
Development of a Visual Refinement- and
Exploration-Tool for SpecC

David Berner
Prof. Dirk Jansen

Prof. Daniel D. Gajski

Techincal Report ICS-01-12
Master Thesis

March 30, 2001

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

mail@davidberner.de
http://www.cecs.uci.edu/˜berner

Development of a Visual Refinement- and
Exploration-Tool for SpecC

David Berner
Prof. Dirk Jansen

Prof. Daniel D. Gajski

Techincal Report ICS-01-12
Master Thesis

March 30, 2001

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

mail@davidberner.de
http://www.cecs.uci.edu/˜berner

Abstract

This document describes the development of RESpecCT, a refinement and exploration-tool for the SpecC
technology. RESpecCT is a graphical tool which assists the designer starting from the functional or spec-
ification model of the design in refining it using the SpecC methodology through different levels to the
implementation- or register transfer-level. It visualizes information in a way to simplify the process of
taking decisions about details of the design, gives these decisions to refinement tools and visualizes their
results.

i

Acknowledgment

I would like to thank Prof. Dr. D. Jansen from the Fachhochschule Offenburg and Prof. Dr. D. Gajski from
the Center of Embedded Computer Systems, University of California, Irvine for acting as advisors for this
thesis and giving me this great opportunity to do it abroad in this marvelous environment.

Many thanks to Andreas Gerstlauer who was always there for questions and discussions (in English as
well as in German).

Thanks also to all the members of the SpecC group with whom I tried hard to do good work in order to
establish SpecC as a world standard.

Thanks to Judith who waited all this time so patiently for me.

CONTENTS ii

Contents

1 Introduction 1
1.1 System-level design . .. 1
1.2 Goal . 1
1.3 Related Work 1

2 The SpecC Language 3
2.1 C+Spec = SpecC 3
2.2 Special Features 4
2.3 Summary . 4

3 The SpecC Methodology 5
3.1 Overview . 5
3.2 Specification Model . .. 6
3.3 Architecture Exploration 6
3.4 Communication Synthesis . .. 7
3.5 Summary . 8

4 Specification 9
4.1 Edit . 9
4.2 Project Management .. 9
4.3 Build . 11

4.3.1 Compiler 11
4.3.2 Debugger 11
4.3.3 Simulation . .. 11

4.4 Profiling, Estimation .. 11
4.5 Architecture exploration 12

4.5.1 Allocation 12
4.5.2 Partitioning . .. 13
4.5.3 Scheduling . .. 13

4.6 Communication synthesis 13
4.7 Summary . 14

5 Choosing the Tools 16
5.1 Different GUI Toolkits . 16
5.2 QT versus wxWindows. 17
5.3 PyQt . 18

5.3.1 Advantages . .. 18
5.3.2 A small example 18

6 SIR Wrapper 20
6.1 What is SIR 20

6.1.1 Example: SIRBehavior . 20
6.2 SWIG . 20
6.3 Creating SWIG-Interface-files. 23
6.4 Modifications and problems .. 23

6.4.1 Templates 24
6.4.2 Typedefs 25

CONTENTS iii

6.4.3 Pointer to Pointer 25
6.4.4 Function Overloading. 25
6.4.5 Other Issues . .. 26

6.5 Compilation 26
6.5.1 Unix . 26
6.5.2 Windows 27

6.6 Summary . 27

7 Implementation 28
7.1 First Steps. 28
7.2 The Main Window . .. 30

7.2.1 Behavior Tree .. 30
7.2.2 MDI Workspace 31

7.3 Code Editor 32
7.4 Properties Dialog 33
7.5 Profiler . 33

7.5.1 Columns 34
7.5.2 Pie Chart 35
7.5.3 Bar Chart 36

7.6 Architecture Refinement Tool .. 36
7.6.1 Allocation Dialog 36
7.6.2 Behavior Mapping . .. 37
7.6.3 Scheduling . .. 38

7.7 Communication Refinement Tool 38
7.7.1 Bus Allocation . 38
7.7.2 Channel Mapping 38

7.8 Summary . 39

8 Example 41
8.1 Loading and Examining Design 41
8.2 Profiling . 43
8.3 Architecture Exploration 44
8.4 Communication Refinement .. 44
8.5 Refinement to RTL . .. 45
8.6 Summary . 46

9 Conclusion 47

References 48

A Communication with the Tools 49
A.1 Profiler . 49

A.1.1 From the User Interface 49
A.1.2 Results of the profiler .. 49
A.1.3 API . 51
A.1.4 Symbols for common operations 51
A.1.5 Names of common types 52

A.2 Architecture Refinement Tool .. 53
A.3 Communication Refinement-tool 54

CONTENTS iv

B Class Documentation 55
B.1 class allocationimp - Enhances the Dialogallocation . 55

B.1.1 Inheritance hierarchy:. 55
B.1.2 Synopsis 55
B.1.3 Description . .. 56
B.1.4 allocationimp.allocationimp.add(self) . .. 56
B.1.5 allocationimp.allocationimp.alloc changed(item). 56
B.1.6 allocationimp.allocationimp.avail changed(item). 56
B.1.7 allocationimp.allocationimp.remove(self) . 56
B.1.8 allocationimp.allocationimp.wtChoose(self) 56

B.2 class ApplicationWindow - The MDI Application-window. 56
B.2.1 Inheritance hierarchy:. 56
B.2.2 Synopsis 57
B.2.3 Description . .. 57
B.2.4 RESpecCT.ApplicationWindow.init (self) . 58
B.2.5 RESpecCT.ApplicationWindow.annotatepartitioning(self) 58
B.2.6 RESpecCT.ApplicationWindow.arrefine(self) 58
B.2.7 RESpecCT.ApplicationWindow.closeEvent(self, ce) 58
B.2.8 RESpecCT.ApplicationWindow.copycritical(self) 58
B.2.9 RESpecCT.ApplicationWindow.designUpdate(self). 58
B.2.10 RESpecCT.ApplicationWindow.editsc(self, fileName=”, path=”, line=0) 59
B.2.11 RESpecCT.ApplicationWindow.findfile(self, dir, file) 59
B.2.12 RESpecCT.ApplicationWindow.mapchnl(self) . 59
B.2.13 RESpecCT.ApplicationWindow.mappr(self, click) 59
B.2.14 RESpecCT.ApplicationWindow.newproject(self) 59
B.2.15 RESpecCT.ApplicationWindow.nop(self) .. 59
B.2.16 RESpecCT.ApplicationWindow.openDesign(self, fileName=None). 59
B.2.17 RESpecCT.ApplicationWindow.profile(self). 59
B.2.18 RESpecCT.ApplicationWindow.saveDesign(self, id=0) 60
B.2.19 RESpecCT.ApplicationWindow.selectbusses(self). 60
B.2.20 RESpecCT.ApplicationWindow.selectprocs(self) 60
B.2.21 RESpecCT.ApplicationWindow.togglepartitioning(self) 60

B.3 class busmap . 60
B.3.1 Inheritance hierarchy:. 60
B.3.2 Synopsis 60

B.4 class editPropsimp - Class for diplaying properties of behaviors 61
B.4.1 Inheritance hierarchy:. 61
B.4.2 Synopsis 61
B.4.3 Description . .. 62
B.4.4 editPropsimp.editPropsimp. init (self, parent, inst) 62
B.4.5 editPropsimp.editPropsimp.del ch(self) . 62
B.4.6 editPropsimp.editPropsimp.del port(self) . 62
B.4.7 editPropsimp.editPropsimp.del var(self) . 62

B.5 class SCchoosemetricimp - Widget for choosing metrics for display in the behaviortree . . 62
B.5.1 Inheritance hierarchy:. 63
B.5.2 Synopsis 63
B.5.3 Description . .. 63
B.5.4 SCprofiler.SCchoosemetricimp.accept(self) 63

CONTENTS v

B.6 class SCitem - Itemclass for the SCtree . 64
B.6.1 Inheritance hierarchy:. 64
B.6.2 Synopsis 64
B.6.3 Description . .. 64
B.6.4 spectree.SCitem. init (self, parent, inst, name) 64
B.6.5 spectree.SCitem.applySubtree(self, methodcall) 65
B.6.6 spectree.SCitem.changeBeh(self, ask) . .. 65
B.6.7 spectree.SCitem.copybeh(self) 65
B.6.8 spectree.SCitem.copycritical(self) . 65
B.6.9 spectree.SCitem.fill column(self, column, name). 65
B.6.10 spectree.SCitem.getMetricValue(self, Atype, pairlist) 65
B.6.11 spectree.SCitem.mappedTo(self) 65
B.6.12 spectree.SCitem.treecopy(self) . 66

B.7 class SCprofDefineMetric - Dialog for defining profiling metrics 66
B.7.1 Inheritance hierarchy:. 66
B.7.2 Synopsis 66
B.7.3 Description . .. 67
B.7.4 SCprofiler.SCprofDefineMetric. init (self, app, behavior, Mtype=’operations’) . 67
B.7.5 SCprofiler.SCprofDefineMetric.accept(self) 67
B.7.6 SCprofiler.SCprofDefineMetric.save(self). 67
B.7.7 SCprofiler.SCprofDefineMetric.setcontents(self, Mtype). 67
B.7.8 SCprofiler.SCprofDefineMetric.showall(self, showit) 67

B.8 class SCproject - Project handling for RESpeccCT. 67
B.8.1 Synopsis 67
B.8.2 Description . .. 68
B.8.3 SCproject.SCproject. init (self, app) . .. 68
B.8.4 SCproject.SCproject.newproject(self) . 68
B.8.5 SCproject.SCproject.read(self, filename=None) 68
B.8.6 SCproject.SCproject.save(self) 68

B.9 class SCprwizard imp - Wizard for creating a new project. 68
B.9.1 Inheritance hierarchy:. 68
B.9.2 Synopsis 68
B.9.3 Description . .. 69
B.9.4 SCproject.SCprwizard imp.accept(self) .. 69
B.9.5 SCproject.SCprwizard imp.browsedesign(self) 69
B.9.6 SCproject.SCprwizard imp.browsefolder(self) 69
B.9.7 SCproject.SCprwizard imp.checkcontent1(self) 70
B.9.8 SCproject.SCprwizard imp.checkcontent2(self) 70
B.9.9 SCproject.SCprwizard imp.next(self) . .. 70

B.10 class SCsettings - Class for ini-file handling for RESpeccCT 70
B.10.1 Synopsis 70
B.10.2 Description . .. 70
B.10.3 SCsettings.SCsettings. init (self, app, filename=’.respecct.ini’). 70
B.10.4 SCsettings.SCsettings.read(self, filename). 70
B.10.5 SCsettings.SCsettings.save(self) 71

B.11 class SCtree - Tree of Sir-behavior instances 71
B.11.1 Inheritance hierarchy:. 71
B.11.2 Synopsis 71

CONTENTS vi

B.11.3 Description . .. 72
B.11.4 spectree.SCtree. init (self, parent) 72
B.11.5 spectree.SCtree.arSchAnnotate(self) 72
B.11.6 spectree.SCtree.clear(self) .. 72
B.11.7 spectree.SCtree.coladd(self, name, notename=None) 72
B.11.8 spectree.SCtree.colremove(self, colname) 72
B.11.9 spectree.SCtree.getItemlist(self, aktBeh) .. 73
B.11.10spectree.SCtree.popup(self, item, point, col) 73
B.11.11spectree.SCtree.readSC(self, file) 73
B.11.12spectree.SCtree.readSIR(self, file) 73
B.11.13spectree.SCtree.updateSelected(self) 73

B.12 class SCweightDialog - Dialog for editing weighttables 73
B.12.1 Inheritance hierarchy:. 73
B.12.2 Synopsis 73
B.12.3 Description . .. 74
B.12.4 SCweighttable.SCweightDialog. init (self, app, wtable) 74
B.12.5 SCweighttable.SCweightDialog.accept(self) 74
B.12.6 SCweighttable.SCweightDialog.changed(self) 74
B.12.7 SCweighttable.SCweightDialog.save(self). 74
B.12.8 SCweighttable.SCweightDialog.showall(self, showit) 75

B.13 class SCweighttable - Weighttable class 75
B.13.1 Synopsis 75
B.13.2 Description . .. 75
B.13.3 SCweighttable.SCweighttable. init (self, filename) 75
B.13.4 SCweighttable.SCweighttable.read(self, filename=None). 75
B.13.5 SCweighttable.SCweighttable.write(self, filename=None) 75

B.14 class SCTreepopmenu .. 75
B.14.1 Inheritance hierarchy:. 76
B.14.2 Synopsis 76
B.14.3 menu.SCTreepopmenu.opchart(self) 76
B.14.4 menu.SCTreepopmenu.showchart(self) . 77

B.15 class scalestruct - Small helperclass for scaling . .. 77
B.15.1 Synopsis 77
B.15.2 Description . .. 77

B.16 class QxBarChart - Barchart with arbitrary number of columns and rows 77
B.16.1 Inheritance hierarchy:. 77
B.16.2 Synopsis 77
B.16.3 Description . .. 78
B.16.4 barchart.QxBarChart.init (self, parent=None, Chartdata=0, Style=1, name=”, f=0) 78
B.16.5 barchart.QxBarChart.close(self, bool) 78
B.16.6 barchart.QxBarChart.doGeometry(self, P). 78
B.16.7 barchart.QxBarChart.drawChartData(self, P) 79
B.16.8 barchart.QxBarChart.drawHorizontalLines(self, P). 79
B.16.9 barchart.QxBarChart.drawLegends(self, P). 79
B.16.10barchart.QxBarChart.drawScale(self, P) .. 79
B.16.11barchart.QxBarChart.drawTitles(self, P) .. 79
B.16.12barchart.QxBarChart.drawXLegends(self, P) 79
B.16.13barchart.QxBarChart.paintEvent(self, PaintEvent). 80

CONTENTS vii

B.16.14barchart.QxBarChart.setChartData(self, Chartdata). 80
B.17 class QxChartData - Contains all the data for the Chart 80

B.17.1 Synopsis 80
B.17.2 Description . .. 80
B.17.3 barchart.QxChartData.init (self, data=[[400, 80, 150], [111, 270, 543]],

row labels=[’breakfast’, ’lunch’], col labels=[’spam’, ’egg’, ’ham’], title=”) 81
B.18 class QxPie - Class representing the pie of the widget. 81

B.18.1 Synopsis 81
B.18.2 Description . .. 81
B.18.3 piewidget.QxPie.init (self) . 81
B.18.4 piewidget.QxPie.append(self, slice) 81
B.18.5 piewidget.QxPie.arcLength(self, index) . .. 81
B.18.6 piewidget.QxPie.arcStart(self, index) 82
B.18.7 piewidget.QxPie.at(self, pos) .. 82
B.18.8 piewidget.QxPie.count(self) .. 82
B.18.9 piewidget.QxPie.insert(self, pos, slice) 82
B.18.10piewidget.QxPie.sliceRatio(self, index) . .. 82
B.18.11piewidget.QxPie.sliceRatioAsPercentageString(self, index). 82

B.19 class QxPieWidget - Pie-Widget class.. 82
B.19.1 Inheritance hierarchy:. 82
B.19.2 Synopsis 82
B.19.3 Description . .. 83
B.19.4 piewidget.QxPieWidget.init (self, parent=0, name=0, f=0, pie=0, align=1,

show=64, explode=128) 83
B.19.5 piewidget.QxPieWidget.addSlice(self, slice, pos) 83
B.19.6 piewidget.QxPieWidget.close(self, bool) .. 83
B.19.7 piewidget.QxPieWidget.doGeometry(self) .. 84
B.19.8 piewidget.QxPieWidget.drawLegends(self, P) 84
B.19.9 piewidget.QxPieWidget.drawSlices(self, P). 84
B.19.10piewidget.QxPieWidget.drawText(self, P) .. 84
B.19.11piewidget.QxPieWidget.drawTitle(self, P) .. 84
B.19.12piewidget.QxPieWidget.explodeFlag(self, explode). 84
B.19.13piewidget.QxPieWidget.explodePoint(self, c) 84
B.19.14piewidget.QxPieWidget.legendsAlignFlag(self, align) 84
B.19.15piewidget.QxPieWidget.paintEvent(self, paintev) 84
B.19.16piewidget.QxPieWidget.resizeEvent(self, resizeEV). 84
B.19.17piewidget.QxPieWidget.setPie(self, pie) . .. 85
B.19.18piewidget.QxPieWidget.setdata(self, data, title=”, subtitle=”, footer=”, legendstitle=”) 85
B.19.19piewidget.QxPieWidget.showFlag(self, show) 85

B.20 class QxScale - Create a scale between two given double numbers. 85
B.20.1 Synopsis 85
B.20.2 Description . .. 85
B.20.3 barchart.QxScale.init (self, s=0, high=0). 86
B.20.4 barchart.QxScale.createScale(self) 86
B.20.5 barchart.QxScale.numintervall(self, Highest) 86
B.20.6 barchart.QxScale.valueScaleRatio(self, it). 86
B.20.7 barchart.QxScale.zeroLineRatio(self) 86

B.21 class QxSlice - Slice of a pie .. 86

CONTENTS viii

B.21.1 Synopsis 87
B.21.2 Description . .. 87
B.21.3 piewidget.QxSlice.init (self, v=0, label=0) 87
B.21.4 piewidget.QxSlice.setLabel(self, label) . .. 87
B.21.5 piewidget.QxSlice.setValue(self, v) 87
B.21.6 piewidget.QxSlice.value(self). 87
B.21.7 piewidget.QxSlice.valueString(self, precision=2) 87

C Code-examples 88
C.1 Header-file of SIRBehavior . 88
C.2 Interface-file of SIRBehavior . 90
C.3 SWIG interface-file generator: template.py 93

LIST OF FIGURES ix

List of Figures

1 System-level Design in the Y-Chart. .. 2
2 Language Comparison [1]. . .. 3
3 The SpecC Methodology [1] .. 5
4 Specification Overview.. 10
5 Implementation Overview. . .. 15
6 The small example-application.. 19
7 SIR Level 1 [3] . 21
8 SIR Level 2 [3] . 22
9 The RESpecCT Main Window. 28
10 UML Class Diagram. .. 29
11 MDI Workspace 31
12 Code Editor. 32
13 Properties Dialog. 33
14 Columns with Profiling Information .. 34
15 Pie-chart Widget. 35
16 Bar-chart Widget. 36
17 Processor Allocation. .. 37
18 Nameenter Dialog. . .. 38
19 Behavior Mapping. . .. 39
20 Allocation of Busses. .. 40
21 Map the Top-level Channels to Busses.. 40
22 Load an Example Design. 41
23 The Context Menu. . .. 41
24 Variables of the Behavior. 42
25 Channels of the Behavior. 42
26 Ports of the Behavior. .. 42
27 Source-code Editor for the Behavior. .. 43
28 Evaluating Dependencies while Deleting a Behavior. 43
29 View Profiling Results.. 44
30 Allocating Processors for the Design.. 44
31 Mapping Behaviors to Processors. . .. 45
32 The Architecture Refinement Tool Introduces an Additional Level of Hierarchy. 45
33 Allocating Busses for the Design. . .. 46
34 Mapping of the Toplevel Channels. . .. 46
35 The Communication Refinement Tool Inserts Protocols and, if necessary, Transducers. . . . 47

1 INTRODUCTION 1

1 Introduction

In 1965 Gordon Moore (co-founder of Intel) predicted that the transistor density of semiconductor chips
would double roughly every 18 months. In February 2001, Intel’s Chief Technology Officer Pat Gelsinger
pointed out in the opening speech of the International Solid State Circuit Conference (ISSCC) in San
Francisco that by the end of this decade processors will reach 1 TIPS (Tera Instructions Per Second) at 30
GHz. These processors will consist of about 10 billion transistors.

A current Intel Pentium III 1 GHz processor (codename coppermine) has about 28 million transistors,
two third of which actually represents the 256 kB on-die level 2 cache. The increase of designer productivity
measured in the number of processors designed has been only about 20% per year in the recent past. If we
project the same increase over the following nine years, in 2010 a processor would have less than 0.2 billion
transistors.

So how are we going to design the missing 9.8 billion transistors? Are we going to employ 50 times the
number of designers? Not likely. Certainly it is more desirable to increase the productivity of the designers
drastically. But how?

One possible answer is to use designs that are highly modular and easily reusable in later generations of
products - IP-reuse. Another answer is to work at a higher level of abstraction.

1.1 System-level design

The highest level of abstraction is to perform synthesis directly from the system specifications. This approach
is called System Level Design (Figure 1). It means to write a system specification in a language as intuitive
as possible and to refine this specification down to the register transfer-level (RTL).

SpecC is a language (Section 2) and a methodology (Section 3) especially designed for system level design.
Its basic concept is not a push-button solution, but an interactive refinement process. It defines several level
of refinement at each of which the designer is provided with information in order to help him taking decisions
for the next refinement step. After the last refinement step the design is at RTL and synthesizable.

1.2 Goal

In the SpecC refinement-process there are several tools involved (Profiler, Architecture Refinement Tool,
Communication Refinement tool, SpecC compiler, etc.), but the user only wants to have to deal with one. So
we wanted to create a graphical user-interface which integrates all tools and assists the designer during the
whole refinement-process - from specification to transistor-level.

It was clear that this is a big task and that it would take several man-years to accomplish it, so given
the actual time-constraints, we focused on the specification of the project and the choice of the tools and
environment. Then it was important to create a stable and open basic framework which demonstrates the
basic concepts and would be easily understandable and expandable.

1.3 Related Work

SpecC is quite unique with research still in progress, so there is nothing which closely relates to it. There are
several other approaches to System Level Design such as System C or VCC, but their concepts are totally

1 INTRODUCTION 2

Figure 1: System-level Design in the Y-Chart.

different.

The Toshiba Corporation has made a tool called VisualSpec which is a GUI for SpecC. VisualSpec incor-
porates some of the functionality mentioned above, but it is not at all what we were anticipating. This is why
we started with this project from the beginning and called itRESpecCT (Refinement and Exploration-tool for
the SpecC Technology).

2 THE SPECC LANGUAGE 3

2 The SpecC Language

SpecC is a language, not grown over centuries in order to adapt to constructs people like to express -
like most of the human languages - nor has it been developed and then expanded and adapted to different
applications people may have - like most of the programming languages. SpecC is a language developed for
one special purpose: system level design.

The main properties of SpecC are that it has an easily understandable syntax for machines as well as for
humans, it includes all constructs needed to describe a design as inherent parts of the language, and it can be
used to describe a design at all levels of development - from specification to register transfer level.

Behavioral
Hierarchy

Structural
Hierarchy

Concurrency

Synchronization

Exception
Handling

Timing

C JavaVHDLVerilog SpecCharts SpecCStatecharts

State
Transitions

not supported partly supported fully supported

Figure 2: Language Comparison [1].

2.1 C+Spec = SpecC

The reason for creating SpecC as a new language was because there was no such thing. SpecC was started as
a methodology (Section 3) and then Gajski and his group were looking for a language which could be used to
implement this design-flow best. Languages like C and Java are very well suited to write a functional model.
They have also the advantage, that many people know them so there is not much training necessary to make
people productive. On the other hand, these general purpose programming languages lack functionality
when it comes to the refinement. How am i going to describe e.g. parallelism in C? So if we want this to
work, we have to write additional libraries that add certain functionality to the language. This is possible,
but it gets somewhat inconsistent. System/C for example takes this library-based approach. An advantage is

2 THE SPECC LANGUAGE 4

that tools like compiler, debugger and development environment already exist. On the other hand, describing
mechanisms like timing and concurrency is not very intuitive by using a library. Also, a library based
approach is easy to expand. This can be seen as an advantage if a company wants to adapt it closer to their
application, but since everyone keeps changing it that much, it is impossible to have a set of tools handling
all the constructs of the language.

Another approach is to take existing design languages like VHDL and Verilog and try to fit them into the
whole design process. This approach turns out to be difficult too since these languages are just not made
for high level descriptions. A functional description of a system in VHDL would either be already mapped
to certain architectures or would require an expansion of VHDL which would result in a new language as well.

SpecC tries to incorporate the advantages of both worlds while excluding the drawbacks. It uses ANSI-C
as a basis which is well known, easily understandable and well suited for functional descriptions. It adds few
constructs for handling missing functionality for the design flow like concurrency and hierarchy (Section 2.2).
The choice of the added statements once done properly will be very hard to change, since the compiler and
all tools depend on it. This makes SpecC easily to standardize.

2.2 Special Features

SpecC adds only seven major mechanisms to C. These are :

� Behavioral hierarchy

� Structural hierarchy

� Concurrency

� Synchronization

� Exception handling

� Timing

� State Transitions

With the help of these mechanisms we are able to write a functional description of the design which can
then be successively refined to a cycle accurate description of the system. Details about particular constructs
can be found in the SpecC book [1]. There are also some small additions not mentioned here, e.g. a true
boolean type. Details about those can be found in the SpecC Language Reference Manual [?].

2.3 Summary

The SpecC language was designed because there is no other language which fits - or can be fitted with
reasonable effort - into the SpecC methodology. It is executable on every stage of refinement, highly modular
because of the behavioral concept, supports design reuse, and is complete in terms of supporting all concepts
currently used in embedded systems. All it’s concepts are organized orthogonally, which results in a more or
less minimal solution and makes the use of the concepts consistent. As ANSI-C is used as a basis, it is easy
to understand and to learn.

3 THE SPECC METHODOLOGY 5

3 The SpecC Methodology

3.1 Overview

The SpecC methodology defines the process to get from a functional system specification to an imple-
mentation on register transfer level (RTL) which can be given to a fab in order to actually produce the
chip. The methodology comprises four system-description models and transformations between these
models (Figure 3). Following the transformations, the systems move from the specification model over the
architecture model and the communication model to the implementation model. Each model represents a
new level of refinement and introduces new concepts and properties into the design.

The main idea is to have a design that is simulateable at every stage of development and which - once
specified - never has to be rewritten during the whole process, resulting in a failsafe and consistent design.

Manufacturing

Communication synthesis

Synthesis flow

Architecture exploration

Validation flow

Communication

model
Specification

Architecture
model

model

Simulation
model

Estimation

Validation
Analysis

Compilation

Library
Comp.

Simulation
model

Estimation

Validation
Analysis

Compilation

Simulation
model

Estimation

Validation
Analysis

Compilation

Simulation
model

Estimation

Validation
Analysis

Compilation

Interface synthesis

Implementation

Hardware

synthesis

Software

compilation Library

Back end

Capture

model
Implementation

Library

Library
Alg.

RTL

Allocation

Partitioning

Scheduling

Protocol insertion

Protocol inlining

Proto.

Figure 3: The SpecC Methodology [1]

3 THE SPECC METHODOLOGY 6

3.2 Specification Model

The highest level of abstraction in system design is the functional description of the system. It describes the
whole system in detail but does not include implementation-details like timing or partitioning. While in theory
every functional description results in a valid design, it does not forcedly result in a ”good” implementation.
In order to get efficient results, one should stick to some simple rules in describing the functional model:

1. Separate communication and computation
A basic idea in SpecC is to separate computation from communication. This makes it easier afterwards
to try different protocols without touching the computation part. In SpecC the computation is specified
in behaviors, whereas the communication is contained in channels. Input and output of behaviors have
to be specified explicitly in order to be able to evaluate data dependencies.

2. Expose parallelism
Without knowing how many processors you will use in the design and of which kind they are, the spec-
ification model should expose as much natural parallelism as possible. Modeling behaviors in parallel
- if they are not dependent of each other - will give more space to optimizations during refinement. To
serialize behaviors which are modeled in parallel is not a complex task whereas to detect if a group of
serial modeled behaviors can be run in parallel is much more extensive.

3. Use hierarchy to reflect functionality
For every design of considerable size it is most important to structure it reasonably so the designer
can keep an overview over the whole project while being able to locate details in the design. A very
common and convenient way to do this is to use hierarchy. Now if the concept of hierarchies is used
wisely, the design stays both easily understandable and easy to optimize and refine.

4. Choose proper granularity
Since the whole design is divided into behaviors, one question is then what to put in one behavior, and
when to divide it into several. If the size of the behaviors is chosen too big, the refinement will not
be optimal. Since most optimizations are done on the behavior-level, the behaviors themselves remain
more or less untouched. If the size of the behaviors is chosen too small, the design complexity will be
high. As a hint, behaviors should always represent basic algorithmic blocks. This will leave enough
room for optimization while leaving the design complexity on a tolerable level.

5. Identify system states

Following these rules, the design will be suitable for refinement and will profit as much as possible from the
advantages of the SpecC methodology.

3.3 Architecture Exploration

Once the system is defined, the design gets into the refinement-phase. The first transformation is called
”architecture exploration”. It transfers the design from the specification level to the architecture level.

In the Architecture level, the architecture of the design is known. This means that the number and the
type of the processors is fixed. In addition one has already fixed what part of the design will be run on what
processor and in what order. To get to the architecture model there are basically three steps to be performed:

3 THE SPECC METHODOLOGY 7

1. Allocation
During allocation the designer selects the number and type of processors to be used. To take these
decisions he has to evaluate the design in respect of size, speed, performance constraints, cost and
more. This data he can use in order to select processors from an IP-database where some additional
data is available.

2. Partitioning
Having decided which processors to use, one has to decide which part of the design will run on which
processor. This process is called partitioning or behavior-mapping. Again, this is no easy step. To
perform it, the designer needs information about what loads different parts of the design cause. Also
he wants to know how much memory the behaviors use. Very important is the communication of
behaviors with other parts of the design. For example it is not advisable to put parts of the design on
different processors which communicate a lot between each other. This would cause much traffic on
the bus which connects them and is usually unwanted. Only in very special cases would one want to
do this in order to avoid other problems.

3. Scheduling
If all behaviors have been mapped to processors, the order in which they are executed is still to be fixed.
This is easy for behaviors which have already a serial decomposition, but can be hard for parallel and
especially for FSM-behaviors. With the scheduling there will be synchronization behaviors introduced.
They manage synchronization, dor example, for originally parallel behaviors.

After architecture exploration we can make more accurate predictions about performance and cost. We
will know quite accurate execution-times since we know exactly the processor on which the code will run and
can make a very accurate simulation. On the Architecture Level there will be an additional level of hierarchy
which represents the components. Also there will be additional behaviors on this level synchronizing the
communication between these processors.

3.4 Communication Synthesis

Communication synthesis is the transformation from the architecture level to the communication level. While
on architecture level the communication between the components is still done in channels - which means that
it happens in no time (or predefined intervals) - on the communication level the processors communicate via
wires on a defined bus with a defined protocol. In order to perform the communication synthesis two steps
have to be accomplished:

1. Bus allocation
For the bus-allocation one has to select one ore more busses out of an IP-database. They have to be
selected considering parameters like bandwidth, bit-width, cost, overhead and the protocol.

2. Channel mapping
After selecting the busses, the top-level channels have to be assigned to the busses. If the communicat-
ing processors do not support the bus-protocol, there have to be inserted additional components which
take care of the conversion of the different protocols. We call them transducers.

In the communication model we have not only correct execution times of behaviors, but we have a cycle
accurate model of the communication part of the design. Simulation will now reveal all timing problems that
were still undetected in the design.

3 THE SPECC METHODOLOGY 8

3.5 Summary

The SpecC Methodology is a design methodology specifically tailored for system level synthesis. It starts
with a functional system description of the design and will be transformed over several steps to a cycle
accurate design description ready for implementation. The critical decisions in the refinement process have
to be taken by a designer while straightforward - but still complex - refinement tasks are automated by tools.

This has the advantage that the design process is highly automated, but the designer still has the control
over the refinement process so the results are very efficient.

4 SPECIFICATION 9

4 Specification

Figure 5 Before actually starting to work on a project, it is essential to specify as exactly as possible what
one really wants to have. At the very beginning it is not easy to specify the needs, also the specification has
to be reasonable in terms of resources like time and money.

In a first task-analysis we investigated what actually had to be done, then we set priorities to get an order
what had to be done first and what was less important. Then we refined the results of the task-analysis in
order to obtain a quite precise specification.

The interface can be divided into two parts: A refinement part and a visualization part. The refinement
part comprises all refinement decisions made in order to get to new refinement levels of the design. We call
it Refinement User Interface (RUI). The visualization part visualizes different aspects of the design in order
to help the user take good decisions. This part we call Viusalization User Interface (VUI). Between these
two parts the actual refinement tools and the SpecC compiler are operating. Figure 4 gives an overview over
the different refinement and visualization tasks and their interaction with the tools.

In this chapter we try to specify the different parts of the user-interface in general. For every part we want
to show up the functionality as well as possible displays for it.

4.1 Edit

An evident property of RESpecCT should be to read designs of different formats, convert them to others
and write them out again. The user wants to be able to browse the hierarchy of the design, to get provided
with all kinds of information about the design as well as about parts of the design or about single behaviors.
We want the user to be able to add, change, and delete behaviors or properties of behaviors like variables,
channels and ports. Some of these actions may be quite complex, there may be numerous dependencies and
prerequisites. In these cases the user should be assisted through the whole process with wizards.

In addition to a graphical display there should also be support to directly edit the code for people who
want to do quick changes in the code without having to deal with the GUI. However, these changes should
be immediately reflected in the graphical representation in order to keep consistency between these two.

Apart from the hierarchical view, there should be a display of the connectivity inside behaviors. It could
look like a matrix with ports of the sub-behaviors over the connected variables, channels and ports. It will
be a sparse matrix with one connection per column. The user should be able to make or release connections
between items.

4.2 Project Management

A SpecC-design typically consists of several files. In order to keep the work organized, it is essential to be
able to define projects which include all files and keep track of their location. Such a design project could
store additional information like descriptions and comments for the whole projects as well as for every file.
Since SIR-files are binary and thus not portable over platforms, it is important to always keep recent versions
of SpecC-files.

As soon as we start with the refinement, the projects get an additional meaning. It keeps files of all four
design-levels (Specification level, Architecture level, Communication level and Register Transfer Level)

4 SPECIFICATION 10

Specification model

Architecture modelEstimation

Profiling

Profiling data

Design decisions

Communication model

Profiling
weights

Arch. synthesis

Arch. refinement

Comm. synthesis

Comm. refinement

Refinement
User Interface (RUI)

Estimation results

Design decisions

Estimation

Impl. synthesis

Estimation results

Design decisions
Impl. refinement

Implementation model

Capture

RTL
comp.

Validation
User Interface (VUI)

Protocol
models

Comp. / IP
attributes

Protocol
attributes

Comp. / IP
models

Compile

Estimate

Simulate

Verify

Synthesize

Synthesize

Synthesize

Simulate

Verify

Estimate

Simulate

Verify

Profile

Simulate

Verify

Allocation

Beh. partitioning

Scheduling / RTOS

Protocol selection

Channel partitioning

Spec. optimization

Cycle scheduling

Protocol scheduling

Browsing

Arbitration

SW assembly

Alg. selection

Figure 4: Specification Overview.

in order to be able to go back in the design-process, change decisions and repeat already performed steps.
This is very important, since during refinement behaviors are added to the design (e.g. for synchronization)
and changes are made to the hierarchy without being able to undo this. The reason for this is that different
specifications can theoretically end up in the same architecture-level design.

The file-management also should support the user to keep consistency throughout all design-levels.
RESpecCT throws a warning if the user tries to modify the design on a level other than the specification
level. If he does anyway, consistency between the different levels is no longer given. A correct simulation
of a higher level then no longer means that a lower level simulation of the design has to be correct. A big
advantage of the SpecC-methodology would be lost. The best way to do changes in the design is to go back
to the specification level - without losing the information of previously taken decisions - perform the changes
and then redo the refinement.

4 SPECIFICATION 11

Another job of the project-management is to keep options like selected weight-tables, profiling options
and the name of the top-level behavior.

4.3 Build

At each time of the design-process, SpecC makes sure, that the design is simulateable. In order to perform
simulation three steps are to be done: Compilation, Debugging and the actual Simulation.

4.3.1 Compiler

The compilation of the design converts the SpecC-code into an SIR data-structure, then converts it into C++
code which is then compiled into an executable. The SpecC-compiler should take care of all this.

4.3.2 Debugger

During the process of writing the specification of the design, it is very likely that the design is not correct
from the beginning. Therefore we have to provide a possibility to debug the design. Since it is actually the
C++-code not the SpecC-code which is complied, the actual line numbers reported by the debugger have to
be translated to the SpecC-line numbers. This should happen transparently so the user is not aware of that.

For more convenience it should be possible to set breakpoints in the code and to trace over it or step into
it. Extended features are to watch, view and trace variables. In addition to a normal debugger, the SpecC
debugger should support also SpecC-specific datatypes like a bitvector.

4.3.3 Simulation

Running the actual simulation is pretty simple. The executable created by the compiler has to be executed.
However, it has to be made sure that there is a correct testbench around the design. Also the testbench could
require parameters which have to be provided and must be adjustable by the user. Last but not least, the
user wants to get feedback about the simulation in the interface. If an error occurs it could indicate a wrong
parameter or a bug in the testbench. Also the regular output of the simulation alone could be instructive.

4.4 Profiling, Estimation

The main purpose of profiling and estimation is to get information out of the design which helps in taking
further design-decisions e.g. about what processors to use, what memory-size will be needed, what busses
are suitable and to find out at a very early stage if the design fulfills certain constraints like price, speed or size.

Although these two mechanisms seem very similar in their goal, they do totally different things. This is
also due to the fact that they are performed at different stages of the design.

Profiling can be performed at the very beginning. As soon as there is a specification which is semantically
and syntactically correct and an executable testbench, one can run the profiler. Like this we are able to
examine certain properties of the design while it is still growing. Fundamental errors can be detected early
and taken care of, without wasting too much time and money.

The profiler inserts statements into the design which produce information about operations performed in
the design at simulation-time. After simulation it evaluates this information and makes it available. Profiling
information comprises operations, memory-usage and communication-intensity on a per-behavior basis. For

4 SPECIFICATION 12

every behavior we get information about 65 different operations and two different categories for memory
and for communication (in and out). Every category is divided into the 29 different data types. This makes
2001 pieces of information per behavior. In addition the profiler extracts some statistical metrics out of it.
All this information has to be available to the designer in the GUI in order to evaluate it. RESpecCT should
offer some general high-level metrics by default, but is able to deliver more specific information on request.

The profiler also should support the mechanism of weight-tables. Weight tables are used to reflect
properties of the the actual architecture better in the results of the profiling. For example if the processor
we anticipate to use has a very slow multiplication-unit, multiplication-operations will be counted e.g.
three times, whereas additions are counted only once. Then, if the profiling counts 3 multiplications and 3
additions for a certain behavior, the number of total operations would be 12. This kind of information is
stored in a weight table. It makes the profiling produce more accurate results if we want to add up different
kinds of operations.

Estimation is a mechanism which can be used only after architecture exploration. While the profiler does
a dynamic analysis of the code, the estimator does only a static analysis. Together with the data from the
profiler and the results of the architecture exploration, it can provide more accurate values than the profiler.
Also you get absolute information about time of execution, while profiling only provides relative information
about speed and performance.

Profiler as well as Estimator are separate tools written in C++. They have to be integrated into RESpecCT
as a shared library. The data-exchange should be done entirely within the SIR-datastructure.

The sensitive point about profiling and estimation is to extract the right judgments out of the whole bunch
of information they provide. In order to optimize that, we have to develop clear and intuitive displays.
Displays which can display a lot of information at a time while emphasizing on the critical points. Since
there is never one display that can show all aspects, there have to be several which compliment each other.

These displays could be:

� Columns in the behavior tree

� Pie chart

� Bar chart

� Table

4.5 Architecture exploration

As we already know, architecture exploration is the process of mapping the specification model to a certain
architecture. This includes insertion of components, and the synchronization between these.

4.5.1 Allocation

The first step in the process of architecture exploration - consists of selecting one or several processors from
a database. In order to provide the user a basis of comparison, we have to list the processors with some short
description as well as some details like performance, clock, area and cost.

4 SPECIFICATION 13

Also we should be able to add and remove processors at any time. One processor can be selected several
times for the same design, so the user has to assign them unique names.

4.5.2 Partitioning

During this phase the behaviors get mapped to the processors allocated. It is a quite critical step of the
refinement-process and has to be done carefully. There are some simple rules to respect. For example one
will always try to separate two blocks which are as independent as possible. One should always try to leave
behaviors together which communicate heavily with each other.

Also it can be advisable to separate behaviors which mainly perform the same kind of operations. If there
is a group of behaviors which seem to use mainly 32 bit multiplications, we could try to map them together
to a processor which is optimized for that.

After partitioning is completed - which means all behaviors except the ones belonging to the testbench
are mapped to a processor - one can run the architecture refinement tool. It will reorganize the hierarchy,
introduce a new level of hierarchy representing the processors and add behaviors which manage the synchro-
nization between the processors.

4.5.3 Scheduling

Only after partitioning is completed and the refinement-tool has processed the data-structure can we start to
do the scheduling. Scheduling means to assign an order to the behaviors on each processor. This is easy for a
serial behavior, but can be critical for parallel or other behaviors, e.g. FSM. There the user has to be aware of
the dependencies between the behaviors and be able to interpret them correctly. The user can also ”flatten”
parts of the hierarchy, that means do the scheduling not only of one level, but include behaviors from lower
levels.

Though the GUI will display the scheduling decisions, the change in the data-structure will not be per-
formed unless the user actually runs the refinement-tool again. After this step, there will be no more serial
structures inside one processor. The design is now on the level of the Architecture model.

4.6 Communication synthesis

To get from the architecture model to the communication model, we have to do the communication synthe-
sis. The procedure resembles the architecture refinement: First, there has to be done allocation, then mapping.

Allocation means basically to select the busses one wants to use in the design out of a database and give
them a unique name. Like in the architecture refinement, there should be displayed some data with the busses
like bits/sec, frequency or number of bits in order to let the user make a conscious choice, even if he is not
familiar with all the busses.

For the mapping, all top-level channels have to be assigned to a bus. A top-level channel is a channel over
which the processors communicate. There may be a lot of other channels in the design, but since usually
there are no busses inside of components, we do not have to worry about them. All the channels have to be
mapped to a bus, and to every allocated bus has to be assigned at least one channel.

Once the mapping is completed, the communication refinement-tool can be called. It will again change
the structure of the SIR. There will be suitable protocols inserted for the busses and the top-level channels
will be converted into actual bus-wires. These will be represented as variables.

4 SPECIFICATION 14

4.7 Summary

This chapter illustrates how much work is involved in the project and what a first version could look like. Even
after all this has been implemented, one could think of a whole bunch of other functions, not mentioned so far.

To get the project started, we had to define a priority-list what the first implementation would look like and
what will be targeted in the further development. Given the initial time-restriction of six months including
the preparation-phase, we decided to concentrate on a basic framework. There we should integrate the SIR
and prove it’s usability. We should provide the basic widgets, show how to integrate an external module and
how to run external tools. Also a reasonable documentation of both the functionality and the code should be
part of it.

Once this is done solidly, it should be relatively easy for someone else to continue the project by just
using the concepts demonstrated in the first stage. Other modules can be integrated just in the same manner
and if there is the need, widgets can be extended.

Stage 1 consists of the following tasks:

� Display the behavior-hierarchy and browse it

� Edit source code

� Show how to display and edit properties of behaviors (channels, variables, ports)

� Show how to run external tools (like compilation and simulation)

� Show how to integrate external modules like the profiler

� Create different widgets for displaying data (e.g. profiling results and make them easily usable)

Then in a second stage, the following issues should be done:

� Allocation

� Map behaviors

� Run architecture refinement tool

� Schedule behaviors

� Allocate busses

� Map busses

� Run communication refinement tool

� Run estimator

� Display estimation results

� Add and remove behaviors

� Add and remove properties (channels, variables, ports)

4 SPECIFICATION 15

� Make project-integration

It is obvious, that list is not complete. But it is enough to get an idea of what RESpecCT could look like
in the future.

Browsing

Specification model

Architecture modelEstimation

Profiling

Profiling data

Design decisions

Communication model

Profiling
weights

Arch. synthesis

Arch. refinement

Comm. synthesis

Comm. refinement

Refinement
User Interface (RUI)

Estimation results

Design decisions

Estimation

Impl. synthesis

Estimation results

Design decisions
Impl. refinement

Implementation model

Capture

RTL
comp.

Validation
User Interface (VUI)

Protocol
models

Comp. / IP
attributes

Protocol
attributes

Comp. / IP
models

Compile

Estimate

Simulate

Verify

Synthesize

Synthesize

Synthesize

Simulate

Verify

Estimate

Simulate

Verify

Profile

Simulate

Verify

Allocation

Beh. partitioning

Scheduling / RTOS

Protocol selection

Spec. optimization

Channel partitioning

Cycle scheduling

Protocol scheduling

Arbitration

SW assembly

Alg. selection

Figure 5: Implementation Overview.

Figure 5 shows again the different tasks of the refinement user interface and the validation user interface
while highlighting the items we implemented so far. Some items are not implemented because the underlying
tools are not ready yet. Some of the items are implemented, but only to a certain extent. These items may
be extended in the future or the displays may be changed. We see, that stage 1 is finished and already some
items of stage 2 have been implemented. The next steps will focus on the completion of the design cycle
rather on the perfection of the single items.

5 CHOOSING THE TOOLS 16

5 Choosing the Tools

Once the project is specified, we are to choose the tools which fit best for the anticipated task.
Since the SIR-library was written in C++ and C++ is an object-oriented language which is widely used,
writing the GUI in C++ seemed to be the natural choice. Java would have been an alternative, but it would
have added a lot of additional work and no real benefit except the native cross-platform-support. As there are
a considerable number of usable graphical toolkits for C++, even for cross-platform development, we quit
Java.

5.1 Different GUI Toolkits

The term toolkit in this document means a library for the development of graphical user interfaces (GUI).
Since ANSI C does not include any windows-library by itself, it is essential to use a toolkit for the
development of a windowed application with C or C++.

As mentioned there are quite a few graphical toolkits available for C++. We will give a quick overview of
the most important ones. The Criteria under which we looked at the toolkits were (sorted by importance):

� Portability They must at least be available under Unix and Windows.

� Completeness

� Usability

� Documentation

� Number of users

� Look and feel

� Price

Toolkits which get clearly disqualified by one ore more of the criteria are not listed unless we consider them
generally important.

� Microsoft Foundation Classes (MFC)
MFC are the leader in the Windows-world. They are very complete, quite convenient to use, good
documented and there are a lot of people using it.

MFC is commercial, and ships with the Microsoft Visual C++. Although this already costs money, it
only provides Microsoft Windows support. A Unix-version of the library has to be purchased separately
and is very expensive.

� Gnome
Free, native support for X11
No support for windows

� QT
Very good and complete. Free (GPL) version for Unix, commercial version for MS Windows. Very
good documentation, professional support. Graphical widget-designer available.

The MS-windows version is quite expensive.

5 CHOOSING THE TOOLS 17

� wxWindows (gtk+)
Based on gtk+. Very nice and complete. Free (GPL). Good support for both, Unix and MS Windows.
Graphical widget-designer available for $50.

Documentation not complete. Widget-designer instable.

� VDK (gtk+)
Good widget-set based on gtk+. Nice, not too stable widget-designer. Available only for Unix.

� tcl/tk
A wide range of widgets available. Widely used.

Not object-oriented, widgets look not very beautiful (old fashioned), no C++.

– [incrTcl]
Object-oriented Wrapper for Tcl.

– tkinter
Python -Wrapper for Tcl. Object-oriented, good documented. No C++

� gtk +
Nice and complete widget-set. Only C, no C++.

� Visual Component Library (Borland VCL)
No Unix-support

5.2 QT versus wxWindows

After examining a lot of toolkits, installing and trying some, surfing the web for information, reading related
newsgroups and discussions, we came to the decision, that there are in fact only two toolkits to choose from:
wxWindows and QT. Table 1 shows a close-up comparison between these two:

Criteria QT wxWindows
Portability ++(MS Windows, Unix, Linux) ++ (MS Windows, Unix, Linux, Macintosh)
Price - ($2925) ++ (free, designer for $50)
Documentation ++ examples, tutorial +
Completeness ++ +
Usability + +
Number of users ++ o
Look and feel ++ +

Table 1: Comparison of QT and wxWindows

Even though wxWindows and QT seem both to be a good choice, the table shows that QT leads the
comparison in almost all categories. We came to the conclusion, that even though QT has a considerably
higher price, it is probably cheaper to develop in QT than in wxWindows. Also the professional support and
a large user-community, gave us confidence to choose QT.

5 CHOOSING THE TOOLS 18

5.3 PyQt

Having selecting QT as the toolkit of our choice, we realized that there are also Python bindings for QT.
Having known Python already as a very powerful language for developing scientific applications, we decided
this needed further investigation. PyQt revealed itself as a free python wrapper for the QT-library.

5.3.1 Advantages

� Price
A C++ QT License for both Unix and MS Windows from Trolltech is today $2925. This includes one
year support and free upgrades. Every additional year of support and upgrades is $910.
PyQt is free for Unix as well as for MS Windows. Although it looks like there may be charges for the
Windows-version in the future, these will be insignificant in comparison to the C++ license.

� Speed of Development
Anyone who has ever developed a program of considerable complexity in Python may have been
amazed how fast the project was advancing. In comparison to C++ (or to any programming-languages
we know) the syntax of Python is much clearer. Indentation is a syntax element, so the source code is
a lot easier to read - this is especially helpful if one tries to understand what one has done a couple of
weeks prior.
This in conjunction with the major changes in the program structure - which unfortunately occur es-
pecially in the beginning of application development - makes Python a very handy Rapid Application
Development (RAD) -Tool. As the syntax - though a lot simpler - is very near to C++, one has always
the option to rewrite the project in C++ once it reaches a more mature level.

� Scripting-Interface for the SIR-Library
Developing RESpecCT in PyQt seems to be very promising. There is an apparent additional effort
though: SIR is currently only available in C++, so we would have to develop SIR for Python. Since
a fast and easy scripting interface to SIR is very desirable anyway, we would kill two birds with one
stone. The additional amount of work at the beginning would give us a scripting interface almost for
free. Even if we would later decide to switch to C++ development we will still have the scripting
interface.

5.3.2 A small example

In order to get a better impression how powerful QT is in combination with Python, we show a small
example-script:

import sys , qt # load modules
2 a = qt .QApplication(sys .argv) # instantiate QApplication

w = qt .QWidget() # instantiate QWidget
4 w. resize (200,120) # resize QWidget

quit = qt .QPushButton(”Pushme”,w) # instantiate button
6 quit .move(62,40) # move the button

connect the signal ” clicked ” of the button with the method ”quit ” of the widget
8 w.connect(quit , qt .SIGNAL(”clicked()”),a, qt .SLOT(”quit()”))

a.setMainWidget(w) # w is mainwidget of the application
10 w.show() # show w modal

a. execloop () # start the application

5 CHOOSING THE TOOLS 19

Figure 6: The small example-application.

This script pops up a little window with a button (Figure 6). If the user clicks on the button the application
exits. Although this is a quite minimal example, it shows how easy and intuitive the code can be read. For an
advanced PyQt-programmer, the code is as readable as the comments in this example.

6 SIR WRAPPER 20

6 SIR Wrapper

6.1 What is SIR

SIR stands forSpecC Internal Representation. It is the common data-structure used to store all language-
constructs written in SpecC. The idea is that all tools use this data-structure, so they can easily exchange
information between each other.

A clear and consistent data-structure also makes it easier for the tools to perform the individual refinement
steps. Since a great advantage of SpecC is the consistency in all levels of the design process as well as the
ability to simulate at every stage, the underlying data-structure is of great importance.

SIR is the data-structure which has been developed by Rainer D¨omer at the CECS, and it fulfills the
requirements well. Since there are a lot of functions and methods in SIR which are not needed to be accessed
externally or which should never be used if not internally, SIR is divided into two levels.

SIR Level 1 contains all classes, methods functions and variables which are strictly for internal use (see
Figure 7).SIR Level 2 consists of all classes and functions which should be used by tools. Level 2 allows to
perform actions at a much higher abstraction-level (see Figure 8).

6.1.1 Example: SIR Behavior

As it may seem obvious, there are classes strictly dedicated to Level 1, like SIRMember. Someone who
wants to write a tool using the SIR does not even have to know about this class. Most of the classes however
have a Level 1 part as well as a Level 2 part. There are no such classes without a Level 1 interface.

SIR Behavior is an example for such a class. Its definition is listed in Appendix C.1, its interface-file is
listed in Appendix C.2. As we can see the two files are quite similar, however there are differences. How and
why these changes were performed is explained in Section 6.4

6.2 SWIG

As RESpecCT covers the whole refinement-process it seems to be a very thorough test-application for such
a data-structure. There remains the problem that the SIR currently only exists as a C++-library. The decision
was made - on the other hand - to develop RESpecCT in Python.
Further research on this problem reveals that there are three possible solutions:

1. Rewrite SIR in Python.
This approach would be very time consuming though very easy to integrate into the application after-
wards. Although it would be possible to implement just the subset of the SIR currently needed in the
GUI, we do not go for this solution because you would have to maintain both versions of SIR and make
sure they really produce the same SpecC-Code.

2. Wrap all the classes methods and functions of SIR in Python-classes, -methods and -functions.
Doing this has the advantage, that there is only one SIR, so if some internals change the wrapper does
not have to be updated (unless the API is not affected). But still, this would involve a lot of work,
probably more than rewriting it completely and it would be difficult to build a clean and consistent
interface like that.

6 SIR WRAPPER 21

SIR_Design

SIR_FileList

SIR_Types

SIR_Symbols

SIR_Notes

SIR_FileInfo

SIR_Import

SIR_Type

SIR_TypePtrs

SIR_TypePtr

SIR_UserTypes

SIR_Symbol

SIR_Note

SIR_Constant

SIR_Initializer

SIR_Parameters

SIR_Symbols...

SIR_Labels

SIR_Statement

SIR_SymbolPtrs

SIR_Notes

...

SIR_Constant

SIR_Initializer

...

SIR_Parameter

...

SIR_Label

SIR_Notes

...

SIR_SymbolPtr

SIR_UserType

SIR_Members

SIR_Member

SIR_Symbols

...

SIR_Notes

...

SIR_Constant

SIR_Expression

SIR_Statement

...

SIR_Symbols

...

SIR_Statements

SIR_Statement

...

SIR_SymbolPtrs

...

SIR_Exceptions

SIR_Constraints

SIR_Exception

SIR_Transitions

SIR_Transition

SIR_Constraint

SIR_Expression

...

SIR_SymbolPtrs

SIR_Statement

...

...

SIR_Constant

SIR_Statement

SIR_PortMaps

SIR_PortMap

SIR_BitSlices

SIR_BitSlice

SIR_ImportList

SIR_Initials

...

SIR_Expressions

SIR_Expression

...

SIR_Expression

SIR_Constant

Figure 7: SIR Level 1 [3]

6 SIR WRAPPER 22

SIR_Design

SIR_Behaviors

SIR_Behavior

SIR_ChnlInsts

SIR_BhvrInsts

SIR_ChnlInst

SIR_BhvrInst

SIR_Channels

SIR_Channel

SIR_PortVars

SIR_Ports

SIR_ImplIfs

SIR_Port

SIR_PortVar

SIR_ImplIf

...

...

SIR_Variables

SIR_Functions

SIR_ChnlInsts

SIR_BhvrInsts

SIR_ChnlInst

SIR_BhvrInst

SIR_PortVars

SIR_Ports

SIR_ImplIfs

SIR_Port

SIR_PortVar

SIR_ImplIf

...

...

SIR_Variables

SIR_Functions

...

SIR_Functions

SIR_Interfaces

SIR_Interface

SIR_Variables

SIR_Variable

SIR_Functions

SIR_Function

SIR_Arguments

SIR_Argument

SIR_ArgVars

SIR_ArgVar

...

SIR_Variables

SIR_Channel

Figure 8: SIR Level 2 [3]

6 SIR WRAPPER 23

3. Use a tool like SWIG to automate the generation of the wrapper as much as possible.
Since this is the approach with the least programming effort involved, it is the most flexible one and
the easiest to maintain. Though the interface-generator cannot reflect the library perfectly, it should be
possible to do special adjustments by hand.

Therefore SWIG was the choice. It is a quite advanced tool and there are over 400 pages of documentation
on the web. The general workflow is the following:

1. Write an interface-file (Section 6.3

2. Run SWIG on the interface-file and generate a C wrapper-file and a python shadow-wrapper

3. Compile the wrapper-file to an object-file (e.g. with gcc)

4. Link the generated object-file against the SIR-library into a shared library

6.3 Creating SWIG-Interface-files

Creating the interface-files is the first and most important task using SWIG. The common procedure is to
make a copy of the header-file of the class one wants to wrap and perform certain modifications on it. In this
header-file one has to specify the name of the module e.g.:

% module definition

and the names files one wants to include (since SWIG does not follow normal ”#include”-statements)
plus the name of the original header-file:

%f

2 #include ”Global.h”
#include ” IntRep/Symbol.h”

4 #include ” IntRep/ Definition .h”
%g

Now we have created a correct module-file. If we save it as ”modulename.i”, we can run SWIG on it.
Usually, however, one does not stop here. Since we don’t want SIR Level 1 - methods to be used, there is
no point in making them available in Python through the wrapper. The next step will be to remove all Level
1-methods. In order to put everything together, after we have created all interface-files, we create another one
called sir.i which includes other interface-files. Like this, there will be only one Python-module produced,
containing the whole Level 2 SIR.

6.4 Modifications and problems

This is the theory. This is how one wishes it to be - and perhaps in a couple of years we will come to that
point. Reality, however is different. We knew there were still some constructs in C++ SWIG could not
handle. Some are likely to be solved in the near future, some are of a more general nature. Templates are one
mechanism SWIG can not handle. Especially template-classes. With this we had to deal somehow, since most
of the classes in SWIG are inherited either from SIRList or SIR ListItem both of which are template-classes.

6 SIR WRAPPER 24

6.4.1 Templates

This issue - though annoying - revealed itself solvable since we don’t create new types of SIRList and
SIR ListItem. The only thing we would have to do, is to remove the inheritance-statement in the affected
classes and insert method-prototypes which otherwise would be extracted from the template-class. For
SIR Behaviors the declaration in the header-file looks like this:

class SIR Behaviors : /� behavior classes list�/
2 public SIRList<SIR Behavior> /� is inherited from SIR List (Template�class) �/

f

4 public :
(...)

In the interface-file the inheritance is removed and replaced with method-prototypes:

class SIR Behaviors /� behavior classes list�/
2 f

public :
4

bool Empty(void); /� test for empty list ?�/
6 unsigned int NumElements(void); /� number of list elements�/

SIR Behavior� First (void); /� first element (NULLif empty)�/
8 SIR Behavior�Last(void); /� last element (NULLif empty)�/

SIR Behavior�Previous(void); /� previous element (NULLif none)�/
10 SIR Behavior�Curr(void); /� current element (NULLif none)�/

SIR Behavior�Next(void); /� next element (NULLif none)�/
12 SIR Behavior�Prepend(SIRBehavior�Elem);

SIR Behavior�Append(SIRBehavior�Elem);
14 SIR Behavior� InsertBefore (SIRBehavior�Elem,SIRn Behavior�Succ);

SIR Behavior� InsertAfter (SIRBehavior�Elem,SIRn Behavior�Pred);
16 SIR Behavior�Remove(SIRBehavior�Elem);

SIR Behaviors�Concat(SIRBehaviors�Appendix);
18 SIR Behaviors�Precat (SIRBehaviors�Prependix);

(...)

The template will now not be visible any more from Python, but since the Python-module will be linked
against the SIR-library, the template is called implicitly because the C++-compiler does exactly the same as
we did manually.

This issue successfully solved, there still remains a lot of work to be done in modifying all those
interface-files. Since the procedure is very straightforward, we decided to automate this process. We wrote
then a Python-script which takes a header-file, inserts the ”module” and ”import”-statements, examines it for
the template-classes and inserts the method-prototypes of the appropriate types. This effort turned out to be
very worthwhile since a change in the header files just requires a regeneration of the interface-files in order
to be correctly reflected in the python-wrapper. A very simple change in the header of the template-classes
could otherwise require some hours of editing the interface-files. The Python-script for the automatic
interface-generation in included in the appendix (Appendix C.3)

6 SIR WRAPPER 25

6.4.2 Typedefs

Another problem are typedefs. SWIG does understand typedefs, but is does not reflect them entirely. In
the SIR-library there are often typedefs used like ”typedef class SIRBehavior sirbehavior”. Then there
are methods returning values like: ”sirbehavior *Copy(const char *Name, BOOL Strip=False);”. Python
will not create a wrapped object around the returned pointer and will throw a TypeError or AttributeError
using it. This can be solved, by changing the method-prototype to ”SIRBehavior *Copy(const char
*Name, BOOL Strip=False);”. In this case, Python will recognize the returned value as a pointer to a
SIR Behavior and wrap it correctly. Now this is fixed very fast, but there are a lot of methods where
this problem occurs, so again it is a lot of work changing it manually. So far we could not automate
it though, since it is not a trivial adaption. The class ”SIRPortMap” for example has a capital letter
inside, so there is no simple rule to perform the transformation from ”sirportmap”. Perhaps we will con-
sider making these changes directly in the SIR header-files, since the changes would not break any other code.

6.4.3 Pointer to Pointer

After considering all of this, one can use the Python-wrapper and it works well. Only while using it, one will
encounter further issues which require some attention. In C and C++ a method or function can only return
one value. If one wants to return several one can think of introducing an intermediate STRUCT holding all
of the return-values and return it. This can sometimes make sense, but can also produce confusing code. The
other possibility is to return supplementary values through arguments. The arguments have to be pointer to a
pointer. The called method assigns them a value and like this the caller can use the value by dereferencing his
argument. This has the advantage to produce code which looks simpler, but depending on the situation it can
also be more difficult to read since the information-flow is not obvious any more. In SIR the latter method is
used deliberately. Python has no pointers, only references. The conversion between references and pointers
is done implicitly. Therefore, creating a pointer to a pointer is not possible. This makes it impossible to call
such methods directly from within Python.

The solution is to add methods to the C++-interface-files which take no pointers to pointers as arguments.
These methods call the corresponding methods and return whatever value one wants. It is obvious, that this
can not be done easily in an automated way - and this means work. Also it has to be adapted every time the
interface changes. In addition, since there is only one return-value, sometimes there have to be added several
functions in order to wrap one method with more than one argument. This is the approach we took so far. It
has the huge disadvantage, that we lose consistency between the two languages. Before, the documentation
for the SIR-library had perfectly covered the Python-wrapper. Since we have introduced supplementary
functions, this is no longer the case. The changes have to be documented separately.

6.4.4 Function Overloading

Function and method-overloading is a very common and convenient concept in C++. However there is no
correspondent for this concept in python. SWIG handles this problem by ignoring all multiple declared
functions and methods except the first one encountered. This is a very simple way and apparently it provokes
missing functionality. One way in making methods available to python is to add methods with a different
name in the C wrapper-code which call the overloaded functions/methods. This is very simple to perform
(could be even done automatically) but results in inconsistencies with the C++-interface.

A way to avoid this is to add methods to the python-wrapper, which check the types (and number) of
the arguments and call the (previously renamed) appropriate C++-methods. This is a bit more work, but

6 SIR WRAPPER 26

afterwards the interface stays the same. The Python method can be called like the overloaded C++-method.

In the current status we made only those methods available which are actually used. Only when it was
really necessary we implemented C++-accessor methods. The approach with Python type-checking and the
wrapper-method mentioned above is desirable to be used in a more advanced state of the Application.

6.4.5 Other Issues

Besides the problems discussed above, there still remain a couple issues. Some advanced C++-features like
friend classes, nested classes, operator overloading and namespaces, which SWIG is currently unable to
translate. We did not have to worry about these since they are not exposed in the SIR-Interface.
An issue we actually have sometimes to deal with are exotic data-types like ”long long” or ”long double” and
advanced typedefs like ”typedef ERROR (*sirbhvr fct)(sir behavior*, void*);”. For problems like these we
have to decide individually how to handle them.

6.5 Compilation

6.5.1 Unix

The compilation under Unix follows three basic steps:

1. Generate C-Wrapper with SWIG

swig�c++�shadow�python $(MODULE).i

This runs SWIG on the interface file. The option ”c++” tells SWIG that it has to deal with C++ code,
otherwise it assumes there is C code. ”-python means that we want to generate a python module.
”-shadow” means that SWIG should generate python shadow classes which correspond to the C++-
classes. If this option is omitted, the python interface is ”flat”, without hierarchy. In this case we would
have several hundred static functions which operate the underlying C++-objects. To have shadow-
classes is very convenient, since the library can be used in the same manner as it would be used from
C++.

2. Compile the Wrapper

c++�fpic �fpermissive�c $(MODULE) wrap.c $(INCLUDEPATH)

When compiling the wrapper into an object we have to make sure, that all original SIR header files are
in the include path. The option ”-fpic” is needed since we want to create a shared library. It makes the
compiler produce position-independent code. The option ”-fpermissive” is needed with newer versions
of gcc since SWIG generates apparently not 100% ANSII-C conform code. This option causes the
compiler to be less restrictive and throw warnings instead of errors for certain constructs.

3. Link it into a Shared Library

c++�shared�fpic $(MODULE) wrap.o $(LIBS)�o $(MODULE)cmodule.so

Linking into a shared library can be painful, but with the right compiler-version (we use gcc.2.95.2)
and the right options it usually works. The flag ”-shared” signals the compiler to produce a shared
library. We have to include our just created object, the compiled SIR-library (position independent)
and the python library.

6 SIR WRAPPER 27

6.5.2 Windows

In the windows-environment, shared libraries are called DLL’s. Generating these is comparatively more
complicated. It gets even more complicated because of the fact, that C++-SIR does currently not compile
with Visual C++. Therefore we use gcc under cygwin. It makes no sense to explain the build-process in
detail here.
Here a listing of the commands to get an impression of how it works:

swig�c++�shadow�python sir. i
2

compile the library
4 c++�fpermissive�c sir wrap .c $(INCLUDEPATH)

6 # generate the dll :
gcc�s�Wl,��base�file,sir.base python20. dll sirwrap .o $(SIROBJS)n

8 �lstdc++�mdll �o sirc. dll �Wl,�e, sirc init FPvUlT0@12

10 # generate the . def�file
dlltool ��base�file sir .base��output�def sir . def ��export�all�symbols��dllname sirc.dll sirwrap.o

12

generate the . exp�file
14 dlltool ��base�file sir .base��def sir . def ��output�exp sir.exp��dllname sirc. dll

16 # regenerate the dll :
gcc�s�Wl,��base�file,sir.base sir .exp python20. dll sirwrap .o $(SIROBJS)n

18 �lstdc++�mdll �o sirc. dll �Wl,�e, sirc init FPvUlT0@12

20 # repeat . exp�file�generation:
dlltool ��base�file sir .base��def sir . def ��output�exp sir.exp��dllname sirc. dll

22

final dll�generation:
24 gcc�s sir .exp python20. dll sirwrap .o $(SIROBJS)n

�lstdc++�mdll �o sirc. dll �Wl,�e, sirc init FPvUlT0@12

6.6 Summary

If we consider the amount of work and maintenance it would take to rewrite SIR in Python or to manually
wrap it, SWIG is a very convenient and helpful tool. But there is no magic involved, so there are still quite a
lot of steps to go through until one obtains a conveniently usable wrapper.

Once this is done we have SIR completely accessible through python with almost the same API than
the C++-version – which is not only useful for RESpecCT but also represents a light, fast and platform-
independent scripting-interface which can be used to implement small tools using SIR quickly.

If at some point it may seem desirable to have a perl or a Tcl/Tk -interface to SIR, SWIG can generate
those from the same interface-files with only slight changes.

7 IMPLEMENTATION 28

7 Implementation

This chapter will describe shortly the implementation of each element in the application. Is covers design
decisions made and wants to give some background on user-interface design [5]. It is a quick overview of
how RESpecCT is built and what structure is behind.

We will discuss some general concepts as well as specific classes and where they are derived from. In
order to understand this fully one needs some knowledge of the QT-library which is intensely used. The QT-
classes are not further described, please refer to the official QT-Documentation ([6] or [7]). All QT-Classes
start with a capital ”Q” followed by a descriptive name like ”QWidget”.

The UML class-diagram shows how all the classes are related to each other (Figure 10). This helps getting
a better impression of the structure of the program.

Figure 9: The RESpecCT Main Window

7.1 First Steps

Once we have a Python-version of SIR we can actually start implementing the actual application. So what
do we need? And in which order?

7 IMPLEMENTATION 29

1

0..1 0..*

0..1

1

1

0..1 0..11 10..1

1 1

0..*0..*0..*

11

0..1

0..1

1..*

1

bus map

SC prwizard imp

allocation imp

allocation

SC prwizard

QMenuBar

QxPie

SCTreePopMenu QListView

QxSlice

SC choosemetric imp

SC profDefineMetric

SC itemQxBarChart

editProps

QWorkspace

editProps imp

SC namemetric

ApplicationWindow

SC weighttable

QStatusBar

SC projectSC settings

QListViewItem

SC tree

QxScaleQxChartData

QxPieWidget

SC choosemetric

SC weightDialog

Figure 10: UML Class Diagram.

7 IMPLEMENTATION 30

The first element used is a Main-Window with a toolbar, a menu and a statusbar. Then we have to integrate
some tree-view to display the behavior-hierarchy. Once we got that tree-view, we can start using the SIR-
module and continue expanding.

7.2 The Main Window

Figure 9 shows the RESpecCT main-window. It is based on a QMainWindow with a menubar, a statusbar,
and several detachable toolbars. All of those components can be hidden in order to maximize the workspace.
To organize the workspace we put a horizontal QSplitter in the middle. It separates the workspace into two
parts at a predefined position, this position can be moved by the user by simply dragging it to the left or to
the right. The left side will be reserved for the behavior-tree, in the right side we put a QWorkspace. The
QWorkspace can be used as an MDI Workspace which means that one can open a random number of child-
windows inside the workspace. They can deliberately moved within the workspace, but always stay inside.
The user can resize them, tile them (resize all windows so they fit together in the Workspace) and cascade
them (resize all windows to the same size and put them one behind the other).

7.2.1 Behavior Tree

The behavior-tree class is called SCtree. It inherits from QListView. It adds methods for filling itself
from an SIR-Design, column management, behavior-mapping and some more. When filling itself from a
SIR Design it just creates the toplevel-item, the rest of the design is read recursively from within the items.

The class for the list-items is called SCitem. Obviously it is inherited from QListViewItem. It’s
constructor takes a SIRInstance and creates his immediate children. Each item checks his own type and
automatically uses the corresponding icon. There are different icons for behaviors of type serial, parallel,
leaf, FSM and other. Each SCitem keeps a reference to his SIRInstance and SIRBehavior. In addition
to that there is a dictionary in SCtree which holds key-value-pairs of the type ”SCitem:SIRBehavior”.
This may seem redundant information but is due to the current characteristics of PyQt. Every QT-Object is
actually a C++ object. Every time the QT-code returns an instance to python, it is automatically wrapped
into a Python wrapper-object. As long as we don’t subclass the QT-object there is no problem, but if it is
sub-classed, there is. Python’s memory management automatically garbage-collects any object which is
no longer referenced in the code. In the case of the tree, only the QListview would hold a pointer to its
items, which is in C++. The python wrapper object would be deleted as soon as it gets out of scope in the
Python-code. Any operation on the SCtree which returns an item would then return a QListViewItem which
is no longer wrapped in an SCitem, the Python wrapper-object, since that has been deleted.

To prevent this, we have to keep a reference to the python object (SCitem) in the application. Then the
python-object is not deleted since its reference count is still positive. The SCtree-operations will now return
items of the sub-classed type since the wrapper-object persists.

Often it is convenient to keep references to all objects somewhere, but if one forgets it, there can occur
very strange errors. After discussing this issue in the PyQt-mailinglist, we agreed that it would be convenient
if PyQt kept references to the sub-classed objects transparently. Thus, in the next release of PyQt (version
2.3) there will be no longer a need to think of this.

7 IMPLEMENTATION 31

Figure 11: MDI Workspace

7.2.2 MDI Workspace

MDI means Multi Document Interface. In modern desktop applications it is a common concept which allows
the user to open multiple documents or - more generally speaking - child-windows and let him move them
around deliberately while still keeping them in the main application-window. This is designed in order to
give the user freedom in configuring and adapting the user-interface to his needs and habits, while preventing
the GUI from interfering too much with other applications.

The MDI-workspace of RESpecCT is shown in Figure 11. In the RESpecCT MDI-workspace one can
do code editing, compare different profiling-charts, view and edit properties of behaviors and perform other
refinement-steps at the same time. The danger with MDI is that one loses track of all open windows and that
windows get hidden behind others. On the other hand if the user uses it wisely it can be a powerful tool. We
think that the advantage in productivity is so big that it is worth taking the risk of losing track of the open
windows.

7 IMPLEMENTATION 32

Figure 12: Code Editor.

7.3 Code Editor

RESpecCT - Refinement and Exploration tool for the SpecC Technology - is not an IDE. The name should
make this clear. There are, on the other hand, several reasons which make a code-editor essential:

� During refinement it is often necessary to edit the code and make small modifications.

� A more advanced SpecC-user will be faster to make certain changes directly in the code rather than
using the user-interface.

� Not all modifications of the source code can be performed through the user interface. FSM-behaviors
for example have to be treated very individually.

� For educative purposes or for testing it can be instructive to take a look at the source code in order to
understand how the code evolves.

For all these reasons it was important to include a code editor from the start.
The editor integrated right now (Figure 12) is very basic. It is a QMultilineEdit-widget with some small
enhancements for loading, saving and cut & paste. For a later version it is desirable to have features like
syntax highlighting, unlimited undo and redo and transparent co-editing with the user-interface. This will
however consume a considerable amount of work and a lots of issues concerning this are not clear yet. Thus

7 IMPLEMENTATION 33

Figure 13: Properties Dialog.

we decided to go for a simple editor for the start and enhance it as soon as the rest of the application is more
complete.

7.4 Properties Dialog

The behavior-tree is very good to visualize the hierarchy, to get a quick impression of the topology of the
design and to check the type of the behaviors. It is not appropriate though as a display for the contents of the
behaviors.

To display variables, channels and ports we designed theeditpr-widget (Figure 13). It has a QTabWid-
get with tree tabs named variables, channels and ports. Each tab looks exactly the same. They contain a
QListView with two columns, ”Name” and ”Type”. on the right hand side there are two QPushbuttons,
”Add” and ”Remove”. The properties-dialog is accessible either through the popupmenu of the behavior-tree
or through an icon in the application-toolbar. The dialog scales nicely on resizing and can be minimized or
maximized with the usual buttons in the upper right corner. The design of this dialog has been made using
QT-Designer. The generated class is called ”editpr”. The inherited class is called ”bhEditProp”. It provides
the editor with the required functionality. It takes an SIRInstance as parameter, and fills his QListViews with
the properties of this behavior. The title-bar of the dialog will display the name of the behavior. The buttons
add and remove are meant to let the user add and remove properties. The remove button currently shows the
user dependencies and leads him to the appropriate line in the SpecC-code in order that he can decide himself
what to do. The add-methods are currently not implemented. They should start a wizard which leads the user
through the process of adding a new property.

7.5 Profiler

The general task of the profiling is to compute all kinds of informations about the design. These informations
should help the user to make design decisions like allocation and partitioning. The profiling-tool itself is a

7 IMPLEMENTATION 34

Figure 14: Columns with Profiling Information

command-line-tool currently developed by Lucai Cai. It takes a pointer to a SIRDesign. This design will
be annotated with some information. In oder to interact with the user-interface and to integrate the tool more
closely, we decided to specify an API for the profiling-tool and to compile it into a shared library. This way
we could wrap it into a python module and use it interactively.

7.5.1 Columns

In order to evaluate profiling-results, the user wants to have a display which allows him to view as much
information as possible as fast as possible. Thus it seems very convenient to put the profiling results
as additional columns in the behavior-tree (Figure 14). Like this the user can choose the portion of the
behavior-tree which is most important to him by opening and closing branches and has the corresponding
data right besides it.

After profiling we display some columns which we consider the most interesting ones. Depending on the
design characteristics there may be special data which is of great importance to the designer. Therefore he is
able to choose the columns which he wants to display from a big variety.

The columns displayed by default areOperations, Traffic and Memory Consumption. There can be chosen
columns for all different kinds of operations (like addition). For every operation there can be columns for
every data-type (e.g. integer 16 bit). Memory consumption and traffic can also be examined for every data-
type. Since there are 29 different data-types and 56 different operations in SpecC, there will be about 2000
different possible columns to choose from. In addition there are some higher level metrics computed from

7 IMPLEMENTATION 35

Figure 15: Pie-chart Widget.

others.

7.5.2 Pie Chart

A disadvantage of the profiling-information in the columns is, that you only see numbers. Though most
people today are quite habile in comparing numbers, it is much more intuitive to compare information with a
more graphical representation. Therefore we decided to implement charts.

A pie-chart is a easily readable chart. Our Pie-widget (Figure 15) can take an arbitrary number of
key-value pairs and displays them as different colored slices in the pie. It has a legend which can be aligned
left, right or hidden. The overall sum is displayed in the subtitle, the amount of every single slice can be
displayed in the slice itself (either as absolute value, or as percentage).

The pie-chart-widget is used to display one criteria for one behavior (e.g. different kinds of operations for
behavior ”b2b3”).

7 IMPLEMENTATION 36

Figure 16: Bar-chart Widget.

7.5.3 Bar Chart

Sometimes it is important to compare different behaviors for the same criteria. We could open several pie
charts and put them side by side, but this is not very satisfying. So we implemented the barchart-widget
(Figure 16). The barchart can display one criteria for several behaviors. It scales automatically to whatever
data it contains, the caption of the scale changes - depending on the numbers - to scientific or fixed display.
If there is negative data, the 0-line is moved to wherever it fits best.

Using the ”shift” or ”ctrl” – button, the user can select different behaviors from anywhere in the behavior-
tree. Once he chooses the criteria to be displayed the bar-chart will be shown in the MDI-workspace. It has
to be mentioned, that depending on the size of the screen it may not be advisable to select more than 10-15
behaviors at once.

7.6 Architecture Refinement Tool

After profiling is done, we can use the information obtained to make architecture refinement decisions. Ar-
chitecture refinement consists basically of allocation, partitioning and scheduling. We had to find ways to
make these decisions quick and easy to take.

7.6.1 Allocation Dialog

Allocation is basically the process of selecting the processors one wants to use in the design out of a list of
processors offered from an IP-database. The display we developed is shown in Figure 17.
The allocation-dialog contains two QListViews. On the left there is the list of available processors, on the
right the list of allocated processors. Between them there are two buttons to add or remove processors to the
design. On the very right, there are standard-buttons with captions ”OK”, ”Cancel”, ”Rename” and ”Help”.

7 IMPLEMENTATION 37

Figure 17: Processor Allocation.

The list ”available” shows currently just an internally stored list of processors with information like clock,
performance and cost. This information should be taken from an IP-database later on. If you push the add-
button, a dialog will pop up, asking you for a name (Figure 18) - since it is perfectly allowed to allocate
several processors of the same kind, you have to give them a name in order to be able to identify them.
The application will annotate the design with the information shown in the ”allocated”-list (key values pairs of
processor-type and name). This information will be needed from the architecture refinement tool developed
by Junyu Peng.

7.6.2 Behavior Mapping

After processors have been allocated for the design, there will appear an additional column in the behavior-
tree call ”PE”. There is also added a menu-item in the popup-menu of the behavior-tree called ”map”. Click-
ing on it will show a sub-menu listing the names of all allocated processors. Choosing one of the processors
will map the currently selected behavior to this processor (Figure 19). At the same time the design will be
annotated with the appropriate information.
Behaviors which get not explicitly mapped will be mapped to the same processor as their parent-behavior.
Once the behavior-mapping is finished, you can run the architecture refinement (select ”refine” in the
architecture-menu). This will launch the first step of the architecture refinement. There will be an additional
level of hierarchy introduced representing the processors. Also there will be additional behaviors responsible
for the synchronization of the communication between the behaviors.

7 IMPLEMENTATION 38

Figure 18: Nameenter Dialog.

7.6.3 Scheduling

After that there should follow the second step of the architecture refinement, the scheduling. Scheduling
means to sort all behaviors on one processor in a certain order. There is currently no display for the schedul-
ing. It is not just a one-dimensional problem since it should also be possible to schedule over the hierarchies.
After the order of the execution has been selected by the user, the architecture refinement tool has to be run
again in order to perform the changes in the SIR-datastructure.

7.7 Communication Refinement Tool

The communication refinement tool is currently developed by Samar Abdi. It’s main task is to map the
top-level-channels to busses and introduce transducers if necessary. Transducers are elements capable of
connecting two components with different protocols.

7.7.1 Bus Allocation

Similar to the processor allocation there have to be allocated busses. Since this process is almost the same,
we use the same display. This allows the user getting used to the GUI more quickly. As you see in Figure 20,
there is on the left a list of available busses which lists a selection of busses with some data: descriptive name,
Number of Address bits, number of data-bits and throughput in Mbit per second.
As with the processor-allocation dialog, one will be prompted for a name for the bus-instance (Figure 18).

7.7.2 Channel Mapping

After the bus-allocation one can select the item ”map channels”in the menu ”communication”. This will
open a dialog very similar to the previous (Figure 21). In fact, we used the ”allocation”-dialog, and just
applied a couple of modifications. In the list on the right hand side of the dialog figure are all the top-level
channels which have to be mapped to a bus before the communication refinement-tool can be run. In the
QListView on the right hand side are listed all allocated busses. After selecting a bus and a channel, you can
add that channel to the bus. It will be listed in a tree under the bus.

After all channels are mapped, the list on the right side is empty and the channel-mapping is completed.
Now the dialog can be closed and the communication-refinement tool can be run by choosing the item

7 IMPLEMENTATION 39

Figure 19: Behavior Mapping.

”Refine” in the menu ”Communication”.

Communication refinement will insert the appropriate busses and protocols into the design. If necessary
there will be transducers inserted. A transducer will appear as an additional component on the top-level of
the design.

7.8 Summary

Overall the implementation so far proves that python in conjunction with QT was a good choice for RE-
SpecCT and enabled rapid application development. RESpecCT is now a basic framework showing all nec-
essary concepts like accessing and modifying the SIR, integrating external tools and modules and provides
basic widgets for data-evaluation and for taking decisions. This is what was fixed in the specification of the
project (Section 4).
In addition to that it shows allocation and partitioning and can already be used to perform refinement to the
architecture level on basic designs. Besides the GUI there is still work to be done in the tools. So many of
the functions will only be available in the GUI after they have been implemented in the tools, but integration
and extension is straightforward.

7 IMPLEMENTATION 40

Figure 20: Allocation of Busses.

Figure 21: Map the Top-level Channels to Busses.

8 EXAMPLE 41

8 Example

Now that it is clear what was implemented and how, we want to show how the program actually works. In
this section we describe the use of the program with the help of a small example-design.

Figure 22: Load an Example Design.

Figure 23: The Context Menu.

8.1 Loading and Examining Design

First we load a design into the project. We can do this by choosing the in the menu ”File” the item
”Open Design” or by just clicking on the open-icon in the toolbar. We choose our example-design called
”testbench.sir”. Instantly the behavior-tree of the design is displayed on the right hand side (Figure 22).
Now the user can browse through the hierarchy, the symbols of the behaviors tell what type they are (serial,
parallel, FSM, leaf or other).

8 EXAMPLE 42

Figure 24: Variables of the Behavior.

Figure 25: Channels of the Behavior.

Figure 26: Ports of the Behavior.

8 EXAMPLE 43

Figure 27: Source-code Editor for the Behavior.

Figure 28: Evaluating Dependencies while Deleting a Behavior.

A right mouseclick on a behavior displays the context-menu (Figure 23). There the user can choose to
view and edit the contained variables (Figure 24), channels (Figure 25) and ports (Figure 26), view and edit
the source-code (Figure 27) or to delete the selected behavior (Figure 28).

8.2 Profiling

The next step is to run the profiling-tool. This is done by choosing the item ”Profile Design” in the menu
”Profiler”. This takes typically a minute. After this we get three additional columns in the behavior-tree. They
display overall operations, traffic and storage for the behaviors. If the user wants to visualize the profiling
results, he can choose one or several behaviors by clicking on them with the ”Control”-key pressed. In the
contextmenu he then can choose the submenu ”Chart”. Now he can visualize the amounts of different types
of operations (Figure 29). Depending on the nature of the data the user wants to visualize, bar-charts or a
pie-charts are displayed.

8 EXAMPLE 44

Figure 29: View Profiling Results.

Figure 30: Allocating Processors for the Design.

8.3 Architecture Exploration

The main purpose of the profiling-information is to facilitate the decision-taking for the architecture-
exploration. The first decision to take there is to choose the processors we want to use in the design. This
process is called allocation of components (Figure 30). The next decision consists of mapping parts of the
design to the selected processors. We call this partitioning (Figure 31). If a behavior is not mapped explicitly
to a component, it will be mapped to the processor its parent is mapped to. After the mapping is performed
the architecture refinement tool can be run. Basically the tool adds a new level of hierarchy to the design,
which represents the processors and some additional behaviors, synchronizing the communication between
the processors. The resulting design is shown in Figure 32.

8.4 Communication Refinement

As the communication refinement basically consists of introducing protocols in order to get the communica-
tion between components cycle-accurate, we first allocate busses and then map the toplevel channels to these

8 EXAMPLE 45

Figure 31: Mapping Behaviors to Processors.

Figure 32: The Architecture Refinement Tool Introduces an Additional Level of Hierarchy.

(Figure 33). The bus-allocation can be called with the item ”Allocate busses ...” in the menu ”Communica-
tion”. As with the allocation of processors, we instantiate items of a list and give them unique names. Then
we choose the item ”Map channels ...” of the same menu which will show the toplevel channels and lets the
user map them to the allocated busses (Figure 34). If all toplevel channels have been mapped, the commu-
nication refinement tool can be called (item ”Refine” in the menu ”Communication”). The communication
refinement tool will inline bus-protocols in the design. If the protocols of the components do not match the
connected bus, it will add additional components, called transducers which will transform one protocol to
another (Figure 35).

8.5 Refinement to RTL

The refinement of the register transfer level is still in early research stages and therefore there is no display
yet for it. We will develop displays and interfaces to this step as soon as it will be clear what information will
be exactly needed in order to get an efficient implementation.

8 EXAMPLE 46

Figure 33: Allocating Busses for the Design.

Figure 34: Mapping of the Toplevel Channels.

8.6 Summary

Although this is a very small example and therefore not all difficulties and special cases occur, it shows the
basic refinement steps quite clearly. We see, that the user has to make certain decisions manually, other parts
are automated and their result will reflect the quality of the decision previously taken by the user. In this
manner he gets feedback and can approach a solution more compliant with the original constraints of an
iterative process.

9 CONCLUSION 47

Figure 35: The Communication Refinement Tool Inserts Protocols and, if necessary, Transducers.

9 Conclusion

Although there has been done substantial work on this project, it is far from being finished. However, to
finish it has never been the goal. The goal has been to establish a basic framework, create the essential
widgets, come up with all basic concepts how things should be implemented and verify them.

To use Python as the programming language and QT as the toolkit was a keen try, and apparently it turned
out to be the right choice. In very short time we managed to build a nice, friendly user-interface - and got a
convenient scripting-interface for SIR almost for free.

RESpecCT is far from being an industry-standard EDA-tool, but it shows the principles and methodol-
ogy of SpecC. Once it gets the lacking functionality it may convince people in the industry that SpecC is
the Golden Way to go in System Level Synthesis. And perhaps in a couple of years SpecC will mark the
beginning of designs of so far unknown complexity and performance.

9 CONCLUSION 48

References

[1] D. Gajski, J. Zhu, R. D¨omer, A. Gerstlauer, S. Zhao,SpecC: Specification Language and Design
Methodology, Kluwer Academic Publishers, 2000.

[2] D. Gajski, J. Zhu, R. D¨omer, A. Gerstlauer, S. Zhao,The SpecC Methodology, Technical Report ICS-
99-56, University of California, Irvine, December 1999.

[3] R. Dömer, The SpecC Internal Representation, Technical Report ICS-99, University of California,
Irvine, January 1999.

[4] R. Dömer, J. Zhu, D. GajskiThe SpecC Language Reference Manual, Technical Report ICS-98-13,
University of California, Irvine, March 1998.

[5] Dan R. Olsen, Jr.,Developing User Interfaces, San Francisco: Morgan Kauffmann Publishers, 1998.

[6] Trolltech AS,QT: The Official Documentation, New Riders Publishing, Devember 2000.

[7] Trolltech AS,QT Online Reference Documentation v2.2.4, http://doc.trolltech.com/index.html, January
2001.

[8] Matthias Kalle Dalheimer,Programming with Qt, Köln: O’Reilly, 1999.

[9] David M. Beazley,SWIG Users Manual v1.1, http://swig.sourceforge.net/doc.html, 1997.

[10] Guido van Rossum, Fred L. Drake, Jr., editor,Python Reference Documentation v2.0,
http://www.python.org/doc/current, October 2000.

[11] Mark lutz and David Ascher,Learning Python, O’Reilly, March 1999.

[12] Bruce Eckel,Thinking in C++, New Jersey: Prentice Hall, 1995.

[13] Herbert Schildt,C: The Complete Reference, Berkeley: Osborne McGraw-Hill, 1987.

[14] Herbert Schildt,Turbo C/C++, Berkeley: Osborne McGraw-Hill, 1990.

A COMMUNICATION WITH THE TOOLS 49

A Communication with the Tools

A.1 Profiler

The communication between the user-interface and the profiler is made through annotations in the SIR-
datastructure. The datastructure itself is passed through an API between them.

A.1.1 From the User Interface

� Allocation and Partitioning Information
The profiler evaluates the annotated allocation- and partitioning-informationspecified in Appendix A.2.
If there is no allocation yet performed, it assumes one processor with name ’DEFAULT’ for all behav-
iors.

� Weight Tables
For every allocated processor there is a weight table provided. If there is no processor allocated, the
name of the PE will be DEFAULT, there will be only one weight table. Every weight table comprises
three global annotations:

1. Row Header
PR WEIGHT (PE name)OPERATIONTYPE = ”*,/”

The value is a comma-seperated list of operation-symbols. A list of all common operations and
their symbols is provided in Appendix A.1.4.

2. Column Header
PR WEIGHT (PE name)DATATYPE = ”int,unsigned int,bool”

The value of this annotation is a comma seperated list of datatypes. A list of the names of the
currently used datatypes is provided in Appendix A.1.5.

3. Weight table contents
PR WEIGHT (PE name)DATA = ”1.0,3.2,4.5,5.1 ..”

The actual data of the weight table is stored as a comma seperated list of float values. The total
number of values is the number of Operationtypes multiplied by number of datatypes. If we have
a weighttable with three operations and three datatypes like in Table 2 the datastring will look
like this:
”v1,v2,v3,v4,v5,v6,v7,v8,v9”

type1 type2 type3
op1 v1 v2 v3
op2 v4 v5 v6
op3 v7 v8 v9

Table 2: Mini Weight table

A.1.2 Results of the profiler

� Headers
For every category, there are two headers. These are annotated to every SIRBehavior.

– PR HEADER OP OPERATIONTYPE = ”*,/,-”
This string corresponds to the operationtype annotation in the weight table.

A COMMUNICATION WITH THE TOOLS 50

– PR HEADER OP DATATYPE = ”int,unsigned int,bool”
This string corresponds to the datatype annotation for the weight tables.

– PR HEADER TRAFFICTYPE = ”in,out”

– PR HEADER TRAFFIC DATATYPE = ”int,unsigned int,bool”
This string corresponds to the datatype annotation for the weight tables.

– PR HEADER MEMORYTYPE = ”static, stack”

– PR HEADER MEMORY DATATYPE = ”int,unsigned int,bool”
This string corresponds to the datatype annotation for the weight tables.

� Raw results
The raw results are unweighted numbers as determined by the profiler. These annotations are importand
for the profiler internally. They are used to apply different weight tables to the design without having
to reperform the actual profiling. The composition of the annotation value works like described for the
data annotation for weight tables.

– PR RAW OPERATIONS = ”1,3,4,5 ..”

– PR RAW TRAFFIC = ”1,3,4,5 ..”

– PR RAW MEMORY = ”1,3,4,5 ..”

� Weighted results
These are the results displayed by the user-interface. They represent the raw results applied with the
weight tables. The composition of the annotation value works like described for the data annotation for
weight tables.

– PR OPERATIONS = ”1,3,4,5 ..”

– PR TRAFFIC = ”1,3,4,5 ..”

– PR MEMORY = ”1,3,4,5 ..”

� Number of executions
The number of executions indicates how often an instance is executed per execution of it’s parent-
behavior. To get the absolut number of executions of an instance, this number has to be multiplied
with the number of executions of its parent, its parents parent and so on up to the top-level behav-
ior. In order to be more accurate, this information is annotated in every instance. It looks like this:
PR NUMBER = ”100”

� Communication
In order to be able to analyze the communication between behaviors in every behavior with sub-
behaviors there are tree annotations dedicated to that.

1. PR HEADER COMM PAIR = ”A B,A C,B D”
This is a list of pairs of subbehaviors communicating with each other. The behaviors are separated
by space, the pairs by comma.

2. PR HEADER COMM TYPE = ”in,out,inout”
This is a list of different types of communication.

3. PR COMM DATA = ”1,2,3,4,...”
The composition of the annotation value works like described for the data annotation for weight
tables, only that instead of operations we have behavior-pairs and instead of datatypes there are
different types of communication.

A COMMUNICATION WITH THE TOOLS 51

A.1.3 API

The API between GUI and the profiler consists of three functions:

� instrument
int instrument(*SIRDESIGN)
Instrument the design with counters. This function has to be called before compiling the design into
and compiling it for simulation.

� analyze
int analyze(*SIRDESIGN)
This function performs the actual profiling. It extracts data from a file generated during simulation. It
calculates the raw profiling information and then runs the function ’weight’ on the design.

� re analyze
int re analyze(*SIRDESIGN)
This step applies new weight-tables to the design without performing the possibly time consuming
profiling step. It only has to be used if different processors or different weight tables have been selected
or if partitioning information has changed after performing the profiling.

A.1.4 Symbols for common operations

void SIR_EXPR_VOID
#1 SIR_EXPR_CONSTANT
#I SIR_EXPR_IDNETIFIER
() SIR_EXPR_PARENTHESES
this SIR_EXPR_THIS
[] SIR_EXPR_ARRAY_ACCESS
f() SIR_EXPR_FUNCTION_CALL
. SIR_EXPR_MEMBER_ACCESS
-> SIR_EXPR_MEMBER_POINTER
p++ SIR_EXPR_POST_INCREMENT
p-- SIR_EXPR_POST_DECREMENT
[:] SIR_EXPR_BITSLICE
++p SIR_EXPR_PRE_INCREMENT
--p SIR_EXPR_PRE_DECREMENT
&p SIR_EXPR_ADDRESS_OF
*p SIR_EXPR_CONTENT_OF
+x SIR_EXPR_POSITIVE
-x SIR_EXPR_NEGATIVE
˜ SIR_EXPR_NOT
! SIR_EXPR_LOGICAL_NOT
sizeof(E) SIR_EXPR_SIZEOF_EXPR
sizeof(C) SIR_EXPR_SIZEOF_TYPE
()x SIR_EXPR_TYPE_CONVERSION
@ SIR_EXPR_CONCATENATION
* SIR_EXPR_MULTIPLY
/ SIR_EXPR_DIVIDE
% SIR_EXPR_MODULO
+ SIR_EXPR_ADD

A COMMUNICATION WITH THE TOOLS 52

- SIR_EXPR_SUBTRACT
<< SIR_EXPR_SHIFT_LEFT
>> SIR_EXPR_SHIFT_RIGHT
< SIR_EXPR_LESS
> SIR_EXPR_GREATER
<= SIR_EXPR_LESS_EQUAL
>= SIR_EXPR_GREATER_EQUAL
== SIR_EXPR_EQUAL
!= SIR_EXPR_NOT_EQUAL
& SIR_EXPR_AND
ˆ SIR_EXPR_EOR
| SIR_EXPR_OR
&& SIR_EXPR_LOGICAL_AND
|| SIR_EXPR_LOGICAL_OR
:? SIR_EXPR_CONDITION
= SIR_EXPR_ASSIGNMENT
*= SIR_EXPR_MUL_ASSIGN
/= SIR_EXPR_DIV_ASSIGN
%= SIR_EXPR_MOD_ASSIGN
+= SIR_EXPR_ADD_ASSIGN
-= SIR_EXPR_SUB_ASSIGN
<<= SIR_EXPR_SHL_ASSIGN
>>= SIR_EXPR_SHR_ASSIGN
&= SIR_EXPR_AND_ASSIGN
ˆ= SIR_EXPR_EOR_ASSIGN
|= SIR_EXPR_OR_ASSIGN
comma SIR_EXPR_COMMA
mem Weight for memory
traffic Weight for traffic

A.1.5 Names of common types

bool SIR_TYPE_BOOL
char SIR_TYPE_CHAR
unsigned char SIR_TYPE_UCHAR
short SIR_TYPE_SHORT
unsigned short SIR_TYPE_USHORT
int SIR_TYPE_INT
unsigned int SIR_TYPE_UINT
long SIR_TYPE_LONG
unsigned long SIR_TYPE_ULONG
long long SIR_TYPE_LONGLONG
unsigned long long SIR_TYPE_ULONGLONG
float SIR_TYPE_FLOAT
double SIR_TYPE_DOUBLE
long double SIR_TYPE_LONGDOUBLE
bit SIR_TYPE_BIT
unsigned bit SIR_TYPE_UBIT

A COMMUNICATION WITH THE TOOLS 53

void SIR_TYPE_VOID
event SIR_TYPE_EVENT
* SIR_TYPE_POINTER
struct SIR_TYPE_STRUCT
union SIR_TYPE_UNION
enum SIR_TYPE_ENUM
[] SIR_TYPE_ARRAY
f() SIR_TYPE_FUNCTION
*t SIR_TYPE_ANY_TYPE
behavior SIR_TYPE_BEHAVIOR
channel SIR_TYPE_CHANNEL
interface SIR_TYPE_INTERFACE
time SIR_TYPE_TIME

A.2 Architecture Refinement Tool

The communication between the user-interface and the architecture refinement tool is made through annota-
tions in the SIR-datastructure. The datastructure itself is passed through an API between them. The following
information has to be delivered in the specified format:

� Allocation Information
The allocation information is a global annotation. It should look like this:
AR PES = ”name1:proc1,name2:proc2, ... ,nameN:procN”

where ”name1” is the name of the instance of processor one and ”proc1” is the the name of the
processor-definition.

The annotationAR TOPLEVEL = ’nameof top level behavior’ tells the architecture refinement tool
what behavior is the actual toplevel behavior. This is needed because there is a testbench around the
design which will not be partitioned nor scheduled.

� Partitioning Information
The partitioning information is annotated in every behavior. It is defined like this:
AR MAPPED TO = ”proc name”

”proc name” is the name of the processor the behavior is mapped to. If several instances of one
behavior get mapped to different processors, there will be automatically made a copy of the behavior.
To the original name there will be appended the suffix ”1”,” 2” and so on, depending how many copies
are made.

� Scheduling Information
In order to perform scheduling, the tool needs information about the order children of a behavior are to
be executed on a processor.
AR prname1 = ”inst1 inst2 ... instN”
AR prname2 = ”inst1 inst2 ... instN”
AR prname3 = ”inst1 inst2 ... instN”

This means that for every processor there is an annotation with an ordered list of the children running on
this processor. If there is a flattened hierarchy, inst1.inst11 and inst1.inst12 are used instead of inst1
(presuming inst11, inst12 are child-behaviors of inst1). The ”AR prnamex” - annotations do not
exist in leaf-behaviors or flattened hierarchies since they only contain information about subbehaviors.

A COMMUNICATION WITH THE TOOLS 54

A.3 Communication Refinement-tool

The data-exchange with the communication refinement tool is made also through annotations in the SIR-
datastructure. We try to make them as similar as possible to the architecture refinement annotations, only we
use the prefix ”CR ” for them.

� Allocation:
List of the busses instantiated. ”Names” are the names of the instances, ”bus” are the names of the
actual busses.
CR BUSSES = ”name1:bus1,name2:bus2,...,nameN:busN”

� Channel mapping:
Each channel-instance is annotated like this:
” CR BUS = busnamex”
where ”busname” is the name of the appropriate bus-instance.

� Component-address:
CR ADDRESS = (INT) address

� Addressing scheme:
For each bus, there has to be specified an addressing-scheme

CR DEST START = (INT) first bit of destination address
CR DEST END = (INT) last bit of destination address
CR SOURCESTART = (INT) first bit of source address
CR SOURCEEND = (INT) last bit of source address
CR MULTI START = (INT) first bit of destination address
CR MULTI END = (INT) last bit of destination address

� Data transfer semantics:
Each bus we annotate also with a data transfer semantics:

CR SEND ADDRESS = 1 or 0
CR SEND ID = 1 or 0
CR SEND TYPE = 1 or 0
CR SEND SIZE = 1 or 0

� Name of the protocol:
CR PROTOCOL = protocolx

� Code of the protocol:
Additionally in each bus the code for the specified protocol has to be included (can be retrieved from
the protocol-database)

B CLASS DOCUMENTATION 55

B Class Documentation

B.1 class allocation imp - Enhances the Dialog allocation

Declared in module allocationimp

B.1.1 Inheritance hierarchy:

allocationimp.allocationimp
allocation.allocation

B.1.2 Synopsis

class allocation_imp(allocation):
def allocation_imp.allocation_imp.__init__(self, parent, label=’Processor’) # Initi
def allocation_imp.allocation_imp.add(self) # Adds an item to the allocated -list.
def allocation_imp.allocation_imp.alloc_changed(item) # Is invoked when the selecti
def allocation_imp.allocation_imp.avail_changed(item) # Is invoked when the selecti
def allocation_imp.allocation_imp.remove(self) # Remove item from the allocated -li
def allocation_imp.allocation_imp.wtChoose(self) # Show a dialog to choose a weight

Inherited from qt.QObject
def qt.QObject.__init__(self, *args)

Inherited from qt.QPaintDevice
def qt.QPaintDevice.__del__(self)
def qt.QPaintDevice.__init__(self, *args)

Inherited from qt.QWidget
def qt.QWidget.__init__(self, *args)

Inherited from qt.QDialog
def qt.QDialog.__init__(self, *args)

Inherited from qt.Qt
def qt.Qt.__del__(self)
def qt.Qt.__init__(self, *args)

Inherited from allocation.allocation
def allocation.allocation.__init__(self, parent=None, name=None, modal=0, fl=0)
def allocation.allocation.add(self)
def allocation.allocation.alloc_changed(self, a0)
def allocation.allocation.avail_changed(self, a0)
def allocation.allocation.event(self, ev)
def allocation.allocation.remove(self)
def allocation.allocation.rename(self)

B CLASS DOCUMENTATION 56

B.1.3 Description

B.1.3.1 It offers a list of predefined processors with some data and let’s the user allocate them for the
design. Every instantiated processor (or bus) has to be named (the user will be prompted for a name).

self.available: list of available items

self.allocated: list of allocated items

self.add button: add items toallocated

self.remove button: remove items fromallocated

self.label: defines the type of items which are listed (e.g."processor")

B.1.4 allocation imp.allocation imp.add(self)

Adds an item to theallocated -list. If an item on the right side is marked, you will be asked for a name
(dialog nameenter). The item will be added on the list on the right hand side.

B.1.5 allocation imp.allocation imp.alloc changed(item)

Is invoked when the selection ofallocated changes Will be used to enable/diable the remove-button. Not
used yet

B.1.6 allocation imp.allocation imp.avail changed(item)

Is invoked when the selection ofavailable changes Will be used to enable/diable the add-button. Not
used yet

B.1.7 allocation imp.allocation imp.remove(self)

Remove item from theallocated -list If no item is selected, an information-box will be shown, else the
selected itme will be removed from the list.

B.1.8 allocation imp.allocation imp.wtChoose(self)

Show a dialog to choose a weight-table Displays only .txt-files by default.

B.2 class ApplicationWindow - The MDI Application-window

Declared in module RESpecCT

B.2.1 Inheritance hierarchy:

RESpecCT.ApplicationWindow
qt.QMainWindow

B CLASS DOCUMENTATION 57

B.2.2 Synopsis

class ApplicationWindow(QMainWindow):
def RESpecCT.ApplicationWindow.__init__(self) # Initialize the main-window
def RESpecCT.ApplicationWindow.about(self) # Display an about-messagebox
def RESpecCT.ApplicationWindow.aboutQt(self)
def RESpecCT.ApplicationWindow.annotate_partitioning(self) # Annotate the partition
def RESpecCT.ApplicationWindow.ar_refine(self) # Run the partitioning-refinement-to
def RESpecCT.ApplicationWindow.changeCurrentDesign(self, filename)
def RESpecCT.ApplicationWindow.closeEvent(self, ce) # Overrides the closeEvent of Q
def RESpecCT.ApplicationWindow.comm_refine(self) # Call the communication refinemen
def RESpecCT.ApplicationWindow.copy_critical(self) # Copy critical behaviors
def RESpecCT.ApplicationWindow.designUpdate(self) # Update the display with the sir
def RESpecCT.ApplicationWindow.edit_sc(self, fileName=’’, path=’’, line=0) # Open a
def RESpecCT.ApplicationWindow.findfile(self, dir, file) # Find a SpecC-file in the
def RESpecCT.ApplicationWindow.map_chnl(self) # Map high-level-channels to allocate
def RESpecCT.ApplicationWindow.map_pr(self, click) # Map a behavior to a processor
def RESpecCT.ApplicationWindow.new_project(self) # Wizard to create a new project
def RESpecCT.ApplicationWindow.nop(self) # Does nothing
def RESpecCT.ApplicationWindow.openDesign(self, fileName=None) # Opens a new design
def RESpecCT.ApplicationWindow.profile(self) # Run the profiler on the current desi
def RESpecCT.ApplicationWindow.saveDesign(self, id=0) # Shows a savedialog
def RESpecCT.ApplicationWindow.select_busses(self) # Do the allocation of busses
def RESpecCT.ApplicationWindow.select_procs(self) # Do the allocation of processors
def RESpecCT.ApplicationWindow.toggle_partitioning(self) # Toggle display of column

Inherited from qt.QObject
def qt.QObject.__init__(self, *args)

Inherited from qt.QPaintDevice
def qt.QPaintDevice.__del__(self)
def qt.QPaintDevice.__init__(self, *args)

Inherited from qt.QWidget
def qt.QWidget.__init__(self, *args)

Inherited from qt.QMainWindow
def qt.QMainWindow.__init__(self, *args)

Inherited from qt.Qt
def qt.Qt.__del__(self)
def qt.Qt.__init__(self, *args)

B.2.3 Description

This is the main-window. It contains a menu, treewindow and an mdi-workspace. And several toolbars. It
manages all main objects like the behavior-tree and keeps references to them. Importand class-variables:

B CLASS DOCUMENTATION 58

self.design: Reference to the actually displayed SIRDesign.

self.mbh: Reference to the mainbehavior of the design.

self.charts: List of open chartwidgets.

self.sc edits: Dictionary of open SpecC code editor windows. Format:fg

self.sir: Reference to sctree-widget

self.ws: Reference to MDI-workspace

self.menuBar: Menubar

self.statusBar: Statusbar

B.2.4 RESpecCT.ApplicationWindow. init (self)

Initialize the main-window
All variables are initialized, the menu is filled, toolbars instantiated, the splitter, a tree and a QWorkspace

are instantiated

B.2.5 RESpecCT.ApplicationWindow.annotate partitioning(self)

Annotate the partitioning information
This method annotates every behavior with the processor it is mapped to. Typically it has to be run before

the architecture refinement-tool is executed, but should also be run before profiling is performed. To be sure,
that there are not two instances of one behavior mapped to different processors, the method copycritical is
called first.

B.2.6 RESpecCT.ApplicationWindow.ar refine(self)

Run the partitioning-refinement-tool
To run this method, partitioning has to be performed and a top-level behaviors has to be set. After running

it, the bahvior-tree will be updated with the resulting design

B.2.7 RESpecCT.ApplicationWindow.closeEvent(self, ce)

Overrides the closeEvent of QWidget
Saves the projectfile and the ini-file

B.2.8 RESpecCT.ApplicationWindow.copy critical(self)

Copy critical behaviors
Makes copies of critical behaviors. Critical means, that two instances of one behavior are mapped to two

different processors

B.2.9 RESpecCT.ApplicationWindow.designUpdate(self)

Update the display with the sir-file in memory
Clears the behavior-tree and redisplays the contents of the design

B CLASS DOCUMENTATION 59

B.2.10 RESpecCT.ApplicationWindow.edit sc(self, fileName=”, path=”, line=0)

Open a SpecC-file in the code-editor
Takes a filename, an optional path and an optional linenumber if the file exists it is opened and displyed

in a QMultiLineEdit The Caption of the titlebar of the editor will be the filename, the icon will be set to the
specc-icon

B.2.11 RESpecCT.ApplicationWindow.findfile(self, dir, file)

Find a SpecC-file in the current directory
This method takes a QDir and a filename. The directory and it’s subdiractories are successively searched

for the specified filename. The comlete path of the first occurence is returned. if it is not found, an empty
string is returned

B.2.12 RESpecCT.ApplicationWindow.map chnl(self)

Map high-level-channels to allocated busses
Opens abus map -dialog in order to let the user map the top-level channels to the allocated busses.

B.2.13 RESpecCT.ApplicationWindow.map pr(self, click)

Map a behavior to a processor
Gets called when the user clicks on a processor in the contextmenu of the behavior-tree. Determines

which processor was selected, puts the name of that processor into the column and annotates the instance in
the SIRDesign

B.2.14 RESpecCT.ApplicationWindow.new project(self)

Wizard to create a new project
Shows wizard to create a new project. A projectfile has to be created (always in the project-directory). At

least one design has to be specified along with it’s status and a description.

B.2.15 RESpecCT.ApplicationWindow.nop(self)

Does nothing
Used for functions in the GUI which are not yet implemented (e.g. buttons or menu-items

B.2.16 RESpecCT.ApplicationWindow.openDesign(self, fileName=None)

Opens a new design
Uses QFileDialog; Loads SIR and sc-files, however if filename is specified, it is assumed to be a SIR-file

B.2.17 RESpecCT.ApplicationWindow.profile(self)

Run the profiler on the current design, display some general results
First the design is instrumented, then compiled and simulated, then profiled and eventually analysed with

a certain weight-table. After all these steps have been successful, there are added some columns of general
interest to the design (like traffic, operations and storage)

B CLASS DOCUMENTATION 60

B.2.18 RESpecCT.ApplicationWindow.saveDesign(self, id=0)

Shows a savedialog
Lets the user save the design as SIR or SC

B.2.19 RESpecCT.ApplicationWindow.select busses(self)

Do the allocation of busses
Opens anallocation imp -dialog, adjusts all the captions and columnnames in the dialog, Insets some

sample-data into the list of available busses. After closing the dialog, a list of the allocated busses is stored
in self.prj.busses.

B.2.20 RESpecCT.ApplicationWindow.select procs(self)

Do the allocation of processors (achitecture exploration)
Opens the processor-allocation dialog (allocationimp) and let’s the user select processors. After the dialog

is closed, a column"PE" is added to the tree (if not already existent and the allocated processors are inserted
into the context-menu in order to give the user the possibility to perform partitioning.

B.2.21 RESpecCT.ApplicationWindow.toggle partitioning(self)

Toggle display of columnPE
Toggles the display of the columnPE in the behavior-tree which contains the partitioning information. If

previously partitioning decesions have been taken, they will be extracted from the annotations in the SIR and
dsplayed as well.

B.3 class bus map

Declared in module busmap

B.3.1 Inheritance hierarchy:

busmap.busmap
allocation.allocation

B.3.2 Synopsis

class bus_map(allocation):
def bus_map.bus_map.__init__(self, parent)
def bus_map.bus_map.add(self)
def bus_map.bus_map.alloc_changed(item)
def bus_map.bus_map.avail_changed(item)
def bus_map.bus_map.remove(self)

Inherited from qt.QObject
def qt.QObject.__init__(self, *args)

Inherited from qt.QPaintDevice
def qt.QPaintDevice.__del__(self)

B CLASS DOCUMENTATION 61

def qt.QPaintDevice.__init__(self, *args)

Inherited from qt.QWidget
def qt.QWidget.__init__(self, *args)

Inherited from qt.QDialog
def qt.QDialog.__init__(self, *args)

Inherited from qt.Qt
def qt.Qt.__del__(self)
def qt.Qt.__init__(self, *args)

Inherited from allocation.allocation
def allocation.allocation.__init__(self, parent=None, name=None, modal=0, fl=0)
def allocation.allocation.add(self)
def allocation.allocation.alloc_changed(self, a0)
def allocation.allocation.avail_changed(self, a0)
def allocation.allocation.event(self, ev)
def allocation.allocation.remove(self)
def allocation.allocation.rename(self)

B.4 class editProps imp - Class for diplaying properties of behaviors

Declared in module editPropsimp

B.4.1 Inheritance hierarchy:

editPropsimp.editPropsimp
editProps.editpr

B.4.2 Synopsis

class editProps_imp(editpr):
def editProps_imp.editProps_imp.__init__(self, parent, inst) # Initializes the Widg
def editProps_imp.editProps_imp.del_ch(self) # Delete a channel
def editProps_imp.editProps_imp.del_port(self) # Delete a port
def editProps_imp.editProps_imp.del_var(self) # Delete a variable

Inherited from qt.QObject
def qt.QObject.__init__(self, *args)

Inherited from qt.QPaintDevice
def qt.QPaintDevice.__del__(self)
def qt.QPaintDevice.__init__(self, *args)

Inherited from qt.QWidget

B CLASS DOCUMENTATION 62

def qt.QWidget.__init__(self, *args)

Inherited from editProps.editpr
def editProps.editpr.__init__(self, parent=None, name=None, fl=0)
def editProps.editpr.del_var(self)

Inherited from qt.Qt
def qt.Qt.__del__(self)
def qt.Qt.__init__(self, *args)

B.4.3 Description

It contains aQTabWidget with tree tabs (variables, channels, ports). This class is subclassed from edit-
Props, which is generated from QT-Designer.

TODO: the add methods as well as some more intelligence in thedelete - methods.

B.4.4 editProps imp.editProps imp. init (self, parent, inst)

Initializes the Widget
inst is the SIRBhvrInst, whose properties will be displayed. It fills the three lists and connests the

buttons with appropiate methods.

B.4.5 editProps imp.editProps imp.del ch(self)

Delete a channel
Tries to delete the selected channel (if any). If there is any dependency, it is shown in a messagebox, the

user can jump then to the code and examine it.

B.4.6 editProps imp.editProps imp.del port(self)

Delete a port
Tries to delete the selected port (if any). If there is any dependency, it is shown in a messagebox, the user

can jump then to the code and examine it.

B.4.7 editProps imp.editProps imp.del var(self)

Delete a variable
Tries to delete the selected variable (if any). If there is any dependency, it is shown in a messagebox, the

user can jump then to the code and examine it.

B.5 class SC choosemetric imp - Widget for choosing metrics for display in the be-
haviortree

Declared in module SCprofiler

B CLASS DOCUMENTATION 63

B.5.1 Inheritance hierarchy:

SC profiler.SCchoosemetricimp
SC choosemetric.SCchoosemetric

B.5.2 Synopsis

class SC_choosemetric_imp(SC_choosemetric):
def SC_profiler.SC_choosemetric_imp.__init__(self, app, mlist) # Constructor
def SC_profiler.SC_choosemetric_imp.accept(self) # Extend the built in method accep
def SC_profiler.SC_choosemetric_imp.add_metric(self)
def SC_profiler.SC_choosemetric_imp.additem(self, i)
def SC_profiler.SC_choosemetric_imp.remove_metric(self)
def SC_profiler.SC_choosemetric_imp.toggle_check(self, item, point, column)

Inherited from qt.QObject
def qt.QObject.__init__(self, *args)

Inherited from qt.QPaintDevice
def qt.QPaintDevice.__del__(self)
def qt.QPaintDevice.__init__(self, *args)

Inherited from qt.QWidget
def qt.QWidget.__init__(self, *args)

Inherited from qt.QDialog
def qt.QDialog.__init__(self, *args)

Inherited from SC_choosemetric.SC_choosemetric
def SC_choosemetric.SC_choosemetric.__init__(self, parent=None, name=None, modal=0,
def SC_choosemetric.SC_choosemetric.add_metric(self)
def SC_choosemetric.SC_choosemetric.remove_metric(self)
def SC_choosemetric.SC_choosemetric.toggle_check(self, a0, a1, a2)

Inherited from qt.Qt
def qt.Qt.__del__(self)
def qt.Qt.__init__(self, *args)

B.5.3 Description

Inherits from the class"SC choosemetric" created in the qt-designer.

B.5.4 SC profiler.SC choosemetric imp.accept(self)

Extend the built in methodaccept()
save the metrics in the application-ini-class and close the window.

B CLASS DOCUMENTATION 64

B.6 class SC item - Itemclass for the SC tree

Declared in module spectree

B.6.1 Inheritance hierarchy:

spectree.SCitem
qt.QListViewItem

B.6.2 Synopsis

class SC_item(QListViewItem):
def spec_tree.SC_item.__init__(self, parent, inst, name) # Initialize the Item
def spec_tree.SC_item.applySubtree(self, methodcall) # iterates through the whole s
def spec_tree.SC_item.arSchAnnotate(self)
def spec_tree.SC_item.changeBeh(self, ask) # Change the SIR_behavior of the item.
def spec_tree.SC_item.copy_beh(self) # Copy the behavior of this item
def spec_tree.SC_item.copy_critical(self) # Copy behavior if critical, recurse thro
def spec_tree.SC_item.fill_column(self, column, name) # fill the column with the an
def spec_tree.SC_item.getMetricValue(self, Atype, pair_list) # Take a list of pairs
def spec_tree.SC_item.mappedTo(self) # Returns the processor it is mapped to.
def spec_tree.SC_item.setTableValue(self, pos, type, pairs)
def spec_tree.SC_item.tree_copy(self) # Copy this item recursively

Inherited from qt.Qt
def qt.Qt.__del__(self)
def qt.Qt.__init__(self, *args)

Inherited from qt.QListViewItem
def qt.QListViewItem.__init__(self, *args)

B.6.3 Description

Extends QlistViewItem with the functionality of displaying and handling with SIRBhvrInstances. Class
Variables:

self.Inst: Reference to the currently displayed instance.

self.Beh: SIR Behavior of currently displayed instance

self.proc: Processor this instance is mapped to (only after partitioning)

B.6.4 spec tree.SC item. init (self, parent, inst, name)

Initialize the Item
Chooses the corresponding icon for the Item. Creates all child-items

parent: parent-item

B CLASS DOCUMENTATION 65

inst: instance to be displayed

name: name of the instance

B.6.5 spec tree.SC item.applySubtree(self, methodcall)

iterates through the whole subtree and applies this method
Methodcall has to be a command like"self.copybeh()" in form of a string

B.6.6 spec tree.SC item.changeBeh(self, ask)

Change the SIRbehavior of the item.
Changes the SIRBehavior of the item. Performs the change not only in the SCtree, but also in the SIR.

Checks if there is multiple instantiations of the parent-behavior. Asks if the change should be performed for
all instantiations or only for this. The parameterask is boolean and defines if the method should pop up
confirmation-dialogs or not.

B.6.7 spec tree.SC item.copy beh(self)

Copy the behavior of this item

� Copy the behavior

� Update the behavior pointer in the listViewItem

� Change the type of the instance to the new behavior

� Update the behdic of the QListView

B.6.8 spec tree.SC item.copy critical(self)

Copy behavior if critical, recurse through tree
Checks there is another instance of the same behavior which is mapped to a different processor. If so then

copy the whole tree under it. goes through all subbehaviors and siblings recursively.

B.6.9 spec tree.SC item.fill column(self, column, name)

fill the column with the annotated value of notename

column: is the number of the column the value should be added

name: name of the annotation

B.6.10 spec tree.SC item.getMetricValue(self, Atype, pair list)

Take a list of pairs, return the metric-value for this behavior
List of pairs has format[(’*’,’BOOL’),(’/’),(’int’),...]. Type defines the type of the annotations. It is one of

(’operations’,’traffic’,’memory’). The returnvalue is a the sum of the data-values in the annotation.

B.6.11 spec tree.SC item.mappedTo(self)

Returns the processor it is mapped to.
If the item is mapped to no processor, the mapping of the parent applies.

B CLASS DOCUMENTATION 66

B.6.12 spec tree.SC item.tree copy(self)

Copy this item recursively
Calls the copybeh method for this item and the tree-copy method for all children. the result is a complete

copy of the subtree.

B.7 class SC profDefineMetric - Dialog for defining profiling metrics

Declared in module SCprofiler

B.7.1 Inheritance hierarchy:

SC profiler.SCprofDefineMetric
qt.QDialog

B.7.2 Synopsis

class SC_profDefineMetric(QDialog):
def SC_profiler.SC_profDefineMetric.__init__(self, app, behavior, Mtype=’operations’
def SC_profiler.SC_profDefineMetric.accept(self) # Extend the built in method accep
def SC_profiler.SC_profDefineMetric.save(self) # Save displayed weighttable
def SC_profiler.SC_profDefineMetric.set_contents(self, Mtype) # Fill the table acco
def SC_profiler.SC_profDefineMetric.show_all(self, showit) # Show or hide uninteres
def SC_profiler.SC_profDefineMetric.toggle_mem(self, state)
def SC_profiler.SC_profDefineMetric.toggle_op(self, state)
def SC_profiler.SC_profDefineMetric.toggle_tr(self, state)

Inherited from qt.QObject
def qt.QObject.__init__(self, *args)

Inherited from qt.QPaintDevice
def qt.QPaintDevice.__del__(self)
def qt.QPaintDevice.__init__(self, *args)

Inherited from qt.QWidget
def qt.QWidget.__init__(self, *args)

Inherited from qt.QDialog
def qt.QDialog.__init__(self, *args)

Inherited from qt.Qt
def qt.Qt.__del__(self)
def qt.Qt.__init__(self, *args)

B CLASS DOCUMENTATION 67

B.7.3 Description

Display the profiling-resluts of a behavior as a scrollable table. Rows and Columns can be moved by pressing
the ’Ctrl’-button.

self.MTable The QTable-widget displaying the data

B.7.4 SC profiler.SC profDefineMetric. init (self, app, behavior, Mtype=’operations’)

Constructor
Setup the dialog, read the data from a SCweighttable

B.7.5 SC profiler.SC profDefineMetric.accept(self)

Extend the built in methodaccept()
saves the metric and closes the window.

B.7.6 SC profiler.SC profDefineMetric.save(self)

Save displayed weighttable
Saves the displayed data, returns 1 if not successful. If columns are moved, they will also be moved in the

weighttable-file

B.7.7 SC profiler.SC profDefineMetric.set contents(self, Mtype)

Fill the table according to Mtype
With operations, traffic or memory.

B.7.8 SC profiler.SC profDefineMetric.show all(self, showit)

Show or hide uninteresting columns/rows
Shows or hide columns and rows which contain only defaultvalues. Helps to get a better overview.

B.8 class SC project - Project handling for RESpeccCT

Declared in module SCproject

B.8.1 Synopsis

class SC_project:
def SC_project.SC_project.__init__(self, app) # Constructor
def SC_project.SC_project.new_project(self) # Wizard to create a new project
def SC_project.SC_project.read(self, filename=None) # Read in the projectfile
def SC_project.SC_project.save(self) # Update the data of the ini-file and write it

list dev_level = [’Specification’, ’Architecture’, ’Communication’, ’Implementation’]

B CLASS DOCUMENTATION 68

B.8.2 Description

Reads and writes the Project-file, in the project-directory. Stores importand project information. Project-files
habe the ending ”.prj”

self.procs: List of allocated processors. Format:[(’proctype1’,’instname1’),(...),...]

self.busses: List of allocated busses. Format:[(’busname1’,’instname1’),(...),...]

B.8.3 SC project.SC project. init (self, app)

Constructor
The name of the project-file usually ends with .prj.

B.8.4 SC project.SC project.new project(self)

Wizard to create a new project
Shows wizard to create a new project. A projectfile has to be created (always in the project-directory). At

least one design has to be specified along with it’s status and a description.

B.8.5 SC project.SC project.read(self, filename=None)

Read in the projectfile
Create sections which do not already exist and set the values in the application to the stored values in the

configuration file

B.8.6 SC project.SC project.save(self)

Update the data of the ini-file and write it to disk
The data of the ini-file is updated from the variables of the application.

B.9 class SC prwizard imp - Wizard for creating a new project

Declared in module SCproject

B.9.1 Inheritance hierarchy:

SC project.SCprwizard imp
SC prwizard.SCprwizard

B.9.2 Synopsis

class SC_prwizard_imp(SC_prwizard):
def SC_project.SC_prwizard_imp.__init__(self, app=None) # Constructor
def SC_project.SC_prwizard_imp.accept(self) # Overloaded method of the finish-butto
def SC_project.SC_prwizard_imp.back(self)
def SC_project.SC_prwizard_imp.browse_design(self) # Open a filedialog to choose a
def SC_project.SC_prwizard_imp.browse_folder(self) # Browse for a project-folder
def SC_project.SC_prwizard_imp.check_content1(self) # Check Input

B CLASS DOCUMENTATION 69

def SC_project.SC_prwizard_imp.check_content2(self) # Check Input
def SC_project.SC_prwizard_imp.next(self) # Overloaded method of the "next"-button

Inherited from SC_prwizard.SC_prwizard
def SC_prwizard.SC_prwizard.__init__(self, parent=None, name=None, modal=0, fl=0)
def SC_prwizard.SC_prwizard.browse_design(self)
def SC_prwizard.SC_prwizard.browse_folder(self)
def SC_prwizard.SC_prwizard.check_content1(self)
def SC_prwizard.SC_prwizard.check_content2(self)

Inherited from qt.QWidget
def qt.QWidget.__init__(self, *args)

Inherited from qt.QWizard
def qt.QWizard.__init__(self, *args)

Inherited from qt.QObject
def qt.QObject.__init__(self, *args)

Inherited from qt.QPaintDevice
def qt.QPaintDevice.__del__(self)
def qt.QPaintDevice.__init__(self, *args)

Inherited from qt.Qt
def qt.Qt.__del__(self)
def qt.Qt.__init__(self, *args)

Inherited from qt.QDialog
def qt.QDialog.__init__(self, *args)

B.9.3 Description

Inherits from the class"SC prwizard" created in the qt-designer.

B.9.4 SC project.SC prwizard imp.accept(self)

Overloaded method of the finish-button
This method is executed when the user clicks on"finish", right bevor the wizard closes. It checks if all

options entered make sense and then saves the values in the project-class and exits the wizard.

B.9.5 SC project.SC prwizard imp.browse design(self)

Open a filedialog to choose a SIR-file
Only files under the project-dir should be selected

B.9.6 SC project.SC prwizard imp.browse folder(self)

Browse for a project-folder

B CLASS DOCUMENTATION 70

The result is displayed in self.edirprfolder

B.9.7 SC project.SC prwizard imp.check content1(self)

Check Input
Checks if all inputs on page1 have been performed. However the validity of the input is only checked

when changing to the next page

B.9.8 SC project.SC prwizard imp.check content2(self)

Check Input
Checks if all inputs on page2 have been performed. However the validity of the input is only checked

when the ’finish’-button is pressed

B.9.9 SC project.SC prwizard imp.next(self)

Overloaded method of the"next"-button
checks the options entered, gives warnings if they are not correct and goes on to the next page if they are

okay.

B.10 class SC settings - Class for ini-file handling for RESpeccCT

Declared in module SCsettings

B.10.1 Synopsis

class SC_settings:
def SC_settings.SC_settings.__init__(self, app, filename=’.respecct.ini’) # Constru
def SC_settings.SC_settings.read(self, filename) # Read in the inifile
def SC_settings.SC_settings.save(self) # Update the data of the ini-file and write

B.10.2 Description

Reads and writes the file"respecct.ini" in the application-directory

B.10.3 SC settings.SC settings. init (self, app, filename=’.respecct.ini’)

Constructor
The name of the inifile is".respecct.ini" by default and is stored in the homedirectory (UNIX) or the

current dir (Windows)

B.10.4 SC settings.SC settings.read(self, filename)

Read in the inifile
Create sections which do not already exist and set the values in the application to the stored values in the

configuration file

B CLASS DOCUMENTATION 71

B.10.5 SC settings.SC settings.save(self)

Update the data of the ini-file and write it to disk
The data of the ini-file is updated from the variables of the application.

B.11 class SC tree - Tree of Sir-behavior instances

Declared in module spectree

B.11.1 Inheritance hierarchy:

spectree.SCtree
qt.QListView

B.11.2 Synopsis

class SC_tree(QListView):
def spec_tree.SC_tree.__init__(self, parent) # Initialize the SC_tree.
def spec_tree.SC_tree.arSchAnnotate(self) # Annotate the Design with the scheduling
def spec_tree.SC_tree.clear(self) # Clean up tree
def spec_tree.SC_tree.col_add(self, name, note_name=None) # Add a profiling-column
def spec_tree.SC_tree.col_remove(self, colname) # Remove a column form the tree
def spec_tree.SC_tree.displayProfCols(self) # Check which columns should be active,
def spec_tree.SC_tree.getItemlist(self, aktBeh) # Return a List with all Instances
def spec_tree.SC_tree.popup(self, item, point, col) # Display popup menu
def spec_tree.SC_tree.readSC(self, file) # Display hierarchy of an SIR_Design
def spec_tree.SC_tree.readSIR(self, file) # Display hierarchy of an SIR_Design
def spec_tree.SC_tree.updateSelected(self) # Keep list of selected items correct

Inherited from qt.QFrame
def qt.QFrame.__init__(self, *args)

Inherited from qt.QWidget
def qt.QWidget.__init__(self, *args)

Inherited from qt.QListView
def qt.QListView.__init__(self, *args)

Inherited from qt.QScrollView
def qt.QScrollView.__init__(self, *args)

Inherited from qt.QObject
def qt.QObject.__init__(self, *args)

Inherited from qt.QPaintDevice
def qt.QPaintDevice.__del__(self)
def qt.QPaintDevice.__init__(self, *args)

B CLASS DOCUMENTATION 72

Inherited from qt.Qt
def qt.Qt.__del__(self)
def qt.Qt.__init__(self, *args)

B.11.3 Description

Extends QListview with the capabilities of reading and displaying the behavioral hierarchy of SIRDesign’s.
It assigns different icons to different types of behaviors and has a popup-menu with options to display and
modify the behaviors. Class Variables:

self.beh dic: Dictionary of all contained behaviors of formf’SC item1’:behname1,...g. Mainly in order to
deal with a restriction of PyQt v 2.2 and earlier, that references to subclassed c-objects have to be kept.

self.column dic: Dictionary containing all columns currently displaed in the tree. It has the form
f’col name1’:(int)colnumber, ...g. It is useful in order to check if a column exists and ant which
position.

self.app: Reference to the Main-window

self.select list: List of selected SCitems

B.11.4 spec tree.SC tree. init (self, parent)

Initialize the SCtree.
Allows selection of multiple behaviors, disable sorting.

B.11.5 spec tree.SC tree.arSchAnnotate(self)

Annotate the Design with the scheduling-decisions made in the GUI
this is not in use yet, code existend was originally for something else, but can perhaps be re-used

B.11.6 spec tree.SC tree.clear(self)

Clean up tree
This method overrides/extends the clean-method of QListView. Removes all displayed items and columns.

Also cleans up"self.behdic" and"self.columndic".

B.11.7 spec tree.SC tree.col add(self, name, note name=None)

Add a profiling-column in the behavior-tree

note name: Name of the Annotation in the SIR. By default it will be thePR ’+name (e.g.
’operations -> PR operations.

name: Name of the column to add.

B.11.8 spec tree.SC tree.col remove(self, colname)

Remove a column form the tree
Takes the name of the column as argument. Updates self.columndic.

B CLASS DOCUMENTATION 73

B.11.9 spec tree.SC tree.getItemlist(self, aktBeh)

Return a List with all Instances of a Behavior
Uses SCtree.behdic to retrieve the information, returns a list of SCitems

B.11.10 spec tree.SC tree.popup(self, item, point, col)

Display popup menu
This is the slot-function of the right-mouseclick event of the tree. It displays a popupmenu at the current

position and sets"self.app.item" to the currently selected item.

B.11.11 spec tree.SC tree.readSC(self, file)

Display hierarchy of an SIRDesign
Takes a filename (including path) of a .SC-file, reads it and displays it. Only the Top-level behavior is

loaded, then the class SCitem takes care of the rest of the design. Since the ’ReadSC’-function of SIR does
not support preprocessor commands right now, the specc-file should not include any preprocessor commands
or be already preprocessed. TODO: Include preprocessor-functionality.

B.11.12 spec tree.SC tree.readSIR(self, file)

Display hierarchy of an SIRDesign
Takes a filename (including path) of a .SIR-file, reads it and displays it. Only the Top-level behavior is

loaded, then the class SCitem takes care of the rest of the design.

B.11.13 spec tree.SC tree.updateSelected(self)

Keep list of selected items correct
This method is a slot for selectionchange. updates the list of selected items in order to provide it for the

convenience of other methods.

B.12 class SC weightDialog - Dialog for editing weighttables

Declared in module SCweighttable

B.12.1 Inheritance hierarchy:

SC weighttable.SCweightDialog
qt.QDialog

B.12.2 Synopsis

class SC_weightDialog(QDialog):
def SC_weighttable.SC_weightDialog.__init__(self, app, wtable) # Constructor
def SC_weighttable.SC_weightDialog.accept(self) # Extend the built in method accept
def SC_weighttable.SC_weightDialog.changed(self) # The data has changed
def SC_weighttable.SC_weightDialog.save(self) # Save displayed weighttable
def SC_weighttable.SC_weightDialog.show_all(self, showit) # Show or hide uninterest

B CLASS DOCUMENTATION 74

Inherited from qt.QObject
def qt.QObject.__init__(self, *args)

Inherited from qt.QPaintDevice
def qt.QPaintDevice.__del__(self)
def qt.QPaintDevice.__init__(self, *args)

Inherited from qt.QWidget
def qt.QWidget.__init__(self, *args)

Inherited from qt.QDialog
def qt.QDialog.__init__(self, *args)

Inherited from qt.Qt
def qt.Qt.__del__(self)
def qt.Qt.__init__(self, *args)

B.12.3 Description

Display a weighttable as a editable, scrollable table. Rows and Columns can be moved by pressing the
’Ctrl’-button.

self.wtable The SCweighttable with the actual data

self.wtTable The QTable-widget displaying the data

B.12.4 SC weighttable.SC weightDialog. init (self, app, wtable)

Constructor
Setup the dialog, read the data from a SCweighttable

B.12.5 SC weighttable.SC weightDialog.accept(self)

Extend the built in methodaccept()
checks if the table has been modified and saves it

B.12.6 SC weighttable.SC weightDialog.changed(self)

The data has changed
Set a flag and activate the savebuttom

B.12.7 SC weighttable.SC weightDialog.save(self)

Save displayed weighttable
Saves the displayed data, returns 1 if not successful. If columns are moved, they will also be moved in the

weighttable-file

B CLASS DOCUMENTATION 75

B.12.8 SC weighttable.SC weightDialog.show all(self, showit)

Show or hide uninteresting columns/rows
Shows or hide columns and rows which contain only defaultvalues. Helps to get a better overview.

B.13 class SC weighttable - Weighttable class

Declared in module SCweighttable

B.13.1 Synopsis

class SC_weighttable:
def SC_weighttable.SC_weighttable.__init__(self, filename) # Constructor
def SC_weighttable.SC_weighttable.annotate(self, design, proc)
def SC_weighttable.SC_weighttable.read(self, filename=None) # Read a Weighttable
def SC_weighttable.SC_weighttable.write(self, filename=None) # Write a weight-table

B.13.2 Description

reads stores and writes weighttables

self.Hheader Horizontal Header of the weighttable. List of strings representing datatypes

self.Vheader Vertical Header of the weighttable. List of strings representing Operationtypes

self.data Data of the weighttable. List of floats.

self.filename Name of the read weighttable

self.proc name Name of the processor this weighttable tries to describe

B.13.3 SC weighttable.SC weighttable. init (self, filename)

Constructor
Initializes the class-variables. If a filename is given, the weight-table is read in right away.

B.13.4 SC weighttable.SC weighttable.read(self, filename=None)

Read a Weighttable
Reads a weighttable from a weighttable-file returns 0 if successful and 1 if unsuccessful

B.13.5 SC weighttable.SC weighttable.write(self, filename=None)

Write a weight-table
Writes a weighttable to a file.

B.14 class SCTreepopmenu

Declared in module menu

B CLASS DOCUMENTATION 76

B.14.1 Inheritance hierarchy:

menu.SCTreepopmenu
qt.QPopupMenu

B.14.2 Synopsis

class SCTreepopmenu(QPopupMenu):
def menu.SCTreepopmenu.__init__(self, app)
def menu.SCTreepopmenu.bhprop(self)
def menu.SCTreepopmenu.del_bi(self)
def menu.SCTreepopmenu.editSC(self)
def menu.SCTreepopmenu.op_chart(self) # Display a chart with operations
def menu.SCTreepopmenu.show_chart(self) # Display a chart
def menu.SCTreepopmenu.st_chart(self)
def menu.SCTreepopmenu.sub_op_pie(self)
def menu.SCTreepopmenu.sub_st_pie(self)
def menu.SCTreepopmenu.sub_tr_bar(self)
def menu.SCTreepopmenu.tr_chart(self)

Inherited from qt.QFrame
def qt.QFrame.__init__(self, *args)

Inherited from qt.QWidget
def qt.QWidget.__init__(self, *args)

Inherited from qt.QMenuData
def qt.QMenuData.__del__(self)
def qt.QMenuData.__init__(self, *args)

Inherited from qt.QObject
def qt.QObject.__init__(self, *args)

Inherited from qt.QPaintDevice
def qt.QPaintDevice.__del__(self)
def qt.QPaintDevice.__init__(self, *args)

Inherited from qt.QPopupMenu
def qt.QPopupMenu.__init__(self, *args)

Inherited from qt.Qt
def qt.Qt.__del__(self)
def qt.Qt.__init__(self, *args)

B.14.3 menu.SCTreepopmenu.op chart(self)

Display a chart with operations

B CLASS DOCUMENTATION 77

If one behavior is selected, a pie-chart is displayed, if two behaviors are selected, a bar-chart is displayed

B.14.4 menu.SCTreepopmenu.show chart(self)

Display a chart
If one behavior is selected, a pie-chart is displayed, if two behaviors are selected, a bar-chart is displayed

B.15 class scalestruct - Small helperclass for scaling

Declared in module barchart

B.15.1 Synopsis

class scalestruct:
def bar_chart.scalestruct.__init__(self, i=0, l=0)

B.15.2 Description

contains only two values: intervall of the scale and limitvalue which is the maximal value of the scale

B.16 class QxBarChart - Barchart with arbitrary number of columns and rows

Declared in module barchart

B.16.1 Inheritance hierarchy:

bar chart.QxBarChart
qt.QWidget

B.16.2 Synopsis

class QxBarChart(QWidget):
def bar_chart.QxBarChart.__init__(self, parent=None, Chartdata=0, Style=1, name=’’,
def bar_chart.QxBarChart.close(self, bool) # Close and delete the Chart
def bar_chart.QxBarChart.doGeometry(self, P) # Calculate the dimensions of the cont
def bar_chart.QxBarChart.drawChartData(self, P) # Draw the actual bars
def bar_chart.QxBarChart.drawHorizontalLines(self, P) # Draw horizontal lines to re
def bar_chart.QxBarChart.drawLegends(self, P) # Draws the legends for the chart.
def bar_chart.QxBarChart.drawScale(self, P) # Draws the x and y-scales and the grid
def bar_chart.QxBarChart.drawTitles(self, P) # .
def bar_chart.QxBarChart.drawXLegends(self, P) # Draw the Legends for the X-axis
def bar_chart.QxBarChart.paintEvent(self, PaintEvent) # On every PaintEvent the dis
def bar_chart.QxBarChart.setChartData(self, Chartdata) # Set a new Chartdata

Inherited from qt.QObject
def qt.QObject.__init__(self, *args)

B CLASS DOCUMENTATION 78

Inherited from qt.QPaintDevice
def qt.QPaintDevice.__del__(self)
def qt.QPaintDevice.__init__(self, *args)

Inherited from qt.QWidget
def qt.QWidget.__init__(self, *args)

Inherited from qt.Qt
def qt.Qt.__del__(self)
def qt.Qt.__init__(self, *args)

B.16.3 Description

Best display not more than 5 rows an 15 columns are recommended (depending on the size on the screen you
choose).

B.16.4 bar chart.QxBarChart. init (self, parent=None, Chartdata=0, Style=1, name=”, f=0)

Initialises the Chart

parent parent-widget on which it will be centered

Chartdata QxChartData conaining the data, labels and Fonts

Style show legends on x-axis or not

B.16.5 bar chart.QxBarChart.close(self, bool)

Close and delete the Chart
First call the close-method of QWidget, then deletes the widget. It also removed the chart form the list of

charts held in the Application

B.16.6 bar chart.QxBarChart.doGeometry(self, P)

Calculate the dimensions of the content

� self.titleRect

� self.subTitleRect

� self.footerRect

� self.scaleRect

� self.chartDataRect

� self.xlegendsRect

� self.legendsRect

B CLASS DOCUMENTATION 79

B.16.7 bar chart.QxBarChart.drawChartData(self, P)

Draw the actual bars

� P is the painter where the data is painted into.

� To draw the bars in the chart, we first detect where the zeroline will be.

� The scaling of the bars is obtained from self.qxScale.

� The colors for the series are taken consecutively from the qxColorlist.

� Between two series there will be a small space

B.16.8 bar chart.QxBarChart.drawHorizontalLines(self, P)

Draw horizontal lines to reflect the scale accross the entire barchart

� The number of lines is equal to (number of scale items

� 1).

� We iterate bottom up and draw a Draw line across the drawing area for the barchart.

� The QxScale methodvalueScaleRatio(it) determines the ratio for the particular item in y
space.

� We need to iterate through the scalevalues,and set the y-coordinate to self.qxScale.valueScaleRatio(it)
* height of the datarect.

B.16.9 bar chart.QxBarChart.drawLegends(self, P)

Draws the legends for the chart.
legendsRect.height is split into ten if the number of series are less than ten, else it is split into the

numer of columns. The colors are taken consecutively fromQxCommonColor

B.16.10 bar chart.QxBarChart.drawScale(self, P)

Draws the x and y-scales and the grid
If on the Y-axis the value is> 1000 or the step of the scaple is< 1/100, the value is displayed in scientific

mode (e.g.1.3 e-5), if jvaluej is< 1000, the display is absolute

B.16.11 bar chart.QxBarChart.drawTitles(self, P)

.
Draw the Title, Subtitle and Footer

B.16.12 bar chart.QxBarChart.drawXLegends(self, P)

Draw the Legends for the X-axis

� Loop from left to right;

� Spacing is width / len(xlegends).

� Split xlegendsRect into len(xlegends) rects

B CLASS DOCUMENTATION 80

B.16.13 bar chart.QxBarChart.paintEvent(self, PaintEvent)

On every PaintEvent the display is refreshed
Updates the geometry of the widget and then repaints all of it’s contents (data, legends and captions)

B.16.14 bar chart.QxBarChart.setChartData(self, Chartdata)

Set a newChartdata
If it is None, a newQxChartData -instance is created. Initializesqxscale and draws the chart for the

first time

B.17 class QxChartData - Contains all the data for the Chart

Declared in module barchart

B.17.1 Synopsis

class QxChartData:
def bar_chart.QxChartData.__init__(self, data=[[400, 80, 150], [111, 270, 543]], row
def bar_chart.QxChartData.cols(self) # Return number of columns
def bar_chart.QxChartData.getColumnName(self, pos)
def bar_chart.QxChartData.getFooter(self)
def bar_chart.QxChartData.getFooterFont(self)
def bar_chart.QxChartData.getLegendsFont(self)
def bar_chart.QxChartData.getRowName(self, pos)
def bar_chart.QxChartData.getSubTitle(self)
def bar_chart.QxChartData.getSubTitleFont(self)
def bar_chart.QxChartData.getTitle(self)
def bar_chart.QxChartData.getTitleFont(self)
def bar_chart.QxChartData.getValue(self, c, r)
def bar_chart.QxChartData.getXLegendsFont(self)
def bar_chart.QxChartData.highestValue(self) # Return the highest value of the char
def bar_chart.QxChartData.lowestValue(self) # Return the lowest value of the chart
def bar_chart.QxChartData.rows(self) # Return number of rows
def bar_chart.QxChartData.setFooter(self, footer, font)
def bar_chart.QxChartData.setLegendsFont(font)
def bar_chart.QxChartData.setSubTitle(self, title, font)
def bar_chart.QxChartData.setTitle(self, title, font=0)
def bar_chart.QxChartData.setXLegendsFont(font)

B.17.2 Description

self.data: Is of the form[[r1 1,r1 2,r1 3],[r2 1,r2 2,r2 3]]

self.rowlabels: [row l1,row l2]

self.col labels: [col l1,col l2]

titles: Strings for title, subtitle and footer

B CLASS DOCUMENTATION 81

fonts: Every label has a font

B.17.3 bar chart.QxChartData. init (self, data=[[400, 80, 150], [111, 270, 543]],
row labels=[’breakfast’, ’lunch’], col labels=[’spam’, ’egg’, ’ham’], title=”)

Constructor takes data, rowlabels, collabels and title
all other data has to be set either directly: ’cd.subTitle=’spanish” or through the set-methods:

cd.setSubTitle(’inquisition’)

B.18 class QxPie - Class representing the pie of the widget.

Declared in module piewidget

B.18.1 Synopsis

class QxPie:
def piewidget.QxPie.__init__(self) # Constructor
def piewidget.QxPie.append(self, slice) # Append slice
def piewidget.QxPie.arcLength(self, index) # Lenght of arc
def piewidget.QxPie.arcStart(self, index) # Start of the arc
def piewidget.QxPie.at(self, pos) # .
def piewidget.QxPie.count(self) # Count slices
def piewidget.QxPie.insert(self, pos, slice) # Insert slice
def piewidget.QxPie.sliceRatio(self, index) # Relative value of slice
def piewidget.QxPie.sliceRatioAsPercentageString(self, index) # Ratio as percentage
def piewidget.QxPie.sliceRatioAsString(self, index, precision=2)

B.18.2 Description

It contains a list of slices (self.list) containing the actual data and a number of accessor-methods which
calculate geometrical results.

B.18.3 piewidget.QxPie. init (self)

Constructor
Initialize the list.

B.18.4 piewidget.QxPie.append(self, slice)

Append slice
Append a slice at the end of the list.

B.18.5 piewidget.QxPie.arcLength(self, index)

Lenght of arc
Returns the actual length of the arc of the slice at positionindex in the list

B CLASS DOCUMENTATION 82

B.18.6 piewidget.QxPie.arcStart(self, index)

Start of the arc
Returns the position where the arc of the slice atindex starts.

B.18.7 piewidget.QxPie.at(self, pos)

.
Return the slice at the positionpos.

B.18.8 piewidget.QxPie.count(self)

Count slices
Return the number of slices.

B.18.9 piewidget.QxPie.insert(self, pos, slice)

Insert slice
Insert a slice at positionpos.

B.18.10 piewidget.QxPie.sliceRatio(self, index)

Relative value of slice
Returns the ration of the sum of all slices and the value of the slice atindex Example: slice1=5 slice2=10

slice3=15; ration of slice2 is 10 / (5+10+15)= 1/3; slice 2 occupies one third of the circle (=120 degree).

B.18.11 piewidget.QxPie.sliceRatioAsPercentageString(self, index)

Ratio as percentage
Same as sliceRatio, only that it does return a string representing the percentage, not the actual ratio.

B.19 class QxPieWidget - Pie-Widget class.

Declared in module piewidget

B.19.1 Inheritance hierarchy:

piewidget.QxPieWidget
qt.QWidget

B.19.2 Synopsis

class QxPieWidget(QWidget):
def piewidget.QxPieWidget.__init__(self, parent=0, name=0, f=0, pie=0, align=1, show
def piewidget.QxPieWidget.addSlice(self, slice, pos) # Add a slice to the pie
def piewidget.QxPieWidget.close(self, bool) # Close the Widget
def piewidget.QxPieWidget.doGeometry(self) # Calculate the geometry of the pie
def piewidget.QxPieWidget.drawLegends(self, P) # .
def piewidget.QxPieWidget.drawSlices(self, P) # .

B CLASS DOCUMENTATION 83

def piewidget.QxPieWidget.drawText(self, P) # .
def piewidget.QxPieWidget.drawTitle(self, P) # .
def piewidget.QxPieWidget.explodeFlag(self, explode) # Set the distance between sli
def piewidget.QxPieWidget.explodePoint(self, c) # "explode" the pie.
def piewidget.QxPieWidget.legendsAlignFlag(self, align) # Set the alignment of the
def piewidget.QxPieWidget.paintEvent(self, paintev) # Repaint the pie
def piewidget.QxPieWidget.resizeEvent(self, resizeEV) # .
def piewidget.QxPieWidget.setPie(self, pie) # Insert a new pie
def piewidget.QxPieWidget.set_data(self, data, title=’’, subtitle=’’, footer=’’, leg
def piewidget.QxPieWidget.showFlag(self, show) # Set data shown in slice
def piewidget.QxPieWidget.signalStyleChanged(self, str)

Inherited from qt.QObject
def qt.QObject.__init__(self, *args)

Inherited from qt.QPaintDevice
def qt.QPaintDevice.__del__(self)
def qt.QPaintDevice.__init__(self, *args)

Inherited from qt.QWidget
def qt.QWidget.__init__(self, *args)

Inherited from qt.Qt
def qt.Qt.__del__(self)
def qt.Qt.__init__(self, *args)

B.19.3 Description

Class for displaying pie-charts.

B.19.4 piewidget.QxPieWidget. init (self, parent=0, name=0, f=0, pie=0, align=1, show=64, ex-
plode=128)

Constructor for pie-widgets
...

B.19.5 piewidget.QxPieWidget.addSlice(self, slice, pos)

Add a slice to the pie

slice: a QXslice-object

pos: the position where the slice is to be inserted (integer)

B.19.6 piewidget.QxPieWidget.close(self, bool)

Close the Widget
first call widgets-close-method, then delete widget

B CLASS DOCUMENTATION 84

B.19.7 piewidget.QxPieWidget.doGeometry(self)

Calculate the geometry of the pie
Determines hom much space for every element in the widget is there and positions them.

B.19.8 piewidget.QxPieWidget.drawLegends(self, P)

.
Draw the legends of the pie.

B.19.9 piewidget.QxPieWidget.drawSlices(self, P)

.
Draw the slices of the pie (actual data). the colors are takes succesively from qxColorlist.

B.19.10 piewidget.QxPieWidget.drawText(self, P)

.
Draw the text of the pie. Evaluates the show-flag.

B.19.11 piewidget.QxPieWidget.drawTitle(self, P)

.
Draws the titles of the pie (title, subtitle and footer). The specific font sets apply.

B.19.12 piewidget.QxPieWidget.explodeFlag(self, explode)

Set the distance between slices
The explode-flag means, that the slices ale slightly pulled out, which might result in a better overview.

Possible values are:

B.19.13 piewidget.QxPieWidget.explodePoint(self, c)

"explode" the pie.
Evaluates the explode-flag

B.19.14 piewidget.QxPieWidget.legendsAlignFlag(self, align)

Set the alignment of the legends

align: flag with possible values: QxLegendsToLeft, QxLegendsToRight or QxNoLegends

B.19.15 piewidget.QxPieWidget.paintEvent(self, paintev)

Repaint the pie
redraws the title, slices, legends and the text.

B.19.16 piewidget.QxPieWidget.resizeEvent(self, resizeEV)

.
Resize the pie and update its geometry.

B CLASS DOCUMENTATION 85

B.19.17 piewidget.QxPieWidget.setPie(self, pie)

Insert a new pie
The old pie is saved asself.oldPie

B.19.18 piewidget.QxPieWidget.set data(self, data, title=”, subtitle=”, footer=”, legendstitle=”)

initializes the pie with data and text and displays it
data is a list of value-pairs like[("slicename1", value1),("slice2", v2) ...] labels is a list of three strings:

[’title’,’subtitle’,’footer’] font is the font for all the three labels

B.19.19 piewidget.QxPieWidget.showFlag(self, show)

Set data shown in slice
Inside a slice can be displayed:

QxShowSliceRatio: QxShowValues: – QxShowLabels: – QxShowPercentage: -

QxShowValues: QxShowLabels: – QxShowPercentage: -

QxShowLabels: QxShowPercentage: –

B.20 class QxScale - Create a scale between two given double numbers

Declared in module barchart

B.20.1 Synopsis

class QxScale:
def bar_chart.QxScale.__init__(self, s=0, high=0) # either none, one or two paramet
def bar_chart.QxScale.count(self) # Return the number of scalevalues
def bar_chart.QxScale.createScale(self) # Create a new scale
def bar_chart.QxScale.getScale(self) # Return self.scalevalues
def bar_chart.QxScale.num_intervall(self, Highest) # Determine the number of interv
def bar_chart.QxScale.valueScaleRatio(self, it) # Basically just determines the hei
def bar_chart.QxScale.zeroLineRatio(self) # Determine the position of the zeroline

B.20.2 Description

This class tries to make a scale for a set of values. The intervall and the maximal value of the scale are chosen
such, that there is only 4-6 scalevalues with very few digits (e.g. 0.1, 0.2, 0.3, 0.4). For creating a scale we
distinguish tree cases:

CASE 1: -x1............0..........+x2

Creates an appropriate scale from -x1 to +x2. Ifj-x1j > x2 the negative side determines the scaling. If x2
>= j-x1j the positive side determines the scaling.

CASE 2: 0.........................+x2

Scaling done from 0 to x2

B CLASS DOCUMENTATION 86

CASE 3: -x1.......................0

Scaling done from -x1 to 0.

B.20.3 bar chart.QxScale. init (self, s=0, high=0)

either none, one or two parameters

none: everything =0.0

one: self.scalevalues is initialized

two: low, high

B.20.4 bar chart.QxScale.createScale(self)

Create a new scale
Clear first the scalevalues list, just in case we have run this before, then fill it up. Here the values of

self.highest andself.lowest are evaluated

B.20.5 bar chart.QxScale.num intervall(self, Highest)

Determine the number of intervalls needed
Attempts to choose the number of intervalls such, that the intervalls are as even as possible returns a

scalestruct (pair of intervall and limitvalue)

B.20.6 bar chart.QxScale.valueScaleRatio(self, it)

Basically just determines the height of the bar
it is the index of the scalevalue to be examined. The method returns the (relative) height of the resulting

bar.

B.20.7 bar chart.QxScale.zeroLineRatio(self)

Determine the position of the zeroline

� If beginning is equal to zero, the ratio is 1

� If end is equal to zero, the ratio is 0

� If zero is found somewhere in between: 1-(beg/(beg+end))

B.21 class QxSlice - Slice of a pie

Declared in module piewidget

B CLASS DOCUMENTATION 87

B.21.1 Synopsis

class QxSlice:
def piewidget.QxSlice.__init__(self, v=0, label=0) # Constructor for a Slice.
def piewidget.QxSlice.setLabel(self, label) # .
def piewidget.QxSlice.setValue(self, v) # .
def piewidget.QxSlice.value(self) # .
def piewidget.QxSlice.valueString(self, precision=2) # return a string representign

B.21.2 Description

Represents a slice of a pie. It contains a value and a label.

B.21.3 piewidget.QxSlice. init (self, v=0, label=0)

Constructor for a Slice.
Assigns an initial value and a label

B.21.4 piewidget.QxSlice.setLabel(self, label)

.
Assign a new label to the slice

B.21.5 piewidget.QxSlice.setValue(self, v)

.
Assign a new value to the slice

B.21.6 piewidget.QxSlice.value(self)

.
Access the variableValue

B.21.7 piewidget.QxSlice.valueString(self, precision=2)

return a string representign the value
precision optionally specifies the precision with which floating-point numbers are converted. Default

is 2 digits.

C CODE-EXAMPLES 88

C Code-examples

C.1 Header-file of SIR Behavior

/��/
2 /� IntRep/Behavior.h : SpecC Internal Representation , Level 2, Behaviors�/

/��/
4 /� Author: Rainer Doemer first version : 07/06/98�/

/��/
6 /� last update : 04/12/99�/

8 #ifndef INTREP BEHAVIOR H
#define INTREP BEHAVIOR H

10

#include ”Global.h”
12 #include ”IntRep/Class .h”

14 /��� enumeration types��/

16 enum SIR BehaviorClass /� supported behavior classifications�/
f

18 SIR BHVR EXTERN, /� external behavior (black box)�/
SIR BHVR LEAF, /� leaf behavior�/

20 SIR BHVR SEQ, /� ” clean ” sequential behavior�/
SIR BHVR PAR, /� ” clean ” concurrent behavior (parfg) �/

22 SIR BHVR PIPE, /� ” clean ” pipelined behavior (pipefg) �/
SIR BHVR FSM, /� ” clean ” FSM�style behavior (fsmfg) �/

24 SIR BHVR TRY, /� ” clean ” exception�handling behavior (tryfg) �/
SIR BHVR OTHER /� ” dirty ” compound behavior�/

26 g;

28 /��� type definitions���/

30 typedef enum SIR BehaviorClass SIRBHVR CLASS;
typedef class SIR Behavior sirbehavior ;

32 typedef SIR List<sir behavior> sir behaviorlist ;
typedef class SIR Behaviors sirbehaviors ;

34 typedef ERROR (� sir bhvr fct)(sir behavior�, void�);
typedef class SIR Design sirdesign ; /� cyclic link �/

36

/��� class declarations���/
38

/��������������������/
40 /��� SIR Behavior���/

/��������������������/
42

class SIR Behavior : /� behavior class in hierarchy tree�/
44 public SIR ListElem<SIR Behavior>, /� is a list element�/

C CODE-EXAMPLES 89

public SIR Class /� and a class�/
46 f

public :
48 SIR BHVR CLASS BehaviorClass; /� behavior classification (see above)�/

sir function �MainMethod; /� link to main method (or NULL)�/
50 sir statement �FirstBhvrCall ; /� link to first subbehavior call (or NULL)�/

sir statement �BehaviorCalls ; /� link to cmpnd.stmnt. with behavior calls�/
52 /� (if SEQ or PAR or PIPE, else NULL)�/

sir transitions � Transitions ; /� link to transitions (if FSM, else NULL)�/
54 sir exceptions �Exceptions; /� link to exceptions (if TRY, else NULL)�/

56 //++++++++++++++++++++++++++++ API Layer 1 +++++++++++++++++++++++++++++//

58 SIR Behavior(/� constructor #1 (initial)�/
sir symbol �Symbol);

60

˜SIR Behavior(void); /� destructor �/
62 void FinishConstruction (void); /� perform construction phase 2�/

void UpdateInfos(void); /� update classification and links�/
64 static sir behavior �GetBehavior(/� obtain behavior pointer (level 2)�/

sir symbol �Symbol); /� from a behavior symbol�/
66

//++++++++++++++++++++++++++++ API Layer 2 +++++++++++++++++++++++++++++//
68

static sir behavior �Create(/� create a new behavior�/
70 const char �Name, /� (returns NULL if SIRError)�/

sir design �Design,
72 BOOL Internal = FALSE); /� default : without body�/

74 sir behavior �Copy(/� create an exact copy with new name�/
const char �Name, /� (returns NULL if SIRError)�/

76 BOOL Strip = TRUE);

78 ERROR Rename(/� rename this behavior�/
const char �Name);

80

ERROR Delete(void); /� delete this behavior�/
82 sir behaviors �GetList (void); /� obtain a pointer to the behavior list�/

SIR BHVR CLASS GetClass(void); /� obtain this behaviors classification�/
84 BOOL FindInstance(/� find an instance of this behavior�/

sir bhvrinst ��BhvrInst = NULL, /� return instance found�/
86 sir bhvrinst �LastInstance = NULL); /� continue search here�/

88 ERROR CreateBody(void); /� create a minimal behavior body�/
ERROR DeleteBody(void); /� delete the behavior body�/

90 /� (so that it becomes an external behavior)�/

92 ERROR MakeMainMethod(/� generates a main method (template)�/

C CODE-EXAMPLES 90

SIR BHVR CLASS BehaviorClass, /� intended behavior class�/
94 sir bhvrinst �FirstBhvr = NULL); /� first subbehavior�/

g;
96

/���������������������/
98 /��� SIR Behaviors���/

/���������������������/
100

class SIR Behaviors : /� behavior classes list�/
102 public SIR List<SIR Behavior> /� is simply a list of behaviors�/

f /� with additional methods�/
104 public :

106 //++++++++++++++++++++++++++++ API Layer 1 +++++++++++++++++++++++++++++//

108 SIR Behaviors(/� constructor #1�/
sir behavior �FirstEntry = NULL);

110

˜SIR Behaviors(void); /� destructor �/
112

static sir behaviors � BuildList (/� build the list of behaviors�/
114 sir symbols �GlobalSymbols); /� (phase 1)�/

116 void FinishConstruction (void); /� perform construction phase 2�/

118 sir behavior � Insert (/� insert a prepared element�/
sir behavior �Behavior);

120

//++++++++++++++++++++++++++++ API Layer 2 +++++++++++++++++++++++++++++//
122

sir behavior �Find(/� find a behavior with this name�/
124 const char �Name); /� (returns NULL if not found)�/

g;
126

#endif /� INTREP BEHAVIOR H �/
128 /� EOF IntRep/Behavior.h�/

C.2 Interface-file of SIR Behavior

/� SWIG� Header�file for Python Wrapper
2 File : Behavior. i

Date generated : 12/5/2000 18:17h
4 Author: David Berner�/

6 %module Behavior

8 %f

#include ”IntRep/Behavior.h”

C CODE-EXAMPLES 91

10 #include ”Global.h”
#include ”IntRep/Class .h”

12 %g

14 %import Class. i

16 enum SIR BehaviorClass /� supported behavior classifications�/
f

18 SIR BHVR EXTERN, /� external behavior (black box)�/
SIR BHVR LEAF, /� leaf behavior�/

20 SIR BHVR SEQ, /� ” clean ” sequential behavior�/
SIR BHVR PAR, /� ” clean ” concurrent behavior (parfg) �/

22 SIR BHVR PIPE, /� ” clean ” pipelined behavior (pipefg) �/
SIR BHVR FSM, /� ” clean ” FSM�style behavior (fsmfg) �/

24 SIR BHVR TRY, /� ” clean ” exception�handling behavior (tryfg) �/
SIR BHVR OTHER /� ” dirty ” compound behavior�/

26 g;

28 /��� type definitions���/

30 typedef enum SIR BehaviorClass SIRBHVR CLASS;
typedef class SIR Behavior sirbehavior ;

32 typedef SIR List<sir behavior> sir behaviorlist ;
typedef class SIR Behaviors sirbehaviors ;

34 typedef ERROR (� sir bhvr fct)(sir behavior�, void�);
typedef class SIR Design sirdesign ; /� cyclic link �/

36

/��� class declarations���/
38

/��������������������/
40 /��� SIR Behavior���/

/��������������������/
42

class SIR Behavior : /� behavior class in hierarchy tree�/
44 public SIR Class /� and a class�/

f

46 public :
unsigned long UnitID;

48

// automatic template�path insert begin (list�element):
50

SIR Behavior�Succ(void); /� Successor�/
52 SIR Behavior�Pred(void); /� Predecessor�/

SIR Behaviors �Head(void); /� List head�/
54 void Remove(void); /� remove myself�/

56 // automatic template�path insert end (list�element)

C CODE-EXAMPLES 92

58 SIR BHVR CLASS BehaviorClass; /� behavior classification (see above)�/
sir function �MainMethod; /� link to main method (or NULL)�/

60 sir statement �FirstBhvrCall ; /� link to first subbehavior call (or NULL)�/
sir statement �BehaviorCalls ; /� link to cmpnd.stmnt. with behavior calls�/

62 /� (if SEQ or PAR or PIPE, else NULL)�/
sir transitions � Transitions ; /� link to transitions (if FSM, else NULL)�/

64 sir exceptions �Exceptions; /� link to exceptions (if TRY, else NULL)�/

66 //++++++++++++++++++++++++++++ API Layer 2 +++++++++++++++++++++++++++++//

68 static SIR Behavior�Create(/� create a new behavior�/
const char �Name, /� (returns NULL if SIRError)�/

70 sir design �Design,
BOOL Internal = FALSE); /� default : without body�/

72

SIR Behavior�Copy(/� create an exact copy with new name�/
74 const char �Name, /� (returns NULL if SIRError)�/

BOOL Strip = TRUE);
76

ERROR Rename(/� rename this behavior�/
78 const char �Name);

80 ERROR Delete(void); /� delete this behavior�/

82 SIR Behaviors�GetList (void); /� obtain a pointer to the behavior list�/
SIR BHVR CLASS GetClass(void); /� obtain this behaviors classification�/

84

BOOL FindInstance(/� find an instance of this behavior�/
86 SIR BhvrInst ��BhvrInst = NULL, /� return instance found�/

SIR BhvrInst �LastInstance = NULL); /� continue search here�/
88

ERROR CreateBody(void); /� create a minimal behavior body�/
90 /� (so that it becomes an internal behavior)�/

92 ERROR DeleteBody(void); /� delete the behavior body�/
/� (so that it becomes an external behavior)�/

94

ERROR MakeMainMethod(/� generates a main method (template)�/
96 SIR BHVR CLASS BehaviorClass, /� intended behavior class�/

sir bhvrinst �FirstBhvr = NULL); /� first subbehavior�/
98 g;

100 /���������������������/
/��� SIR Behaviors���/

102 /���������������������/

104 class SIR Behaviors /� behavior classes list�/
f /� with additional methods�/

C CODE-EXAMPLES 93

106 public :

108 // automatic template�path insert begin : (list)

110 bool Empty(void); /� test for empty list ?�/
unsigned int NumElements(void); /� number of list elements�/

112 SIR Behavior� First (void); /� first element (NULL if empty)�/
SIR Behavior�Last(void); /� last element (NULL if empty)�/

114 SIR Behavior�Previous(void); /� previous element (NULL if none)�/
SIR Behavior�Curr(void); /� current element (NULL if none)�/

116 SIR Behavior�Next(void); /� next element (NULL if none)�/
SIR Behavior�Prepend(SIRBehavior �Elem);

118 SIR Behavior�Append(SIRBehavior�Elem);
SIR Behavior� InsertBefore (SIRBehavior�Elem,SIRBehavior�Succ);

120 SIR Behavior� InsertAfter (SIRBehavior�Elem,SIRBehavior�Pred);
SIR Behavior�Remove(SIRBehavior�Elem);

122 SIR Behaviors�Concat(SIRBehaviors�Appendix);
SIR Behaviors�Precat (SIRBehaviors�Prependix);

124

// automatic template�path insert end (list)
126

//++++++++++++++++++++++++++++ API Layer 2 +++++++++++++++++++++++++++++//
128

sir behavior �Find(/� find a behavior with this name�/
130 const char �Name); /� (returns NULL if not found)�/

g;

C.3 SWIG interface-file generator: template.py

template .py script for automatical generation of headerfiles for SWIG
2 # David Berner 11/30/2000

4

import string , sys , time
6

def find template ():
8 tm = time. localtime (time. time ())

tm str = str (tm[1])+’ /’ +str (tm[2])+’ /’ +str (tm[0])+’ ’+str (tm[3])+’ :’ +str (tm[4])
10 print tm str

outfile . write (’ /� SWIG � Header�file for Python Wrappernn File: ’+sys.argv[2]+’.inn Date generated:’+tm str+’hn
12 ln= infile . readline ()

outfile . write (ln)
14 print sys .argv

while not(ln == ’ ’):
16 slist = ln . split ()

if len(slist)> 1 and slist [0] == ’ class ’ and slist [2] == ’:’:
18 # sir type = slist [1]

cl type = getcl (slist)

C CODE-EXAMPLES 94

20 # patch(cltype , sir type , ln)
ln= infile . readline ()

22 outfile . write (ln)
a=0

24

def patch(cltype , sir type , ln):
26 ””” Removethe inheritance�statementand insert adaptedmethod�prototypes”””

print ’ nnpatching ’ , cl type , ’ in class ’ , sir type , ’ ’
28 while not (ln . split ()[0] == ’ public :’):

ln = infile . readline ()
30 outfile . write (ln)

if cl type == ’ list �element’:
32 outfile . write (’nn// automatic template�path insert begin (list �element):nnnn’)

outfile . writelines (sirtype , ’ �Succ(void); /� Successor�/nn’)
34 outfile . writelines (sirtype , ’ �Pred(void); /� Predecessor�/nn’)

outfile . writelines (sirtype , ’s �Head(void); /� List head�/nn’)
36 outfile . write (’void Remove(void); /� removemyself �/nn’)

outfile . write (’nn// automatic template�path insert end (list �element)nnnn’)
38

elif cl type == ’ list ’ :
40 outfile . write (’nn// automatic template�path insert begin : (list)nnnn’)

outfile . write (’bool Empty(void);ntnt /� test for empty list ? �/nn’)
42 outfile . write (’unsignedint NumElements(void);nt/� numberof list elements�/nn’)

outfile . write (sir type [:�1]+’ � First (void);n tnt /� first element(NULL if empty) �/nn’)
44 outfile . write (sir type [:�1]+’ �Last(void);n tnt /� last element(NULL if empty) �/nn’)

outfile . write (sir type [:�1]+’ �Previous(void);n t /� previous element(NULL if none) �/nn’)
46 outfile . writelines (sirtype [:�1], ’ �Curr(void);n tnt /� current element(NULL if none) �/nn’)

outfile . writelines (sirtype [:�1], ’ �Next(void);n tnt /� next element(NULL if none) �/nn’)
48 outfile . writelines (sirtype [:�1], ’ �Prepend(’ , sirtype [:�1], ’nt �Elem);nn’)

outfile . writelines (sirtype [:�1], ’ �Append(’, sir type [:�1], ’nt �Elem);nn’)
50 outfile . writelines (sirtype [:�1], ’ � InsertBefore (’ , sirtype [:�1], ’nt �Elem,’ , sir type [:�1], ’ �Succ);nn’)

outfile . writelines (sirtype [:�1], ’ � InsertAfter (’ , sir type [:�1], ’nt �Elem,’ , sir type [:�1], ’ �Pred);nn’)
52 # outfile . writelines (sirtype [:�1],’ � Remove(’, sirtype [:�1],’ � Elem);nn’)

the remove�method exists two times , one is removed :)
54 outfile . writelines (sirtype [:�1], ’ �Remove(’, sirtype [:�1], ’ �Elem);nn’)

outfile . writelines (sirtype , ’ �Concat(’ , sirtype , ’ �Appendix);nn’)
56 outfile . writelines (sirtype , ’ �Precat (’ , sirtype , ’ �Prependix);nn’)

outfile . write (’nn// automatic template�path insert end (list)nnnn’)
58

def get cl (slist):
60 ””” Determineif the class is inherited fom a template�classand which ”””

cl tp =0
62 while not (slist [0] == ’f’):

ln= infile . readline ()
64 slist = ln . split ()

if (not(string . find (ln , ’SIRListElem<’) == �1)):
66 cl tp =’ list �element’

elif not (string . find (ln , ’SIRList<’) == �1):

C CODE-EXAMPLES 95

68 cl tp =’ list ’
else :

70 outfile . write (ln)
return cl tp

72

74 if len(sys .argv)> 1:
infile = open(sys .argv [1], ’ r ’)

76 outfile = open(sys .argv[2]+’ . i ’ , ’w’)
a = find template ()

78 infile . close ()
outfile . close ()

80

else :
82 print ”nnusage:python template .pyheader�file module�name”

