
Center for Embedded Computer Systems
University of California, Irvine

A Custom Thread Library Built on Native Linux Threads for
Faster Embedded System Simulation

Tony Mathew, Rainer Dömer

Technical Report CECS-11-10
December 14, 2011

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-2625, USA

(949) 824-8919

tmathew@uci.edu
doemer@uci.edu

tmathew@uci.edu
doemer@uci.edu

A Custom Thread Library Built on Native Linux Threads for
Faster Embedded System Simulation

Tony Mathew, Rainer Dömer

Technical Report CECS-11-10
December 14, 2011

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-2625, USA

(949) 824-8919

tmathew@uci.edu
doemer@uci.edu

Abstract

Embedded system simulation has become very time expensive in recent times due to the increasing complexity
of system models. Efficient and fast simulations play a crucial role in the embedded system development. The
current SpecC simulator uses the Posix thread library, Quickthreads or Win32 libraries to achieve multithreading.
This report proposes the usage of a custom thread library based on native linux primitives to achieve the same
functionalities. Our proposed custom thread library named Litethreads is developed with the goal of having the
advantages of both user-level threads, like Quick threads, and kernel-level threads, like Pthreads. Preliminary
simulation results indicate significant improvement in simulation time for some design samples including an mp3
decoder.

tmathew@uci.edu
doemer@uci.edu

Contents

1 Introduction 1

2 Thread synchronization 2
2.1 Futex - Fast user space mutex . 2
2.2 Implementation . 3

3 Thread control in System Level Simulator 3
3.1 Thread Creation . 5
3.2 Thread Abortion and Join . 5

4 Experiments and Results 6

5 Conclusion and Future Work 6

6 Acknowledgement 6

References 7

ii

List of Figures

1 System Level Design Environment . 1

iii

List of Tables

1 Mp3 Decoder Example(time in seconds) . 7
2 Jpeg Encoder Example(time in seconds) . 7
3 Vocoder Example(time in seconds) . 8

iv

List of Listings

1 Function prototype for futex system call. 2
2 Basic mutex datatype. 3
3 Basic mutex lock function. 3
4 Basic mutex unlock function. 4
5 Basic condition variable with wait and signal functions. 4
6 Thread creation using clone system call. 5

v

A Custom Thread Library Built on Native Linux Threads for Faster Embedded
System Simulation

T. Mathew, R. Dömer
Center for Embedded Computer Systems

University of California, Irvine
Irvine, CA 92697-2625, USA

tmathew@uci.edu
doemer@uci.edu

Abstract

Embedded system simulation has become very time
expensive in recent times due to the increasing com-
plexity of system models. Efficient and fast simu-
lations play a crucial role in the embedded system
development. The current SpecC simulator uses the
Posix thread library, Quickthreads or Win32 libraries
to achieve multithreading. This report proposes the
usage of a custom thread library based on native linux
primitives to achieve the same functionalities. Our
proposed custom thread library named Litethreads
is developed with the goal of having the advantages
of both user-level threads, like Quick threads, and
kernel-level threads, like Pthreads. Preliminary simu-
lation results indicate significant improvement in sim-
ulation time for some design samples including an
mp3 decoder.

1 Introduction

In this report, we discuss a custom thread library de-
veloped using native linux primitives. TheSpecC [5]
simulator currently uses two types of thread libraries.
Quickthread library has very low overhead, but as
these are only userlevel threads on simultaneous mul-
tiprocessing machines (SMP), it becomes inefficient
as it runs in context of a single process. Posix threads
[10] carry more overhead while creating and control-
ling threads. Whereas many options are available to
the user like setting behavior and type of mutexes. It
has the advantage of schedulability to different cores

on SMP machines. We didn’t consider an improvisa-
tion on win32 [9] threads instead concentrated more
on linux based environment.

Our proposed custom thread library named
Litethreads utilizes some primitives provided by
Linux like futex (Fast User Space Mutex), and clone
system call to achieve the features offered by other
thread libraries. The motivation is to merge the good
components of both Quickthreads [7] and Pthreads,
hence obtaining a thread library with low overhead
and multi-core schedulability. Cutting down features
of Posix thread library and tuning it for use in SpecC
simulator is complex as Pthreads is integrated with
glibc which has large code space and dependencies.

Applica'on 

Add 
Customizability 

Simula'on Library 

Posix Thread Library 

Linux 

Hardware 

Applica'on 

Simula'on Library 

Lite Thread Library 

Linux 

Hardware 

Figure 1: System Level Design Environment

The software stack of a system level simulation
environment [2] is depicted as shown in the Figure
1. The application uses simlib library provided by

1

tmathew@uci.edu
doemer@uci.edu

SpecC development environment. The simulation li-
brary in turn invokes Pthread APIs to achieve various
functionalities like waiting, and creating of threads.
The Pthread library uses Linux APIs to obtain the
thread functions. Our custom Litethread library will
help to enhance the efficiency of simulation library
by providing more visibility of the environment and
ways of tweaking the environment depending upon
the behavior of the application that is being simulated.

2 Thread synchronization

Thread synchronization for Litethreads is achieved
using futexes [4]. SpecC simulator uses mainly mu-
texes and condition variables, which are implemented
at this point.

2.1 Futex - Fast user space mutex

Futexes are light-weight, linux constructs that can
be used to implement synchronization primitives like
user level locks, semaphores, condition variables. Fu-
texes [3] in non contended case acquires and releases
lock without kernel intervention. Futexes are basis
for several mutual exclusion constructs used in multi
threaded programming including Native Posix Thread
Library (NPTL) [10]. Futexes are implemented us-
ing sytem call SYS Futex. The Linux manual pages
denes futex as:

”The futex() system call provides a
method for a program to wait for a value
at a given address to change, and a method
to wake up anyone waiting on a particular
address (while the addresses for the same
memory in separate processes may not be
equal, the kernel maps them internally so
the same memory mapped in different loca-
tions will correspond for futex() calls).”

Futexes can be used to store the state of a lock and
provide a kernel wait queue for tasks blocking on the
lock. To minimize system call overhead, this state
should allow for atomic lock acquisition when the
lock is uncontended.

The syntax of futex call is shown in Listing 1.The
function parameters comprises of addr1, which

1 i n t s y s f u t e x (void ∗ addr1 , i n t op ,
2

3 i n t va l1 , s t r u c t t i m e s p e c ∗ t i m e o u t ,
4

5 void ∗ addr2 , i n t v a l 3)
6 {
7

8 re turn s y s c a l l (SYS futex , addr1 , op ,
9 va l1 , t i m e o u t , addr2 , v a l 3) ;
10 }

Listing 1: Function prototype for futex system call.

points to a user space address, that correspond to the
futex. The op parameter can take different values that
decide on whether to wake up or wait for the futex at
addr1. Parameter val1 decides on when to perform
an action on the futex at addr1 by comparing to the
value at addr1.

The working of futex can be summarised as below:

1. User level thread can acquire the futex when the
lock is free. While releasing lock, if the futex
is uncontended, the thread can release the lock.
Hence, in both cases we can avoid invoking the
system call.

2. A lock request is made by setting the argument
op value to FUTEX WAIT. addr1 parameter is
set to virtual address of the user space lock. The
value which has to be be compared against the
value at addr1 is passed in as val1 argument.
If it is different, then the queue in the futex hash
table is evaluated using the address as key. The
thread is then queued in the table until it is woken
up by some other thread.

3. An unlock request is made by passing the virtual
address of the lock and FUTEX WAKE as op pa-
rameter. The number of threads to be woken up
can also be set using the parameter val1. The
threads are removed from the wait queue in the
kernel when this system call is invoked.

4. Detailed information about the working of futex
can be found in futex man page.

We can find that Futex provides many advantages.
There are no explicit limits on how many futexes one

2

1 union mutex
2 {
3 unsigned u ;
4 S t r u c t
5 {
6 unsigned char l o c k e d ;
7 unsigned char c o n t e n d e d ;
8 } b ;
9 }

Listing 2: Basic mutex datatype.

can create, nor can one futex user starve other users
of futexes. This is because futex is merely a mem-
ory location like any other until the system call is in-
voked. Also, by invoking sys futex call, we are
pinning maximum only one page per process in the
worst case.

2.2 Implementation

The main synchronization primitives that we imple-
mented are mutex and condition variables. For im-
plementing the mutex we use a union which has a
prototype as shown in Listing 2. A value of 0 in the
union denotes an unlocked and not contended mutex.
Value of 1 denotes locked mutex that is not contended.
Value of 256 denotes an unlocked but contended mu-
tex, and 257 denotes that the mutex is both locked and
contended.

The mutex lock and unlock functions are imple-
mented as shown in Listing 3 and Listing 4. It can
be noticed that in both functions we have two loops
which makes the thread spin for some time in the user
space before invoking the system call. These parame-
ters can be optimized further depending upon the be-
havior and level of contention of the application that
is using the futex. It could also be found that we are
using atomic instructions that makes the switching of
the lock fast and safe. These are currently specific to
the x86 instruction set architecture, hence have to be
adapted to be used in other architectures.

In mutex lock, we first try to grab the lock by trying
to set locked byte. If this is not successful, then a
futex system call is invoked on the address location
and marks the location as contended also. In unlock
operation, we first check if the lock is not contended

1 i n t l i t e t h r e a d m u t e x l o c k (
2 l i t e t h r e a d m u t e x ∗m)
3 {
4 i n t i ;
5

6 /∗ Try t o grab l o c k ∗ /
7 f o r (i = 0 ; i < 100 ; i ++)
8 {
9 i f (! xchg 8 (&m−>b . locked , 1))
10 re turn 0 ;
11

12 c p u r e l a x () ;
13 }
14

15 /∗ Have t o s l e e p ∗ /
16 whi le (xchg 32 (&m−>u , 257) & 1)
17 {
18 l i t e t h r e a d s y s f u t e x (
19 m, FUTEX WAIT , 257 , NULL, NULL, 0) ;
20 }
21

22 re turn 0 ;
23 }

Listing 3: Basic mutex lock function.

and unlock it, if uncontended. If it is contended, then
we unlock it and spin, and check if somebody grabs
the lock in the meantime. If nobody grabs the lock
during the spin time, then we go on to invoke a futex
call to wake any thread who is waiting on the mutex.

Condition variables are implemented using futex
system calls by having an extra counter variable for
each conditional variable object. For implementing
conditional wait, the thread waits on the value of the
counter by invoking FUTEX WAIT. For conditional
signal, the thread increments the counter value to
wake up some other thread, if any one was waiting
for that counter variable with some other value. The
code snippets for both functions are as shown in List-
ing 5.

3 Thread control in System Level
Simulator

Thread control in SpecC simulator mainly comprises
of creation, deletion and joining of individual threads.
For this, we have to implement something similar to
pthread create and pthread destroy. For

3

1 i n t l i t e t h r e a d m u t e x u n l o c k (
2 l i t e t h r e a d m u t e x ∗m)
3 {
4 i n t i ;
5

6 /∗ Locked and n o t c o n t e n d e d ∗ /
7 i f ((m−>u == 1) &&
8 (cmpxchg(&m−>u , 1 , 0) == 1))
9 re turn 0 ;
10

11 /∗ Unlock ∗ /
12 m−>b . l o c k e d = 0 ;
13

14 b a r r i e r () ;
15

16 /∗ Sp in and hope someone t a k e s t h e l o c k ∗ /
17 f o r (i = 0 ; i < 200 ; i ++)
18 {
19 i f (m−>b . l o c k e d) re turn 0 ;
20

21 c p u r e l a x () ;
22 }
23

24 /∗ We need t o wake someone up ∗ /
25 m−>b . c o n t e n d e d = 0 ;
26

27 l i t e t h r e a d s y s f u t e x (
28 m, FUTEX WAKE, 1 ,NULL, NULL, 0) ;
29

30 re turn 0 ;
31 }

Listing 4: Basic mutex unlock function.

1

2 i n t l i t e t h r e a d c o n d w a i t (l i t e t h r e a d c v ∗c ,
3 l i t e t h r e a d m u t e x ∗m)
4 {
5 i n t seq = c−>seq ;
6

7 l i t e t h r e a d m u t e x u n l o c k (m) ;
8

9 l i t e t h r e a d s y s f u t e x (
10 &c−>seq , FUTEX WAIT , seq , NULL, NULL, 0) ;
11

12 l i t e t h r e a d m u t e x l o c k (m) ;
13

14 re turn 0 ;
15 }
16 i n t l i t e t h r e a d c o n d s i g n a l (l i t e t h r e a d c v ∗c)
17 {
18 /∗ We are waking someone up ∗ /
19 a t o m i c i n c (&c−>seq) ;
20

21 /∗ Wake up a t h r e a d ∗ /
22 l i t e t h r e a d s y s f u t e x (
23 &c−>seq , FUTEX WAKE, 1 , NULL, NULL, 0) ;
24

25 re turn 0 ;
26 }

Listing 5: Basic condition variable with wait and sig-
nal functions.

4

creation, we use a Linux system call named clone.
According to Linux man page

”clone creates a new process similar to fork,
it is actually a library function layered on
top of SYS clone system call.”

The difference between clone and fork is that it lets
the user decide on how much sharing should be
there between the parent and child process. Multiple
threads, that share the memory space can, be imple-
mented using clone. Before invoking clone system
call, we need to allocate a stack space which has to
be used for the child process. This is passed as a pa-
rameter to the clone system call. Linux also provides
many other flags which can be used to obtain different
functionality using clone system call.

3.1 Thread Creation

The prototype thread creation function using clone
system call is shown in Listing 6. We make use of
flags like below which controls different factors be-
tween parent and child thread.

• CLONE IO - Share IO descriptors

• CLONE FS - Share file system information

• CLONE FILES - Share file descriptor table

• CLONE SIGHAND - Share signal handle table

• CLONE VM - Share same memory space

• CLONE CHILD SETTID - Store the child
thread id at location refered by childpidptr

• CLONE CHILD CLEARTID - Clear the thread
id from the childpidptr location when child ex-
its

• CLONE THREAD - Create independent threads
rather than processes with new process ids.

• CLONE THREAD - The new thread created is in
the same thread group as that of the parent pro-
cess.

1 i n t l i t e t h r e a d c r e a t e (i n t (∗ fn) (void ∗) ,
2

3 void ∗ a rgs , void ∗∗ s t a c k , i n t ∗ s t a c k S t a t ,
4

5 i n t ∗ c h i l d p i d p t r)
6 {
7 void ∗ s t a c k a =
8 ma l l oc (SIM THREAD STACK SIZE) ;
9 ∗ s t a c k = s t a c k a ;
10

11 i f (s t a c k a){
12

13 ∗ s t a c k S t a t =1 ;
14

15 re turn c l o n e (
16

17 fn , (char ∗) s t a c k a +SIM THREAD STACK SIZE ,
18

19 CLONE CHILD CLEARTID | CLONE SIGHAND |
20

21 CLONE VM | CLONE THREAD | CLONE FILES |
22

23 CLONE DETACHED | CLONE IO | CLONE FS |
24

25 CLONE CHILD SETTID , a rgs , NULL, NULL,
26

27 c h i l d p i d p t r) ;
28 }
29 }

Listing 6: Thread creation using clone system call.

3.2 Thread Abortion and Join

SpecC has constructs like try catch that requires
the feature of aborting an existing thread. In a Pthread
environment, this can be implemented using thread
cancel and thread join functions. In Litethreads, the
join functionality is achieved by utilising the value
stored in the childptr location. We probe on this
address for the thread id. As we used the clear tid
flag in clone call whenever the thread exits, contents
of this address location are cleared. Hence, we can
use a futex system call to wait until the contents of
childptr are changed to 0 to achieve the function-
ality of join.

Another alternative method for achieving the same
functionality of join was to use the wait() call in-
voked by the parent thread to join with the child.
For achieving this behavior we should avoid using
CLONE THREAD option in the clone system call.

5

With this approach, every clone call spawns a new
process resulting in the pid numbers growing with the
number of threads in the system. This is not favor-
able. Also, if some running thread calls exit, this has
to cleanly exit the whole application rather than just
the calling thread. But as in this approach, each thread
itself is considered as a process by linux, a call to exit
can result in abortion of the calling thread that leaves
lots of unfinished threads in the system. To cleanly
exit all these remaining threads, we have to have sep-
arate exit handling mechanism using at exit con-
struct. This is an overhead. Hence, in Litethreads we
follow earlier method using futex to implement join.

With the use of CLONE THREAD flag in
Litethreads, we have a flat structure for the threads
in the system. Hence for achieving thread cancelling
we investigated the use of tgkill function which
wasn’t successful. Hence, to achieve abortion of
threads, we used longjmp functionality. When
abort is invoked on particular thread, a long jump is
signalled on the thread to be killed and the calling
thread will wait to join with the killed thread. The
thread to be killed, upon signaled with long jump,
does a far jump to the exit of the thread and returns
from the clone system call hence signaling any thread
who was waiting for the killed thread. The usage of
tgkill will avoid this overhead but how to make
tgkill work is not known at this point.

We can construct higher level functions like thread-
create, threadrun, threadabort, etc. using above men-
tioned thread synchronization and control mecha-
nisms that can be in turn used by SpecC simulator.

4 Experiments and Results

At this stage, we have performed only minimal mea-
surements integrating the Litethread library to the
SpecC simulator. All measurements are performed on
a Intel(R) Core(TM)2 Quad CPU, 3.00GHz, machine.

Currently we have tested Litethread library for
three main applications. First example project tested
is MP3 decoder [8]. Table 1 shows the timing com-
parison between the performance of the simulation. It
could be found that there is an improvement of around
5% when using litethreads. The cpu utilisation of lite
threads is always found to be higher for mp3 decoder

example.
Next example code which was used for measure-

ment is JPEG encoder [11] Table 2 summarises the
timings obtained for this case while using Litethread
and Pthread and Quickthread library. The percent-
age of CPU used by Litethreads is again found to be
higher. But not much of timing improvisation is found
for this case except for the cases where Litethreads
achieves more cpu utilisation.

Third example to that was investigated was
Vocoder for GSM [6].In this case, it could be found
that Litethread performs better than Pthread at times,
but not consistently. More analysis has to be done
for this kind of behavior. Table 3 provides the timing
measurements for this case.

5 Conclusion and Future Work

How a custom thread library can be built around na-
tive linux primitives is discussed in this document. It
could be found that we were successful in implement-
ing such a custom thread library and have got prelim-
inary results using the thread library on various exam-
ples. Currently, the testing has been done just for the
available examples. More examples which are specif-
ically designed to test the multithreading efficiency,
that involves less I/O, has to be used to test how much
much more efficient our proposed thread library is.

Also one constraint which we plan to address in
future is attaching the thread to a particular core to get
more efficiency. To achieve this, we have to use the
parallel simulator [1] extended with options of setting
affinity to particular processor cores with the threads.

Finally, the right amount of spin locking in the mu-
tex and condition variable implementations depends
on the nature of the application. This is also a possi-
ble area of further investigation to make these param-
eters, that are currently fixed, to be dependent upon
the program nature.

6 Acknowledgement

The authors would like to thanks Jeff White for his
initial exploration of using native Linux threads as an
alternative to Posix threads.

6

Table 1: Mp3 Decoder Example(time in seconds)
Pthreads LiteThreads QuickThreads Litethread vs(%)

User Sys Total Cpu% User Sys Total Cpu% User Sys Total Cpu% Posix Quick
0.35 0.13 0.59 81 0.31 0.14 0.53 85 0.28 0.01 0.30 95 +10 -43
0.34 0.13 0.58 82 0.32 0.12 0.52 84 0.28 0.01 0.29 98 +10 -46
0.36 0.12 0.58 82 0.29 0.15 0.53 84 0.28 0.00 0.29 98 +8 -44
0.33 0.14 0.57 83 0.31 0.14 0.53 85 0.29 0.00 0.30 99 +8 -43
0.35 0.13 0.58 83 0.29 0.16 0.53 85 0.28 0.01 0.29 99 +8 -45

Table 2: Jpeg Encoder Example(time in seconds)
Pthreads LiteThreads QuickThreads Litethread vs(%)

User Sys Total Cpu% User Sys Total Cpu% User Sys Total Cpu% Posix Quick
0.04 0.13 0.23 77 0.04 0.10 0.21 67 0.01 0.00 0.02 81 +8 -90
0.04 0.12 0.23 74 0.04 0.09 0.19 66 0.01 0.00 0.02 72 +15 -89
0.04 0.13 0.24 75 0.05 0.10 0.22 68 0.01 0.00 0.02 80 +8 -91
0.03 0.08 0.12 91 0.03 0.08 0.14 83 0.01 0.00 0.02 90 -15 -85
0.05 0.11 0.21 80 0.03 0.09 0.20 66 0.01 0.00 0.02 81 +4 -90

This work has been supported in part by fund-
ing from the National Science Foundation under re-
search grant NSF Award #0747523. We thank the
NSF for this valuable support. Any opinions, find-
ings, and conclusions or recommendations expressed
in this material are those of the authors and do not
necessarily reflect the views of the NSF.

References

[1] R. Dömer, W. Chen, X. Han, and A. Gerstlauer.
Multi-core parallel simulation of system-level
description languages. In Proceedings of the
Asia and South Pacific Design Automation Con-
ference 2011, Yokohama, Japan, January 2011.

[2] R. Dömer, A. Gerstlauer, J. Peng, D. Shin,
L. Cai, H. Yu, S. Abdi, and D. Gajski. System-
on-chip environment: A specc-based framework
for heterogeneous mpsoc design. In EURASIP
Journal on Embedded Systems, vol. 2008, arti-
cle ID 647953, Irvine, USA, July 2008.

[3] Ulrich Drepper. Futexes are tricky. In Futexes
are Tricky, Red Hat Inc, Japan, December 2005.

[4] Mutexes and Condition Variables using Fu-

texes. http://locklessinc.com/articles/mutex
cv futex/.

[5] Daniel D. Gajski, Jianwen Zhu, Rainer Dömer,
Andreas Gerstlauer, and Shuqing Zhao. SpecC:
Specification Language and Design Methodol-
ogy. Kluwer Academic Publishers, 2000.

[6] Andreas Gerstlauer, Shuqing Zhao, Daniel D.
Gajski, and Arkady M. Horak. SpecC system-
level design methodology applied to the de-
sign of a GSM vocoder. In Proceedings of the
Workshop of Synthesis and System Integration of
Mixed Information Technologies, Kyoto, Japan,
April 2000.

[7] D. Keppel. Tools and techniques for building
fast portable threads packages. Technical Report
UWCSE 93-05-06, May 1993.

[8] R. Dömer P. Chandraiah. Specification and de-
sign of a mp3 audio decoder. Technical Report
CECS-TR-05-04, May 2005.

[9] J. Richter. Advanced windows nt: The devel-
oper’s guide to the win32 application program-
ming interface. Technical Report Microsoft-
Press, January 1994.

7

http://locklessinc.com/articles/mutex_cv_futex/
http://locklessinc.com/articles/mutex_cv_futex/

Table 3: Vocoder Example(time in seconds)
Pthreads LiteThreads Litethread vs(%)

User Sys Total Cpu% User Sys Total Cpu% Posix
1.28 0.41 01.88 89 1.35 0.45 01.84 97 +2
1.31 0.47 02.04 87 1.35 0.69 02.34 87 -15
1.37 0.83 02.91 75 1.32 0.60 02.06 93 +29
1.32 0.89 02.94 75 1.34 0.92 02.43 93 +17
1.29 0.42 01.93 87 1.30 0.57 02.08 90 -7

[10] Ingo Molnar Ulrich Drepper. The native posix
thread library for linux. In The Native POSIX
Thread Library for Linux, Red Hat Inc, February
2005.

[11] Hanyu Yin, Haito Du, Tzu-Chia Lee, and
Daniel D. Gajski. Design of a JPEG encoder us-
ing SpecC methodology. Technical Report ICS-
TR-00-23, July 2000.

8

	1 Introduction
	2 Thread synchronization
	2.1 Futex - Fast user space mutex
	2.2 Implementation

	3 Thread control in System Level Simulator
	3.1 Thread Creation
	3.2 Thread Abortion and Join

	4 Experiments and Results
	5 Conclusion and Future Work
	6 Acknowledgement
	References

