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A Case for an Adaptive and Opportunistic Variability-aware Memory
Virtualization Layer

LUIS ANGEL D. BATHEN, University of California, Irvine
PUNEET GUPTA, University of California, Los Angeles
ALEX NICOLAU, University of California, Irvine
NIKIL D. DUTT, University of California, Irvine

Device variability in power consumption (e.g., sleep, active) and performance (e.g., frequency) is expected
to continue to increase in the orders of magnitude over the next decades. In order to be opportunistic and
account for hardware variability, designers must build an adaptive hardware/software stack that will effi-
ciently manage the underlying hardware resources. This paper makes several contributions: 1) We propose a
first-of-its-kind Hardware-assisted Variability-aware Memory Virtualization (VaMV) layer that allows pro-
grammers/applications to partition their address space into regions with different power, performance, and
fault-tolerance guarantees (e.g., map look-up tables into low-power fault-tolerante space or pixel data in
low-power non-fault-tolerant space). VaMV adapts to the underlying hardware and virtualizes the memory
hierarchy, while opportunistically exploiting techniques such as voltage scaling to reduce on-chip power con-
sumption and power consumption variability present in off-the-shelf off-chip memories. 2) To the best of our
knowledge, we are the first to explore the notion of variability-aware policy-driven memory allocation for
distributed on-chip and off-chip memories. 3) We propose a proof-of-concept hardware-module called VaMVi-
sor, which allows us to minimize the overheads incurred by virtualization and dynamic allocation of the
memory space. Finally, 4) We define an API to facilitate the creation and management of virtual ScratchPad
Memories (vSPMs) and virtual Off-chip Memories (vOMs). Our experimental results on a set of benchmarks
(Mediabench I/II and CHStone) show that our approach is capable of reducing dynamic power consumption
by 63% on average while reducing total execution time by an average of 45%.

Categories and Subject Descriptors: C.3 [Special-purpose and Application-based systems]: Real-time
and embedded systems; D.4.6 [Security and Protection]: Access Controls; Security Kernels; B.3 [Design
Styles]: Virtual Memory; D.4 [Storage Management]: Distributed memories

General Terms: Design, Management, Performance, Security

Additional Key Words and Phrases: information assurance; security; chip-multiprocessors; policy; scratch-
pad memory; virtualization; embedded systems

1. INTRODUCTION
Hardware variability is quickly becoming one of the major topics of concern in the de-
sign community. ITRS predicts that over the next decade performance variability will
increase from 48% to 66% [1; 2], while sleep and total power consumption variability
will increase by up to 500% and 100% [1; 3] respectively. There are many sources/-
factors that influence the variation within and across devices. From parameters such
as temperature, voltage, current, mask imperfections, wear-out mechanisms, to ven-
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dors and processes used . Variability plays a major role not only on system performance
and power consumption but also in design costs, since high degrees of variability might
cause a device to be disregarded, hence reducing the production yield (and increasing
production costs) [4]. Due to this expected increase in variability, designers must built
adaptable and tunable software/hardware to deal with these variabilities. Various ef-
forts in the community have shown that exploiting variability in off-the-shelf hardware
may lead to very promising results [3; 2; 5; 6], thus motivating this work.

At the memory subsystem, designers have exploited aggressive voltage scaling to
reduce power consumption at the cost of exponentially increasing the impact of process
variation on memory cells [7]. Failures due to process variation worsen as process
technology reaches its limits [8; 9; 10]. Although the probability of failure in SRAM
technology is exponentially proportional to the decrease in voltage, research has shown
how to efficiently exploit voltage scaling while handling process variations [11; 8; 12;
13] to save power consumption.

Finally, the rapid adoption of multiprocessor technology ([14; 15; 16]) along with
the integration of distributed scratchpad memories (SPMs) into the memory hierarchy
[14] (due to their increased predictability, reduced area and power consumption [17])
further exacerbates the need to built adaptable hardware/software to account with
inter/intra die variability [2; 18].

In this paper we propose a first-of-its-kind Hardware-assisted Variability-aware
Memory Virtualization (VaMV) layer that allows programmers/applications to par-
tition their address space into regions with different power, performance, and fault-
tolerance guarantees. VaMV adapts to the underlying hardware and virtualizes the
memory hierarchy, while opportunistically exploiting techniques such as voltage scal-
ing to reduce on-chip power consumption and power consumption variability present in
off-the-shelf off-chip memories. We define an API to facilitate the creation and manage-
ment of virtual ScratchPad Memories (vSPMs) and virtual Off-chip Memories (vOMs)
and show how a programmer can take advantage of our API by taking a commonly
known application and tuning it to exploit the idea of variability-aware data parti-
tioning and policy generation. The VaMVisor then takes the these policies, and makes
real-time allocation decisions based on the application’s priority, the block’s priority,
and the type of protection needed. To the best of our knowledge, we are the first to
explore the notion of variability-aware policy-driven memory allocation for distributed
on-chip and off-chip memories. We propose a proof-of-concept hardware-module called
VaMVisor, which allows us to minimize the overheads incurred by virtualization and
dynamic allocation of the memory space.

The key contributions of this paper are:

— Introduced the concept of variability-aware application data partitioning
— A first attempt at exploiting and co-optimizing on-chip and off-chip memory variabil-

ity
— A first-of-its-kind hardware-assisted dynamic variability-aware memory virtualiza-

tion (VaMV) layer
— A dynamic and efficient resource-management mechanism built on the idea of policy-

driven variability-aware allocation
— API for dynamic and transparent on-chip resource management to exploit the notion

of memory variability

Our experimental results on a set of benchmarks (Mediabench I/II and CHStone)
show that our approach is capable of reducing dynamic power consumption by 63% on
average while reducing total execution time by an average of 45%.
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2. MOTIVATION
Although there are many types of variabilty across different components, in this pa-
per we will focus on memory variability, primarily two types: 1) Off-the-shelf mem-
ory variability (same vendor and specs), and 2) On-chip memory variability (latency,
power consumption, error rates) as an effect of voltage scaling. Our goal is to motivate
the need for exploiting and co-optimizing on-chip and off-chip memory variability in a
holistic manner with the goal of reducing power consumption.

2.1. Off-Chip Memory Variation
Like processors [19; 3; 2; 5], where power consumption variability across various dies
has been reported despite following the same design specs, the same phenomena has
been observed at the memory subsystem [19] and [18]. Gottscho et al. [18] reported
that up to 20.25% power variability was observed across a series of 1GB DIMMs and
up to 16.77% power variation across 1GB DIMMs belonging to the same vendor. As a
result, just like [6; 2; 5] exploited variability in processor power consumption, our goal
is to adapt our memory management layer and opportunistically take advantage of
these opportunities to reduce power consumption. Figure 1 shows the power (READ,
WRITE, IDLE) variability across seven 1GB @ 1066 MHz V1S1M{1/2} (Vendor, Specs,
Manufacturer), where an average of 10.8% write power variation and up to 26.3% write
power variation was observed.

0 5 10 15 20 25 30 

V1S1M1 
V1S1M1 
V1S1M1 
V1S1M2 
V1S1M2 
V1S1M1 
V1S1M1 
Average 

% POWER VARIATION 

VIRIATION IN POWER CONSUMPTION 

IDLE 

READ 

WRITE 

Fig. 1. Power Variation in off-the-shelf 1GB DIMMs. [18]

2.2. On-Chip Memory Process Variation
Figure 2 shows the probability of failure (PFail) on the y − axis and voltage on the
x−axis. As voltage is reduced from nominal Vdd (>0.9 Vdd) to 0.7 Vdd, PFail increases
exponentially. Voltage scaling is a very promising technique to reduce on-chip memory
power consumption at the cost of introducing errors on the memory subsystem [8; 7;
20]. Moreover, voltage scaling affects the access latencies of on-chip memories [8; 7],
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Fig. 2. Effects of Voltage Scaling [8].

as a result, it is possible to have different types of on-chip memory variability (access
latency, static and dynamic power, error rate).
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Fig. 3. Variability-aware Memory Virtualization.

3. VARIABILITY-AWARE MEMORY VIRTUALIZATION
3.1. Overview and Goals
The goal of of our Variability-aware Memory Virtualization (VaMV) layer is to oppor-
tunistically exploit variability across various levels of the memory hierarchy in order
to reduce overall power consumption. The key idea is to provide a hardware-assisted
virtualization infrastructure (via VaMVisor) to allow programmers/compilers/OSes the
ability to partition their virtual address space into regions, where each region has
different power, performance, fault-tolerance guarantees. Figure 3 shows a high-level
view of VaMV ’s memory space. In this figure, we have two applications with different
needs: 1) High-performance (low-latency) address space represented by dashed blocks,
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2) Normal (no fault-tolerance, no latency requirements) address space represented by
light green blocks, 3) Pure low-power address space represented by squared blocks, and
4) Low power and fault-tolerant memory space represented by the dark red blocks. To
the best of our knowledge, this is the first piece of work to allow such partitioning of
the address space in a transparent manner while exploiting variability across various
levels of the memory hierarchy. Due to limited space we will give a high-level overview
of the various VaMV concepts, for more details please refer to [21].

3.2. Target Platform

OM OM OM 

OM HDD 

Low Power Voltage Scaled Medium Power 

High Power VAMVISOR 

SPM SPM SPM SPM 

CPU CPU CPU CPU 

S-DMA 

CMP Nominal Voltage 

Fig. 4. Chip-Multiprocessor with Distributed Memories.

Figure 4 shows our target Chip-Multiprocessor platform ([22; 13]), which consists
of a series of RISC-like processing cores, a set of on-chip distributed ScratchPad Mem-
ories, a secure DMA (S-DMA) engine to protect on-chip and off-chip memory space,
a Crypto engine to protect memory transactions (not used in this work), a series of
distributed off-chip memories (OMs), and a set of hard drives (HDDs). The black box
represents the VaMVisor, a hardware module to help realize our variability-aware vir-
tualization layer and efficiently manage the on-chip resources.

3.3. Assumptions
We assume variability in both on-chip and off-chip memories (denoted by different col-
ored SPMs and OMs in Figure 4)). We assume that we can selectively voltage scale
our on-chip memories and can lock part of off-chip memory space (via S-DMA) [23]
to assist with the virtualization of the on-chip memory space, as a result, a subset
of on-chip memories may have lower power consumption, higher access latencies and
higher error rates than others. Furthermore, we assume that there is power consump-
tion variability in off-chip memory [18]. We assume every application running on the
system uses some if not all of the on-chip memory space, is able to partition their ad-
dress space into regions with different requirements (power, performance, etc.) and on
a context switch, the application’s data would have to be flushed (to update mapping
tables as in [24; 25]).

3.4. Embedded RAIDs (E-RAIDs)
The concept of Embedded RAIDs-on-Chip was first introduced in [13; 26], where the
authors proposed a series of custom RAID-like policies (levels) that exploit aggressive
voltage scaling to reduce power consumption (static and dynamic) while guaranteeing
data correctness. They further showed that E-RAID levels can complement traditional
schemes (e.g., ECC) to enhance the fault tolerance of the memory hierarchy. Due to
limited space, we will briefly summarize a few E-RAID levels; for more information
please refer to [13; 26].
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Fig. 5. Partitioning the Application’s Memory Space

3.4.1. E-RAID Level 1. Like traditional RAID 1, also referred to as mirroring, two copies
of each block are kept in the E-RAID, where each block being a 32bit word. Algorithm 1
shows a sample read/write policy for E-RAID 1, on a read request, the two data blocks
are fetched, compared and the data is returned if correct, else the manager returns an
error (Lines 2-6). The methods DSPAMx() and DSPAMY () perform the address trans-
lation for the transaction and are used to fetched/write/update the copies of the data
in their respective memory regions (Lines 2-3). On an error the master will be forced
to fetch the data from off-chip memory, thereby paying the penalty of a main memory
access (Line 8). E-RAID 1 achieves lower power consumption and lower performance
overheads than parity checking schemes as the comparison of the two blocks requires
a simple AND or XOR and the reads/writes can be done in parallel. This level assumes
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Algorithm 1: E-RAID Level 1 Read/Write Policy
Require: REQ{CTRL,ADDR,DATA∗}
1: if REQ.CTRL == READ CTRL then
2: A1← DSPAMx(REQ.ADDR)
3: A2← DSPAMy(REQ.ADDR)
4: if A1 == A2 then
5: REQ.DATA∗ ← A1
6: return CHANNEL OK
7: else
8: return SLV ERR
9: end if
10: else
11: if REQ.CTRL == WRITE CTRL then
12: DSPAMx(REQ.ADDR)← REQ.DATA∗

13: DSPAMy(REQ.ADDR)← REQ.DATA∗

14: end if
15: end if

that the probability that two blocks have an error at the same bit location is low [27;
28], however, unlike traditional replication approaches (e.g., [27; 28; 29; 30]), E-RAIDs
do not assume that the backup data is correct, thereby provide higher data-correctness
guarantees.

3.4.2. E-RAID Level 1 + ECC. Like E-RAID 1, this level keeps two copies of the data, one
backup and one original (protected by SEC). The idea is to minimize ECC overheads
by comparing the two copies before the ECC check is done since a simple comparison
incurs less overhead than the ECC check/correction, while minimizing off-chip accesses
on an error detection (unlike E-RAID 1).

3.4.3. NO E-RAID. The NO E-RAID level consists of pure voltage scaled memory space
with no reliability guarantee.

Because each E-RAID level has different power, performance, and fault-tolerance
guarantees, it is possible to mix E-RAID levels to better utilize the on-chip memory
space while satisfying an application’s needs. For example, we can take a multimedia
application which consists of non-critical (e.g., pixel) data and critical data (e.g., look
up tables) an apply NO-ERAID and E-RAID 1+ECC levels respectively.

3.5. virtual ScratchPad Memories (vSPMs)
The concept of ScratchPad Memory virtualization was first introduced by [13] and
later refined by [23] through the creation of virtual ScratchPad Memories (vSPMs).
The idea was motivated in part by the need to provide access to on-chip memory space
in a transparent manner (in the presence of multi-tasking environments). Unlike tra-
ditional SPM management approaches, which assumed an application had full control
of the on-chip memory space, vSPMs allowed designers to still use their traditional
SPM memory management schemes while not having to worry about their data being
tampered with (evicted, modified, etc.). vSPMs are realized by locking part of off-chip
memory space (Protected Evict Memory (PEM)) in order to extend the available on-
chip memory space. They defined priority-based allocation policies to efficiently used
the on-chip memory space while minimizing both power and performance overheads of
their virtualization layer.

3.6. Variability-aware Data Partitioning
Figure 5 shows the address space partitioning of the JPEG [31; 32] application. Lee et
al. [33] proposed the idea of partitioning data into critical and non-critical data, and
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based on this partition they decided whether to map the data to their protected cache
(through ECC) or to traditional cache space. Note that they protected data against soft-
errors, in our case, we propose a similar partitioning, however, our goal is to split data
into various regions, where each region can support a policy. In our work, each data
block is associated with a policy which dictates how to map the block into physical ad-
dress space and the type of guarantees needed (power, performance, fault-tolerance).
Figure 5 shows four separate partitions: 1) Read-only and highly utilized data (e.g.,
look up tables) represented by the dashed green blocks, 2) A temporary buffer space to
hold inter-task communication denoted by the light purple block, 3) Read-only image
data pixels which is represented by the black blocks, 4) Irregular frequently accessed
address space denoted by the squared orange blocks. Figure 5 (a) shows a traditional
mapping of these data blocks, where no notion of variability is taken into account.
Figure 5 (b) shows our approach, where we have the same address space and same
partitions, but we exploit the information provided by the compiler/programmer (re-
ferred to as policies) to help our VaMVisor make the right mapping decisions exploiting
the device’s present memory variability. Figure 5 (b) maps commonly used read-only
data onto low-power memory space protected by an E-RAID 1 level, pixel data to low
power memory space (NO ERAID), and irregular and commonly used data to off-chip
low power memory.

Custom variability-aware policy generation (e.g., data mapping, type of protection)
is a promising field of research as the compiler can derive so much more useful in-
formation from the application (than a knowledgeable programmer), and as a result,
further studies are left for future work.

3.7. Virtual SPM and Virtual Off-chip Memory
In this paper we exploit the notion of virtual SPMs (vSPMs) and extend it with the no-
tion of virtual Off-chip Memory (vOM) to fully virtualize the memory space. The idea
is to provide a transparent means to manage the memory space without programmers
having to worry about where their data is mapped. Unlike traditional memory virtual-
ization schemes, our virtualization layer allows programmers to partition their virtual
memory into regions (within virtual memories - vSPMs or vOMs) and define polices
for each region requiring different guarantees (power, performance, fault-tolerance).

Method	   Notes	  

v_mem_create(uint	  PID,	  uint	  AppPriority,	  uint*	  IPA,	  uint	  ACL,	  uint	  
MemType)	  

Process	  ID	  (PID),	  Applica9on	  Priority	  (AppPriority),	  Intermediate	  Physical	  
Address	  (IPA),	  Access	  Control	  List	  (ACL),	  MemoryType:	  vSPM	  or	  vOM	  

v_mem_delete(uint	  PID,	  uint	  IPA)	   Delete	  a	  memory	  at	  a	  given	  IPA	  

v_blk_malloc(uint	  PID,	  uint	  IPA,	  uint	  BlkSize,	  uint	  BlkPriority,	  uint	  
MallocPolicy,	  uint	  BlkACL)	  

Block	  Size	  in	  Bytes	  (BlkSize),	  Priority	  of	  this	  block,	  (BlkPriority),	  Policy	  
associated	  with	  block	  (MallocPolicy),	  Block	  Access	  Control	  List	  (BlkACL)	  

v_blk_delete(uint	  PID,	  uint	  IPA)	   Delete	  a	  single	  block	  

v_blk_poll(uint	  PID,	  uint	  IPA)	   Poll	  alloca9on	  status	  of	  a	  given	  block	  

v_mem_transfer(uint	  PID,	  uint	  SrcAddr,	  uint	  DstAddr,	  uint	  TxtType)	   Transfer	  data	  between	  source	  address	  (SrcAddr)	  and	  des9na9on	  address	  
(DstAddr),	  and	  make	  transac9on	  sync/async/secure	  (TxtType).	  

Fig. 6. VaMV Management API.

Figure 6 shows a subset of our supported API. The goal is to provide programmers
with a simplified API that would allow them to take advantage of our virtualization
layer without having to fully change their programming model. The key methods are:
1) v mem create(), which allows designers to define a virtual memory, and obtain an
intermediate physical address (IPA) from the method, which is then used as an offset
address to the given virtual memory. The ACL field allows designers to specify the type
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of access control for the memory (can specify block level ACL too), which is then used to
grant access to the virtual memory to only authorized processes. 2) The v blk malloc()
method allows designers to allocate a block of data within a given virtual memory
(vSPM/vOM) at the given IPA, along with a block level ACL (used for sharing/pro-
tecting the block), and a block priority (e.g., high-utilization) and an allocation policy.
The policy determines what degree of protection to use (e.g., E-RAID level to use) and
where to map the data (e.g., low power memory space). Finally, 3) The v blk poll(PID,
IPA), which allows programmers to poll the VaMVisor for the allocation status of a
given block.

1void i_zig_zag (int * omatrix) {
2int i, *imatrix , *zz;
3unsigned int m_offset = SPMBASEADDR;
4m_lock = 0; // point zig zag matrix to SPM
5status = init_dma_put(get_pid (),
6&zigzag_idx , m_offset);
7wait_dma_complete (& m_lock);
8zz = m_offset;
9m_lock = 0; // point input matrix to SPM
10status = init_dma_put(get_pid (),
11&input_matrix , m_offset +64* sizeof(int));
12wait_dma_complete (& m_lock);
13imatrix = m_offset +64* sizeof(int);
14// point omatrix to main memory
15omatrix = (int*) malloc (64* sizeof (int) );
16for (i = 0; i < DCTSIZE2; i++)
17*( omatrix ++) = *( imatrix + (zz + i ));
18...

Function 1: Traditional programming model for SPM based systems

1void i_zig_zag (int * omatrix) { // VaMV enabled
2int i, *imatrix , *zz;
3unsigned int m_offset , m_offset_off;
4// create v spm
5v_mem_create(get_pid (), MIN_PRIO ,
6&m_offset , (( get_pid () << 6) | RW_ACL), V_SPM);
7// block allocation w/min priority and same acl as vSPM
8v_blk_malloc(get_pid (), m_offset ,
9256, MAX_PRIO , LP_ERAID1 , V_SPM_D);
10// create v off -chip memory - usually done once
11v_mem_create(get_pid (), MIN_PRIO ,
12&m_offset , (( get_pid () << 6) | RW_ACL), V_OM);
13// block allocation w/min priority and same acl as vOM
14v_blk_malloc(get_pid (), m_offset_off ,
15256, MIN_PRIO , LP_NOERAID , V_OM_D);
16// point zig zag matrix to vSPM
17m_lock = 0;
18status = init_dma_put(get_pid (),
19&zigzag_idx , m_offset);
20wait_dma_complete (& m_lock);
21zz = m_offset;
22m_lock = 0; // point input matrix to vSPM
23status = init_dma_put(get_pid (),
24&input_matrix , m_offset +64* sizeof(int));
25wait_dma_complete (& m_lock);
26imatrix = m_offset +64* sizeof(int);
27// point omatrix vOM ( irregular accesses by huffman)
28omatrix = m_offset_off;
29for (i = 0; i < DCTSIZE2; i++)
30*( omatrix ++) = *( imatrix + (zz + i ));
31...

Function 2: VaMV programming model

Function 1 shows the traditional programming model considering a traditional
memory hierarchy (SPM and Off-chip Memory), and Function 2 shows our VaMV-
aware programming model. This example shows the i zig zag() method from DJPEG
adapted to use SPMs. The key differences are: 1) Line 3 has two temporary variables
to hold the IPAs needed to access the vSPM and vOM needed to execute this method,
unlike Function 1, we do not need to keep track of absolute physical SPM addresses.
2) Lines 5-16 show the creation of the vSPM and vOM as well as their block allo-
cations. Note that vSPMs and vOMs should be the first thing to be created, where
the programmer can create memory regions within the vSPM and vOM with differ-
ent requirements, i.e., low power E-RAID 1 space (LP ERAID1) to protect the zig-zag
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look up table, and low-power off-chip memory space (LP NOERAID) to hold highly-
utilized irregularly accessed data (used by the i huffman task). Disregarding the extra
comments, the number of extra lines introduced into the method to take advantage
of our virtualization layer is minimal. To the best of our knowledge, no existing mem-
ory management layer exists to exploit variability, so the traditional malloc() allocates
memory space in a random off-chip memory, and does not take advantages of the vari-
ability in off-chip memory. 3) The allocation methods allow a programmer to define
access controls to protect the memory space from unauthorized accesses.

3.8. VaMVisor : Dynamic Memory Management
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Fig. 7. Variability-aware Memory Virtualization.

Once a programmer/designer has partitioned the memory space and derived policies
for each region, the next step is to provide an infrastructure to make real-time mem-
ory management decisions. In this paper, we propose the VaMVisor, a hardware mod-
ule that can be embedded in today’s bus-based Chip-Multiprocessors as an augmented
arbiter similarly to [13; 23; 34; 35]. Figure 7 shows a high level view of our VaMVi-
sor-asisted run-time environment. The VaMVisor exploits the notion of policy-driven
variability-aware allocation to efficiently manage the on-chip and off-chip resources.
On memory block allocation, the shows the VaMVisor takes in the policy associated
with the data block, the application’s privilege level/priority, the signature of the de-
vice (characteristics), and the system load. There are three key components here: 1) As
discussed in Section 3.6, the type of policy associated with each block will determine
how the block is mapped, 2) The application’s priority is used by the run-time envi-
ronment to decide how to efficiently use the memory space (e.g., give higher priority
to applications with real-time requirements), 3) The signature of the device, which is
device dependent as variability is random in nature. This signature allows our run-
time environment to opportunistically exploit the variability present in the device, 4)
The status of the system, which is useful when deciding how to allocate data blocks.
A combination of these four parameters allows the VaMVisor to make real-time al-
location decisions, which in some cases will lead to re-arrangement of data blocks to
accommodate tasks with high priorities.

Figure 8 shows a set of applications being executed (App1-App4) by two CPUs
(CPU0, CPU1) utilizing a total of two SPMs (4KB space each) and the status of the
memories as vSPMs are created, and blocks are allocated (States S1 through S6). On
arrival of the first application (App3), the vSPM is created and the SPMVisor maps
the App3’s blocks to SPM0, and the process continues up until S3. When App4 arrives,
the SPMVisor looks at the priorities of the blocks belonging to App4 and decides to
map them to PEM space. When App5 (red dotted block) needs to execute, rather than
evicting all of App1 and App2’s contents from SPM (as in traditional approaches [36]),
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Fig. 8. Multi-tasking Policy-driven Variability-aware Allocation.

the VaMVisor looks at the priorities of the various blocks, and makes the decision to
evict some of the lower priority blocks from SPM space (App1-3), and allocating the
space to App5 blocks as shown in S5. After App5 completes and destroys the vSPM,
the VaMVisor then re-loads the contents it had evicted prior to App5’s execution. This
example shows how our data-driven allocation policy works, as blocks may have differ-
ent priorities (P1-P3) and its possible that applications with lower priority may have
higher priority blocks than applications with higher priority. Moreover, the VaMVisor
also partitions the off-chip memory (OM) space and prioritizes to exploit the variabil-
ity present in the device. An example is to exploit an utilization-based priority policy,
where two application’s request virtual off-chip memory (vOM) space with the same
priority (but utilization is higher for one than the other), so the VaMVisor would try
to map the vOM to the physical OM with the lowest power consumption. If it cannot
serve both request, then the application with the highest utilization would be given
priority. Of course, the VaMVisor would try to map the other application’s data to the
next low-power OM.
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Fig. 9. VaMVisor Architecture.

Figure 9 shows a high-level block diagram of our VaMVisor, which includes a con-
figuration memory that holds the metadata (which can be between 512B and 2KB) for
vSPMs/vOMs and their blocks. Each block metadata requires up to 12 Bytes, up to 2
physical addresses and 4Bytes for control (ACL, policy, etc.), and is stored in VaMVi-
sor’s configuration memory. An address translation unit for quick IPA-PA translation.
VaMVisor provides a vSPM address space of (214); however, the number of vSPMs is
limited by the block size used (can be 256B, 512B, 1024B, 4KB, etc.), the total amount
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of physical memory managed (# SPMs, # OMs, and PEM space), and the amount con-
figuration memory storage. The Allocator/Evictor unit is responsible for making the
allocation-decisions at run-time (as discussed earlier in the section).

4. RELATED WORK
Intra/Inter-Die variation has been explored in many contexts (processors, memories,
integrated circuits, etc.). Borkar et al. [4] measured die-to-die Vt distribution and its
resulting chip Isb variation (about 30mV in a 180nm CMOS logic technology), which
causes a significant variation in circuit performance and leakage as well as frequency
variation across dies. Hanson et al. [19] measured the power consumption across five
identical (same specifications and same workload) Intel M processor chips and found
between 3% and 10% variation. Wanner et al. [3] measured the sleep power at room
temperature for ten instances of Cortex M3 based Atmel SAM3U processor and ob-
served more than 5x variation. Their work served as the basis for a variability-aware
duty cycle scheduling scheme which showed further improvements energy efficiency
[6]. Sartori et al. [2] looked at frequency variation across various processing cores.
Pant et al. [5] proposed hardware signatures to adapt the software stack to deal with
variability in the underlying hardware. Hanson et al. [19] looked at power consump-
tion across five 512 MB DDR2 DRAM memories (different vendors) and observed up
to 2x in active power variation. Gottscho et al. [18] modified Memtest86 and mea-
sured power (IDLE, READ, WRITE) for a series of DDR3 memories and observed up
to 16.77% power variation across memories belonging to the same vendor and 14.58%
across various vendors (same size DIMMs).

Exploiting voltage scaling to reduce on-chip memory power consumption has been
explored primarily in the cache-architecture domain. Makhzan et al. [8] propose the
idea of exploiting error maps to correct faulty cells on the main cache. Chakraborty et
al. [11] exploit the idea of in-cache replication to reduce energy. Sasan et al. [9] pro-
posed changes at the architectural level (SRAM) to tolerate errors due to voltage scal-
ing, which was followed by a resizable data composer-cache architecture to operate at
sub 500mV [7]. Kurdahi et al. [20] proposed an algorithmic solution (e.g., at the appli-
cation level) to handle process variations in the memory subsystem. Mutyam et al. [37]
proposed the concept of block rearrangement to minimize performance loss incurred
by process variations on a cache. Liang et al. [38] proposed replacing 6T SRAM with
3T1D DRAM for data-caches to address physical device variation by exploiting cache
refresh and placement schemes to deal with retention time variations. Meng et al. [39]
proposed way prioritization to minimizes cache leakage in the presence of within-die
leakage variation. At the system level, Bathen et al. [13] proposed the concept of Em-
bedded RAIDs-on-Chip, which exploit voltage scaling to reduce power consumption.

Shalan et al. [35] looked at dynamic memory management for global memory
through the use a hardware module. Francesco et al. [34] proposed a memory manager
that supports dynamic allocation of SPM space, which supports block-based alloca-
tion (fixed and variable). Egger et al. proposed SPM management techniques for MMU
supported [24] and MMU-less embedded systems [25], where code was divided into
cacheable code and pageable (SPM) code, and the most commonly used code is mapped
onto SPM space. [40] introduced an OS-level management layer that exploited hints
from static analysis at run-time to dynamically map objects onto SPMs.

Our scheme is different from [3; 19; 2] in that we focus primarily in memory vari-
ability, however, our scheme could potentially be complemented by other schemes that
consider processor variability (e.g., frequency, power consumption, etc.). Our approach
is different from [8; 11; 9; 20; 7] in that we selectively voltage scale on-chip distributed
memories and take advantage of the variation (power, performance, error rates) oppor-
tunistically at the system level. Our approach differs from [13] in that our scheme goes
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beyond using E-RAIDs on-chip, we also exploit off-chip memory variability, and fully
virtualize the entire memory space. Our approach differs from [35; 34; 25; 40; 24] in
that our approach exploits variability across the entire memory hierarchy, moreover,
our VaMVisor exploits the idea of priority-driven variability-aware memory allocation.
To the best of our knowledge, we are the first to propose the idea of exploiting variability
in on-chip and off-chip memory to reduce power consumption.

5. EXPERIMENTAL EVALUATION AND RESULTS
5.1. Experimental Evaluation Goals
The goal is to show how we can exploiting and co-optimizing on-chip and off-chip mem-
ory variability in a holistic manner to reduce power consumption. First, we will parti-
tion the address space of each application to exploit on-chip/off-chip variability. We will
show how E-RAIDs can be complemented by exploiting off-chip memory variability to
reduce power consumption. Second, we explore the effects of variability in memory
virtualization. Third, we explore various policies to illustrate how choosing the right
policy will lead to power-consumption saving. Finally, we show the true potential of
exploiting the notion of variability-aware dynamic policy-driven memory allocation for
distributed on-chip and off-chip memories.

5.2. Experimental Setup
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Fig. 10. Experimental Setup.

Figure 10 shows our simulation environment (implemented in SystemC TLM/C-
CATB [41] and interfaces with Simplescalar [42] and CACTI [43]), where we can
simulate a Chip-Multiprocessor with distributed on-chip SPMs, a set of distributed
off-chip memories (OMs), and our VaMVisor. We assume 65nm process technology for
our memories and a 1GB off-chip main memories. We cross-compiled a set of applica-
tions (ADPCM, AES, BLOWFISH, GSM, H.263, JPEG, MOTION, and SHA) from the
CHStone [32] and Mediabench II [44] benchmark suites and analyzed them to obtain
SPM mappable data sets. In order to support multiple applications running concur-
rently we used page tables (1KB mini-pages). The application’s virtual addresses are
translated by the CPU’s MMU unit and generates physical addresses which point to
physical SPMs, or intermediate physical addresses (IPAs) which then point to vSPMs.
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Our environment can simulate a lightweight RTOS environment with context switch-
ing enabled and a light-weight hypervisor. Each OS/CPU instance can run anywhere
between 1-4 simulated OSes and 1-8 applications. We chose four off-chip memories
from (OM{1-4}) [18].

Table I: Sample Policies
Data Type Desctiption
T1 Look-up tables (e.g., quantization variables, ziz-zag indices)
T2 Commonly used data (e.g., inter-task communication buffers)
T3 Non-Critical Data (e.g., pixels)
T4 Variables (e.g., frame width/height)
T5 All other
Policy Desctiption
P1 physical SPM (pSPM)← {T1,T2,T4}, off-chip memory (OM) 1← T5
P2 pSPM← {T1,T2,T4}, OM2← T5
P3 pSPM← {T1,T2,T4}, OM3← T5
P4 pSPM← {T1,T2,T4}, OM4← T5
PLP pSPM← {T1,T2,T4}, low-power (LP) OM← T5
PHP pSPM← {T1,T2,T4}, high-power (HP) OM← T5
E1 virtual SPM (vSPM)/E-RAID1/0.35V← {T1,T2,T4}, HP OM← T5
E2 vSPM/E-RAID1/0.35V← {T1,T2,T4}, LP OM← T5
E3 vSPM/E-RAID1+ECC/0.35V← {T1,T2,T4}, HP OM← T5
E4 vSPM/E-RAID1+ECC/0.35V← {T1,T2,T4}, LP OM← T5
E5/VE1 vSPM/E-RAID1/0.5V← {T1,T2,T4}, HP OM← T5
E6 vSPM/E-RAID1/0.5V← {T1,T2,T4}, LP OM← T5
E7 vSPM/E-RAID1+ECC/0.5V← {T1,T2,T4}, HP OM← T5
E8 vSPM/E-RAID1+ECC/0.5V← {T1,T2,T4}, LP OM← T5
V1 vSPM/Nominal Vdd← {T1,T2,T4}, HP OM← T5
V2 vSPM/Nominal Vdd/HP PEM← {T1,T2,T4}, HP OM← T5
V3 vSPM/Nominal Vdd/LP PEM← {T1,T2,T4}, HP OM← T5
V4 vSPM/Nominal Vdd/LP PEM← {T1,T2,T4}, LP virtual OM (vOM)← T5
VE2 vSPM/E-RAID1/0.5V← {T1,T2,T4}, LP vOM← T5
VE3 vSPM/E-RAID1/0.5V← {T1,T4}, vSPM/NO-ERAID/0.5V← {T2,T3}, HP OM← T5
VE4 vSPM/E-RAID1/0.5V← {T1,T4}, vSPM/NO-ERAID/0.5V← {T2,T3}, LP vOM← T5
VE5 2×vSPMs/E-RAID1/0.5V← {T1,T4}, 2×vSPMs/NO-ERAID/0.5V← {T2,T3}, LP vOM/E-RAID1← T5
M1 8×vSPMs/LP PEM← {T1,T2,T4}, HP OM← T5
M2 8×vSPMs: E-RAID1← {T1,T4}, 3×NO-ERAID & 4×LP PEM← {T2,T3}; HP OM← T5
M3* 8×vSPMs: E-RAID1← {T1,T4}, 3×NO-ERAID & 4×LP PEM← {T2,T3}; LP vOM← T5

Table I shows the policies we will use during this section. The base-line policies start
with P , the E-RAID policies start with E, the vSPM policies start with V , the hybrid
(vSPMs+E-RAID) policies start with V E, and the hybrid policies that support multi-
tasking start with M .

5.3. Exploiting DRAM Variability
For exploiting DRAM variability, we simulated a single application running on the sys-
tem with 4x1GB DRAMs exhibiting variability from the same vendor/specs [18] and no
data cache/SPMs because we wanted to emphasize the importance of exploiting DRAM
power variability. All data was directly accessed from DRAM. We then compared our
variability-aware memory allocation approach (VaMV) with a traditional memory allo-
cation scheme that randomly allocated data to any of the four 1GB DRAMs (Random-
Malloc). Figure 11 shows that our approach can save an average 7.4% dynamic power
consumption by selectively allocating data blocks to the DRAM with the lowest power
consumption.

5.4. Exploiting On-Chip and Off-Chip Memory Variability
In this experiment we evaluate the effects of off-chip power consumption variability
in the application’s power consumption: 1) without voltage scaling the on-chip memo-
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Fig. 11. Exploiting DRAM Variability.
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Fig. 12. Exploiting On-Chip and Off-Chip Memory Variability.

ries (P policies) and 2) with E-RAIDs (E policies with voltage scaled memories (350mV
and 500mV [45]), using a high-power (HP) OM3 (worst case power consumption) and
low-power (LP) OM4 (best case power consumption) as backup memory. We run a sin-
gle application on a CPU with access to 2 × 8KB SPMs. Our goal is to show how
off-chip memory variability can complement E-RAIDs (on-chip memory variability).
As expected, at ultra low Vdd (350mV), Policy E1 incurs orders of magnitude higher
power consumption and performance overheads than all other schemes (due to the
large amount of errors detected leading to extra off-chip memory accesses). As shown
in Figure 12, we observe that solely exploiting off-chip variability leads to an average
5.5% power consumption reduction (P policies). Policy E8 shows an average 18% re-
duction in power consumption with an average 10% performance overheads. Moreover,
in some cases (E8/SHA) we see up to 32% reduction in dynamic power consumption.
This experiment shows that complementing E-RAIDs with off-chip memory variability
can lead to promising results (reduced power consumption with minimal performance
overheads).

5.5. Effects of Variability in Memory Virtualization
Figure 13 shows the effects of variability in memory virtualization. We run a single ap-
plication on a CPU with access to 2× 8KB SPMs. The goal is to observe the overheads
of our virtualization layer against the best case scenarios (P policies), where program-
mers can use the entire on-chip memory space and partition their data to exploit off-
the-shelf hardware variability. On average, the P4 policy consumes less power than
all other schemes because it uses the off-chip memory with lowest power consumption.
We see that in gradually partitioning the virtual address space into low-power regions
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Fig. 13. Effects of Variability in Memory Virtualization.

progressively leads to lower power consumption (e.g., policies V 1 → V 4). On average,
our policies (V ) achieve less than 8% overheads due to our virtualization layer and are
within 2.8% of the best case power consumption (P4).

5.6. Custom Variability-aware Policy Generation
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Fig. 14. Effects of Mapping Policy on Performance and Power Consumption.

Figure 14 shows the effects on performance and power consumption for a series
of partitioning policies. Each policy determines how to partition the address space of
a given application. For this experiment, we progressively augmented the complex-
ity of our policies (V E1 → V E5), and compare their power consumption/performance
overheads to the bast-case/worst-case policies (PLP and PHP ). The first two custom
policies (V E1/V E2) incur high overheads in both power and performance primarily
because we utilized the entire on-chip memory space for the E-RAID 1 level (we use
half of the available space). The next two policies (V E3/V E4) utilize the on-chip space
much better by partitioning the data into finer E-RAID/NO-ERAID granularities, as a
result we observe an average 16% power consumption reduction with 13% performance
overheads (with respect to PLP ). We observe up to 33% dynamic power consumption
reduction for the V E4 policy. Memory intensive applications such as H.263 benefit the
most from vOM-based policies (e.g., V E4), we observe up to 14% power consumption
reduction for H.263 with minimal performance overheads (0.06%). The V E5 policy has
higher performance overheads than the V E4 policy because of the off-chip memory
protection (E-RAID 1 on top of vOM), but we observe less than 8% higher power con-
sumption than the best base case policy (PLP ). These experiments show that carefully
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crafting variability-aware policies to meet an application’s needs leads to reduced dy-
namic power consumption.

5.7. Dynamic Policy-driven Variability-aware Allocation

0 

0.5 

1 

1.5 

2x1x1 4x2x2 8x2x4 2x1x1 4x2x2 8x2x4 

Normalized Execution Time Normalized Dynamic Power 

Benefits of Run-Time Support (VaMVisor) 
PLP PHP M1 M2 M3 

Fig. 15. Dynamic Policy-driven Variability-aware Allocation.

To show the true benefits of our approach, we simulated a series of virtualization
environments running various applications across a CMP. Figure 15 shows on the
x−axis various configurations in the form: {#Apps}×{#OSes}×{#CPUs}, each CMP
configuration consisted of 4x8KB SPMs, with the base cases (PLP/PHP policies) uti-
lizing the entire physical space with context-switching (CX) enabled to prevent data
corruption. We assume the Application/OS context-switch costs similar to [?]. The re-
maining policies (M1 − 3) exploited vSPMs, M3∗ refers to the last test case (8x2x4,
where we created 16 vSPMs). We see that PHP incurs an average10% increase in
power consumption (with respect to PLP ). In contrast, our VaMVisor-supported poli-
cies (M1 −M3) managed to reduce dynamic power consumption by 63% on average
while reducing total execution time by an average of 45%. Be observe higher benefits
in this experiment because we have up to 8 applications, 4 OSes, and 4 CPUs com-
peting for memory resources, and thus, a traditional data-mapping approach will not
be able to handle the demand. This experiment shows the true potential of exploiting
the notion of variability-aware dynamic policy-driven memory allocation for distributed
on-chip and off-chip memories.

6. CONCLUSION
This paper proposed a first-of-its-kind Hardware-assisted Variability-aware Memory
Virtualization (VaMV) layer that allows programmers/applications to partition their
address space into regions with different power, performance, and fault-tolerance guar-
antees. VaMV adapts to the underlying hardware and virtualizes the memory hierar-
chy, while opportunistically exploiting techniques such as voltage scaling to reduce
on-chip power consumption and power consumption variability present in off-the-shelf
off-chip memories. To the best of our knowledge, we are the first to explore the notion of
variability-aware policy-driven memory allocation for distributed on-chip and off-chip
memories. We propose a proof-of-concept hardware-module called VaMVisor, which al-
lows us to minimize the overheads incurred by virtualization and dynamic allocation of
the memory space. Finally, we define an API to facilitate the creation and management
of virtual ScratchPad Memories (vSPMs) and virtual Off-chip Memories (vOMs). Our
experimental results on a set of benchmarks (Mediabench I/II and CHStone) show that
our approach is capable of reducing dynamic power consumption by 63% on average
while reducing total execution time by an average of 45%.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:18 L. Bathen et al.

Since this is the first piece of work exploring variability in distributed on-chip and
off-chip memories, we believe that there are many future directions for this work: 1)
Studying variability across the entire memory hierarchy (e.g., caches, disks), 2) Ex-
ploit other types of variability (e.g., processor frequency, power consumption), and 3)
Further explore the power of application-driven (custom) variability-aware policy gen-
eration (e.g., how to partition the memory space, what degree of protection to use, etc.).
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