CDFG graph as shown in figure 3.
The acycle graph makes it easy to implement the
graph algorithm, because it has no loop. The
polar graph has the singleentry and single exit

Figure 3. CDFG example(style 1)
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property using nooperation (source node/sink
node in our graph) and makes it easy to build
hierachical graph. The node S in the center
represents the nooperation node. The top S is
the source node and the bottom S is the sink
node.
In this graph, the edge has the dependency
information between nodes such as control
dependency and data dependency. The node has
all information except the flow information. The
node is decomposed of the nonhierachical node
and the hierarchical node. The nonhierachical
node has the datapath operation information,
such as operation node to perform
arithmetic/logic operation, storage node to store
the data, bus node to transfer the data between
functional unit and storage unit, and control node
to generate the status information of datapath,
and state transition node to store state transition
information in finite state machine. In Figure 3
shows the operation node which is the white
circle node, storage node which is the shaded
rectangular node, bus node which is the small
shaded circle node between operation node and
storage node. The hierarchical node is divided to
the module node to represent the structural
hierarchy in SpecC description, branch node to
represent branching information and loop node
to represent the iteration information. The branch
node (if node) and loop node (for node) are
shown in center part of the figure .

5 Function binding
In our RTL synthesis approach, the function
binding is one of the major tasks of the binding
process. The function binding is done in the
corresponding FSMD which is generated from
the RTL description. In this binding process, the
operations nodes in each CDFG in the FSMD are
extracted to form a list of operations with proper
information (e.g. state it belonged), then we
generate a graph based on this list, and perform
function binding on this graph. We develop two
algorithms for the binding, one is based on the
clique partition and the other is based on a seat
based algorithm. We will discuss these algorithm
in the rest of this sections.
Our approach is based on the following
assumption:
1. Within any given state, a datapath will not

perform all the operations;
2. The operations performed in different

control steps can be mapped to the same
function unit if this function unit can

perform these types of operations and they
are not conflicted in control steps;

3. In order to minimize the number of
interconnections, it is beneficial to bind
those operations which have the same input
or the same output;

4. Each data I/O port is connected to a register
through a input/output bus, thus we assume
that there isn’t the situation in which a data
I/O port is the input/output of an operation;

5.1 Binding Model

The function binding algorithm begins with an
input FSMD, which is generated from the RTL
description. And after resource allocation, the
given resource has been associated with the
FSMD model. An input FSMD model for
function binding can be defined as follows:

Definition 1 A FSMD model for function
binding   is a member of

         set      FSMD {
      S   :      State

                   Res :      Resource
                     }

where S is a set of states, and each state si ∈ S
contains a set of CDFG which contains a set of
nodes N; Res is the set of resources that is
allocated to this FSMD.

The set Res is a set of resources given after
allocation. We call it a resource set, which can
be defined as follows:

Definition 2  A resource set  is a member of

          set      Res {
      SU  :      Storage unit

                   FU :       Function unit
                   BU:        Bus unit
                     }

where SU is a set of storage units; FU is a set of
function unit; BU is a set of bus unit.

As described above, each state contains a set of
CDFGs. And each CDFG contains a set of
nodes, we call it a node set which can be defined
as follows:

Definition 3  A node set N  is a member of

         set      N {
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      V :     Variable
                   O :  Operation
                   I:        Interconnection
                  C:       Control
                  }

where V is a set of storage units; O is a set of
opeartion units; I is a set of interconnection
units; and C is a set of control signals.

                  
In definition 2, the element OU contains a set of
operation nodes[DshinGa01] in a CDFG. To
implement our function binding algorithm, we
need to create a list of the operations with
necessary information in the whole FSMD. We
extend each operation node in the CDFG
structure to a new node, super-operation node. A
super-operation node is defined as follows:

Definition 4 A super-operation node is a
member of

         set      SN {
      op :       operation

                    id :      int
                   state:     int
                   if_flag:  int
                  clks:       int
                     }

where op is the operation node in the CDFG; id
is an unique identifier for each operation node in
the FSMD; state is the state where the operation
is performed; if_flag indicates that whether this
operation is in a branch statement; clks is the
execution time for the function unit to complete
this operation.

The function binding is performed based on the
the input FSMD(S, Res). The function binding
problem can be formulated as follows:

Definition 5  Given certain resources, the
Function binding problem is to map each
operation in the FSMD to a function unit fu j ∈
FU, while minimize the cost of the
interconnections.

5.2 Function Binding Process

Our binding process is performed after
scheduling, where each variable, operation, and
interconnection will be allocated to a resource
type, such as register file, ALU, and bus. The
compiler will generate a FSMD model as the

input for the binding.  The function binding
process is shown in figure 4.

 At the beginning of the binding process, the
operation nodes in the CDFG are extracted from
the input FSMD model, together with their
allocation information. We create a super-
operation list for all the operation nodes and a
resource list for the allocated resources. After the
super-operation node list is created, for each
resource type in the resource list, we generate a
compatibility graph for the operations that are
allocated to the same resource type. And based
on the compatibility graph, we perform graph
partition and get the result for function binding.
At last we update the binding information in
each operation node. We repeat these step for
each resource type in the resource list until all
the resource types allocated to operations have
been processed.

5.3 Function binding algorithm

This section will discuss our proposal algorithm
which is based on the graph partition, and then

Input: FSMD

Create operation list and
function units resource list

Generate Compatibility
graph

for this resource

Graph Partitioning

Function
Binding
Finished

Update binding infomartion
for each operation

Reource List Empty?

N

Y

              Figure 4. Function Binding Process
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we will explain this algorithm by an illustrative
example.
5.3.1 Function binding algorithm
The function binding algorithm is shown in
figure 5. The proposal algorithm is base on the
clique partition algorithm and we extend the
algorithm by using a compatibility graph with
weighted edges.
As in our RTL design process, a FSMD(S, Res)
is generated from the RTL description and the
resource allocation is given by the user, where S
is a set of state, and Res is a set of resource
allocation information. Each state si ∈ S contains
a set of CDFG Ci, and each CDFG contains node
set Ni . OpList is a set of the super-operation
nodes as defined in definition 4.
Let G = (V, E) denote a compatibility graph,
where V={v i} is the set of vertices which
represents the identification number of
operations and E = {eij} is the set of weighted
edges which are defined as follows:
.
Definition 6 A weighted edge is an edge that
link two compatible operation nodes with a
weight value associated with it, where a weight
represents the common inputs or common
outputs of the two operation nodes that linked by
the edge.

An edge eij ∈ E is used to link two vertices vi and
vj, which represent two operations and they can
be mapped to the same function unit without
conflict. CliqueList is a set of clique generated
from the graph G, where each clique Ci ⊆
CliqueList contains a set of vertices.
The function Add2OpList(OpList, nj, s i ) is used
to add a super-operation node sni, as described in
definition 4, to create a list of super-operation
nodes. The function Add2ResList(ResList, nk)
add different allocated resource type and
correspondence information to ResList to form a
resource list. The function Add2Graph(G, i, j, eij,
res) is used to add an weighted edge to a graph
G(V, E) for the resource type res. And function
Clique_partition(G, res) perform partitioning on
the graph G , it returns a list of cliques as
CliqueList. The function SetBindingInfo(sn i)
updates the resource binding information in the
nodes sn  i, where each operation will be mapped
to a instance of allocated resource type.
The function binding begins with the input
FSMD model FSMD(S, Res). We first create a
list of the super-operation nodes  OpList, together
with the resource list ResList which is related to
allocated resource information. Then based on
the super operation list, we compare each pair of

the super-operation nodes which are allocated to
the same resource type, calculate their edges and
weight of the edges, and create a compatibility
graph G for the operation that allocated to the
same resource type. The compatible edge and its
weight are calculated as following:
1. If two operations are compatible , i.e. they

are performed in different control steps and
they can be mapped to the same function
unit, and they have common input or
common output, then a non-zero weight is
assigned to the edge that links these two
nodes. Note that here we consider the two-

Algorithm 1 . Graph partition based algorithm

Input: FSMD(S, Res)
/* create super-operation list OpList */
OpList  = ∅;
ResList = ∅;
for each s i ∈ S do
      for each cj ∈ Ci do

for each nk ∈ Nj do
     if nk  is operation node then
     Add2OpList(OpList, nk, si );
     Add2ResList(ResList, nk  );
   endif
endfor

       endfor
endfor

for each res∈ ResList do
/*create a graph G(V, E) */
  G  = ∅;
  for each sni ∈ OpList do
       for  each snj∈ OpList do
 weight = CompWeight(sni, snj);

if(weight =-1) continue;
               eij  = weight;
               Add2Graph(G, i, j, eij, res);
       endfor
  endfor    

  /* clique partitioning */
  CliqueList = Clique_partition(G, res);

  /* Update binding information */
  for each C i ⊆ CliqueList do
       for  each sn i ∈OpList and sn i ∈ C i do
        SetBindingInfo(sn i);
       endfor
  endfor
endfor

       Figure 5. Function Binding Algorithm
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inputs operations whose sources are
communicative[Cliu77], e.g. additions,
multiplications, etc;

2. If two operations are compatible , but they
have no common source/sink, then a weight
0 is assigned to the edge that link these two
nodes.

Figure 6 shows different level of weights
between two compatible operation nodes. We
can see from it that the weight of an edge values
from 5 to 0, which is determined by the number
of common inputs and common output of two
operation nodes. For example, the two
compatible nodes that have two common inputs
and one common output will be assigned a
highest weight as 5, and the two compatible

nodes that have no common input and output
will be assigned a lowest weight as 0. By setting
the weight threshold, we can limit the
complexity of the clique graph and reduce the
complexity of the interconnections at will.
As in graph partition, we may merge two
compatible nodes and generate a new node, and
the edges that link to the new node have to be
calculated. There are different cases when merge
two nodes. For examples, node x and node y will
be merged to a new node xy.  Node z have one
common input with node x, and one common
input with node y. Then node z may have two
common inputs or one common input with the
new node xy depend on whether edge exz and eyz
are pointed to the same input. Hence, to provide
sufficient information for the graph partitioning
performed followed, we extend these different
weights to 12 cases as explained following:

Case 1:
      No common input and common output;
Case2:
      Common output and no common input;
Case 3:

No common output, the right input of node x
is the left input of nodey;

Case 4:
No common output, the left input of node x
is the right input of nodey;

Case 5:
      Common right input and no common output;
Case 6:
      Common left input and no common output;
Case 7:

Common output, the right input of node x
is the left input of nodey;

Case 8:
Common output, the left input of node x
is the right input of nodey

Case 9:
     Common right input and common output;
Case 10:
     Common left input and common output;
Case 11:

Two common inputs and no common output;
Case 12:
       Two common inputs and common output;

On the other hand, to adapt our algorithm to
different styles of RTL implementation mode,
we have 3 methods to calculate the common
inputs and common output of each pair of two
operation nodes since in different styles, the
inputs and output of the operations are different.

v1 v2

a b

x

a. Weight = 5

v1

a

X

a. Weight = 4

v1
v2

a b

X

a. Weight = 3

c

v1

a

X

d. Weight = 2

a b c d a
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Figure 7 shows the different situation when we
perform function binding in different styles.
As we can see from figure 7, when function
binding is performed first before both storage
unit and bus bindings, the inputs and output of an
operation are linked to variables. In this case, we
will compare the variables that link to the
operation nodes to calculate the weight of each
two operations. In figure 7(a), the weight of
these two nodes is 2. When function binding is
performed after storage unit binding, but before
bus binding, the inputs and output of an
operation are linked to storage units, such as
register files, memories etc. In this case, we will
compare the storage units and their ports that
link to the operations to calculate the weight of
each two operations. In the example of figure
7(b), the weight of these two nodes is 5. When
function binding is performed after bus binding,
the inputs and output of an operation are linked
to buses. In this case, we will compare the buses
that link to the operations to calculate the weight
between each two operations. As in figure 7(c),
the weight of the two operation nodes is 5. We
can see that when performed in different styles,
we may get different result for the function
binding.
After a graph G is created, we used the graph
partition algorithm, which is based on the clique
partition algorithm [TSSi86], to partition the
graph to a set of cliques, where the number of
cliques equal the number of the resources

allocated. The detail of the graph partitioning
algorithm will be discussed in the following
section. After partitioning, we will get a list of
cliques, CliqueList, where each clique contains a
set of operations that can be mapped to the same
instance of function unit. Finally, we will update
the binding information in each operation node
by mapping the operations in the same clique to
the same instance of the allocated resource type.
For each allocated resource type for the
operations, we generate the compatibility graph
for it and repeat the binding steps for each
allocated resource as described above, finally we
will get the binding result.
5.3.2 Graph partitioning algorithm
The graph partitioning algorithm is performed on
the compatibility graph for the operation nodes
allocated to the same resource type. Figure 8
shows the detail of this algorithm.
The input of this algorithm is a compatibility
graph G(V, E, Res), where V is a set of vertices,
E is a set of edges, and Res is the allocated
resource information, i.e. the number of the
allocated resource, for this graph. The function
MaxNeighbor (G, weight) returns an edge that
has the maximum number of common neighbors
among the edges which have the weight value as
weight. A node vi  ∈ V is a common neighbor of
the two nodes v j and vk ∈ V , if there exist edges
eij and eik ∈ E. The function MergeNode (G, eij,
weight) returns a new super-node snode after
merges the two nodes vi,  vj that linked by the

v1 v2

a b

v1 v2

a
b cc

RF0
RF1
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edge eij, and it also update the edge information
in graph G that link to the new generated super-
node. The function MaxNeighbor(G, weight,
snode) has the same function as
MaxNeighbor(G, weight), but it only search the
edges that link to the super-node snode.
To minimize the complexity of the
interconnections, the partitioning is performed
from the highest weight to the lowest weight.
The weight used by these iterative steps is called
processing weight. At the beginning, we
calculate the common neighbors of an edge at
the current processing weight value, and try to
find the edge that has the maximum number of
common neighbors. Then we the two nodes that
linked by the edge are merged to generate a new
super-node, snode. Thus, the criterions to find
two nodes be merged in a compatibility graph is
as follows:
1. The nodes that have edges with the highest

weight will be merged first;
2. The nodes that have the maximum number

of neighbors will be merged first;
3. If there are nodes that have the same

maximum number of maximum neighbors,
then the nodes with the highest sum of the
weight with other operations will be merged
first;

When two nodes are merged to a new node, we
update the graph information by deleting the
merged nodes, add new super-node and new
edges. As we described in the above section, for
each weighted edge, we associate a case number
to it, then we can easily calculate the new edge
information from the two old edges. For
example, node x and node y are merged together,
a node z is linked to both these two nodes with
edge exz and eyz. We have a case number 9 for
edge exz and 10 for edge eyz. Then after the two
nodes merged, the edge that link node z and the
new node will have weight as 5 and a case
number as 12.
After a super-node generated, since the new
generated edges may have higher weight value
than current processing weight, we need to
merge these nodes before processing to next
weight. In this step, the new edges that link to
this node are calculated, and the nodes linked by
edge that has higher weight value and maximum
number of common neighbors will be merged.
This step is repeated until there is no edge that
has higher weight than current processing
weight.
The above steps are iterative, and eventually, the
graph is partitioned and the nodes are merged to
a set of cliques, CliqueList. When the number of
the cliques equal the number of the resource
allocated, we stop partition and get the binding
result. The result is optimal in reduce the
interconnections since we use interconnections,
i.e. weight, as our first criterion to merge nodes.
5.3.3 Illustrative example
We will illustrate the above algorithm by a simple
example in the rest of this section. As shown below,
we have part of the RTL description as follows:

S1:  x = a - b;

…

S2: if(x>=b) x=x-b;

       else x = x +b;

…

S3:  c = a - x;

        y = b + a;

       …

The above RTL description shows the RTL
statements which contain operations in this code.
And it is a style 1 RTL description in which the
storage unit binding, function binding, and bus
binding have not been done yet.
In the beginning of the algorithm, based on this
code, we first generate a FSMD model from this

1

2 3

4

5 6

S1

S2

S3

-

>= -

+

- +

          Figure 7. Operation list

Algorithm 2: Graph partitioning alogrithm
Input: G(V, E, Res)
/* clique partitioning */
clique_number = node_number;
done =0;
for weight =5; weight >= 0 and done == 0 do
   while E ≠ ∅ and done == 0 do

 ei,j = MaxNeighbor (G, weight);
 snode = MergeNode (G, eij, weight);
 clique_num = clique_num –1;
 if clique_num > res_num then
    while ei,j =MaxNeighbor(G, weight,

snode) and clique_num > res_num do
 MergeNode(G, eij, weight);

      clique_num = clique_num –1;
           endwhile
         endif

if clique_num  == res_num then
    done =1;

        endif
 endwhile
  weight = weight –1;
endfor

Figure 8. Graph Partition
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RTL description with our compiler. And user
will give us the resource constraint, for example,
3 ALUs, for this FSMD. Then based on this
FSMD, a list of the super operation node,
OpList, is created, as shown in figure 9. In the
list of super operation node, each operation is
assigned an identification number, which is
shown in the circle, and associated with proper
control step information, e.g. state information
and branch statement information. Suppose that
the function unit ALU can complete all kinds of
operations in 1 control step, then a compatibility
graph G is created based on the super operation
node list OpList. Figure 10 shows the
compatibility of this compatibility graph.
After the graph is created, we partition the
compatibility graph into cliques as the above
algorithm described. Figure 11 shows the
partitioning process. The compatibility graph is
partitioned from the highest weight 5 to the
lowest weight 0. As shown in figure 11(a), in the
beginning we partition the edges with the highest
weight 5. In this weight, there are only one edge
e3,4, then the two nodes v3 and v4 are merged to
formed a new super-node as figure 11(b) shows.
Note that node v3 and v4 can be mapped to the
same resource even they are in the same state,
because they are in different branch of an IF
statement, which means they are in different
control steps. After update the graph
information, there is no edges with weight 5 left
in the graph, so we advance to edges with weight
4. Then from figure 11(b) we can see that the
edge link node v1 and v6 have the weight of 4. So
we merge node v1 and node v6, and update the
graph information again as shown in figure
11(c). After update the graph information, there
is no edge of weight 4 left in the graph, and we
advance to edges with weight 3.  The two super-
nodes v16 and v34 that have an edge link them
with weight 3, hence they are merged to formed

super-node v1346 as shown in figure 11(d). In all
above merge steps, we compare the clique
number to the allocated resources number after
each merge is completed. When we find the
clique number equals the allocated resources

2 3

41

6 5

2
3

3

2
4

2
0

02

2
2

5

       Figure 10. Compatibility Graph
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0

(d)

3

6

1

4

2
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(e)

Cliques:
C1 = {v1, v3, v4, v6}
C2 = {v2}
C2 = {v5}

alu0
alu1

(f)

2

4

3

1

6 5

2

2
4

2

0
3

2

0

alu2

2

4

31

6

5

0
2

0
3

Weigh = 4Weigh = 5

Weigh = 3 Weigh = 0

Cliques_number =
Resource_number Result

Figure 11. Example of function binding (a)
compatibility graph; (b) result after consider edge e34;
(c) result after consider edge e16; (d) result after
consider edge e16,34; (e) partitioning stops when the
number of cliques equals the number of allocated
resources; (f) final result, operations being mapped to
resources
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          Figure 9. Operation list
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number, we stop merge nodes and output the
result. As in figure 11(d), the node v2 and v6

could be merged further more, but since the
clique number is 3, which equals to the allocated
resources number, we stop partitioning and
generated a list of cliques as in figure 11(e). The
binding result give us the cliques C1 = {v1, v3, v4,
v6}, C2 = {v2}, C2 = {v5}. Finally we update the
information in each operation node and map the
operations in the same clique to the same
resource unit, as shown in figure 11(f). And we
map this result to the target architecture as
shown in figure 12.

5.4 Summary

The graph partition based algorithm is based on
the clique partition algorithm. However, it is
different with the tradition clique partition
algorithm in the following 2 points:
1. The compatibility graph in our algorithm

extend the edge with several 6 weight
threshold, which is similar to the extended
clique algorithm by Paulin and Knight
[PaKn89];

2. We apply resource constraint, i.e. the
number of function units, in our algorithm.   

While the resource unconstraint function binding
algorithms try to minimize the number of
resources utilized, our goal is to minimize the
complexity of the interconnection. This is due to
the fact that in the embedded system design, the
number of the interconnections is much more
than the number of the function units. Hence, we

can save more cost by minimizing the
interconnections than minimizing the function

units.
As for the above example, the clique partition
without resource constraint will give us the result
with two cliques: C1 = {v1, v3, v4, v6} and C2 =
{v2, v5}. And the generated target architecture is
shown in figure 13 (suppose we do function
binding at style 1 RTL model before storage unit
binding and bus binding).
Compare figure 12 to figure 13, we can see that
figure 12 has less mux-gates and wires than
figure 13. Table 1 summarizes the results of
these two approach, resource unconstraint and
resource constraint. From the table, we can see
that by using an additional ALU, we can reduce
2 mux gates in the architecture. Hence it is quite
possible that in a large scale design, the gain in
the interconnections may larger than the cost of
several additional function units.

No.
FUs

No.
Muxes

No.
Drivers

Resource
Unconstraint

2 3 3

Resource
constraint

3 1 3

Table 1. Resource unconstraint/constraint result

We can modify our algorithm furthermore by
calculating the cost of the interconnections and
the cost of function units, and we select the
minimum cost solution as our result.

ALU0 ALU1

a b x

y c

mux mux mux

x

Figure 13. Target architecture by using the
unconstraint clique partition algorithm

ALU0 ALU1

a b x

y c

mux

x

ALU2

Control
signal

Figure 12: Target architecture by using the graph
partition based algorithm with resource constraint(3
ALUs)
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6 Experimental results
We implemented our function binding algorithm,
which uses the graph partition based algorithm,
in C++ codes and integrated it to our RTL
synthesis tool, which can perform scheduling,
storage unit binding, function binding, and
interconnection binding in arbitrary order.
We implement a simple RTL library which
contains several basic RTL components, such as
register, register files, ALU, multiplier, buses
etc. Then we applied our algorithm on several
examples.
Table 2 and figure 14 gives the result on the
One’s Counter example.  One’s Counter is used
to count the number of  ‘1’ for a given number.
The RTL description for One’s Counter has 8
states. Our result shows that we can perform
function binding on different styles of RTL
successfully. A comparison of these results with
different allocated ALUs  is given in table 2.  As
in table 2, the second and third columns are the
total numbers of states and operators in the RTL
description. The fourth column shows the
function units used in the result. The fifth
column is the total number of interconnections,
i.e. muxs, bus drivers, after function is
performed.  We can see that with constraint of 2
ALUs, we can get a gain of 2 mux gates in the
result.

7 Conclusion
In this report, we discuss our function binding
algorithm in RTL synthesis. We proposed two
algorithms to do function binding in the
synthesis flow. Our goal is performing binding
with resource constraint and minimize the cost of

the interconnections. Our two algorithms are
graph partition based algorithm and seed
constructive based algorithm. Our comparison
shows that the former algorithm can give us a
better result, though the seed constructive based
one has major problem on select proper seeds.
We integrated our graph partition based
algorithm in our RTL synthesis tool. The
experimental results show that the function
binding algorithm can work effectively in
different styles of RTL description. It also can
work in different in different order of binding
process in RTL synthesis. And it can reduce the
cost of the interconnection effectively.  The
future works include support multi-cycle
operations which is not supported by now.
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