
Center for Embedded Computer Systems
University of California, Irvine
__

Towards Distributed On-Chip Memory Virtualization

Luis Angel D. Bathen, Dongyoun Shin, Sung-Soo Lim, Nikil D. Dutt

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-2620, USA

{lbathen,dutt}@uci.edu, {elsdy, sslim}@kookmin.ac.kr

CECS Technical Report #11-08
August, 2011

39

Towards Distributed On-Chip Memory Virtualization

LUIS ANGEL D. BATHEN, University of California, Irvine
DONGYOUN SHIN, Kookmin University, Seoul, South Korea
SUNG-SOO LIM, Kookmin University, Seoul, South Korea
NIKIL D. DUTT, University of California, Irvine

Emerging multicore platforms are increasingly deploying distributed scratchpad memories to achieve lower
energy and area together with higher predictability; but this requires transparent and efficient software
management of these critical resources. In this paper, we introduce SPMVisor, a hardware/software layer
that virtualizes the scratchpad memory space in order to facilitate the use of distributed SPMs in an ef-
ficient, transparent and secure manner. We introduce the notion of virtual scratchpad memories (vSPMs),
which can be dynamically created and managed as regular SPMs. To protect the on-chip memory space,
the SPMVisor supports vSPM-level and block-level access control lists. In order to efficiently manage the
on-chip real-estate, our SPMVisor supports policy-driven allocation strategies based on privilege levels. Our
experimental results on Mediabench/CHStone benchmarks running on various Chip-Multiprocessor config-
urations and software stacks (RTOS, virtualization, secure execution) show that SPMVisor enhances perfor-
mance by 71% on average and reduces power consumption by 79% on average.

Categories and Subject Descriptors: C.3 [Special-purpose and Application-based systems]: Real-time
and embedded systems; D.4.6 [Security and Protection]: Access Controls; Security Kernels; B.3 [Design
Styles]: Virtual Memory; D.4 [Storage Management]: Distributed memories

General Terms: Design, Management, Performance, Security

Additional Key Words and Phrases: information assurance; security; chip-multiprocessors; policy; scratch-
pad memory; virtualization; embedded systems

1. INTRODUCTION
The ever increasing demands of the embedded system software stack, limitations in
the uniprocessor domain [Agarwal et al. 2000], and technology scaling have pushed for
the move towards multiprocessor technology ([IBM 2005; Intel 2009; Tilera 2010]). A
byproduct of the multicore phenomena is the rapid integration of distributed scratch-
pad memories (SPMs) into the memory hierarchy [IBM 2005] due to their increased
predictability, reduced area and power consumption [Banakar et al. 2002]. Moreover,
the adoption of multicore platforms further motivate the need for multi-task environ-
ments, where system resources such as SPMs need to be shared. Sharing of the SPMs
is a critical task as they tend to hold critical data (commonly used data, sensitive data,
etc.), and it has been shown that efficient SPM utilization leads to great energy sav-
ings and power consumption [Panda et al. 1997; Banakar et al. 2002; Verma et al. 2003;
Issenin et al. 2006; Cho et al. 2008]. Traditional approaches assume that a given appli-
cation is granted full access to the underlying resources [Panda et al. 1997; Banakar

This research was partially supported by NSF Variability Expeditions Award CCF-1029783, and SFS/NSF
Grant No. 0723955.
Authors’ addresses: Luis Angel D. Bathen and Nikil Dutt, Center for Embedded Computer Systems, School
of Information and Computer Science, University of California at Irvine, Irvine, CA 92697;
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2010 ACM 1539-9087/2010/03-ART39 $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:2 L. Bathen et al.

et al. 2002; Verma et al. 2003; Issenin et al. 2006; Cho et al. 2008; Jung et al. 2010;
Bai and Shrivastava 2010; Suhendra et al. 2006], however, in multi-tasking environ-
ments such approaches will not work as the state of the system (applications running,
memory requirements) will vary. Techniques for sharing the on-chip SPMs have been
proposed [Suhendra et al. 2008; Gauthier et al. 2010; Takase et al. 2010], however,
they assume that the applications are known ahead of time. These assumptions were
true for closed systems, but as open systems (e.g., Android [Google]) start to be widely
adopted, what programs are loaded onto the device will not be necessarily known at
compile time. Deploying open environments comes at a price; with the ability to down-
load and run pre-compiled applications, combined with greater on-chip resources, and
the ability to share resources opens the door to new threats (e.g., side channel attacks
[Wang and Lee 2007]) that were not present in the uniprocessor domain, much less in
closed systems. As a result, any one of these vulnerabilities may lead the system to
(a) run a malicious application that tries to access sensitive data via software exploits
(e.g., buffer overflows [Coburn et al. 2005]), or (b) expose private information via side
channel attacks [Wang and Lee 2007]. Virtualization has been proposed as a possible
solution to the ever growing threats in open systems, where VM instances with var-
ious privilege levels may run different software stacks [Heiser 2008]; however, such
approaches do not address the problem of on-chip memory management.

In this paper, we introduce the concept of SPMVisor, a hardware/software layer that
virtualizes the scratchpad memory space in order to facilitate the use of distributed
SPMs in an efficient, transparent and secure manner. To provide dynamic distributed
SPM memory allocation support to any application that is installed in our system (e.g.,
downloaded applications, launching of VM instances), we introduce the notion of vir-
tual scratchpad memories (vSPMs), which can be dynamically created and managed
as regular SPMs. To protect the on-chip memory space, the SPMVisor supports vSPM-
level and block-level access control lists. Finally, in order to efficiently manage the
on-chip real-estate, our SPMVisor supports policy-driven allocation strategies based
on privilege levels. Our experimental results on Mediabench/CHStone benchmarks
running on various Chip-Multiprocessor configurations and software stacks (RTOS,
virtualization, secure execution) show that SPMVisor enhances performance by 71%
on average and reduces power consumption by 79% on average.

2. MOTIVATION
Two major issues motivate our work: 1) The challenge of providing dynamic distributed
SPM memory allocation/de-allocation support in the presence of a multi-tasking envi-
ronment. 2) The need for on-chip virtualization support for virtualized environments
and trusted application execution.

2.1. Shared SPMs in Heterogeneous
Multi-tasking Environments
Figure 1 shows a set of applications being executed (App1-App4) by two CPUs (CPU0,
CPU1) utilizing a total of two SPMs (4KB space each) with temporal and spatial allo-
cation (hybrid allocation) [Takase et al. 2010] and pre-defined schedules. Such schemes
work well in closed systems, however, it might not be feasible to predict all the com-
binations of all the applications that will be running concurrently in an open system
(e.g., Android). Consider the case where a high-priority application is launched (App5
denoted by the red/dotted box in Figure 1); two schemes can be used: 1) Flush the
contents of the SPM and grant full SPM access to App5. 2) Strictly follow the static
placement and map contents for App5 to off-chip memory as shown in Figure 1. As-
sume that App5 is a critical application with real-time requirements; then mapping the
data off-chip might not be the best approach as the overhead due to off-chip accesses

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Towards Distributed On-Chip Memory Virtualization 39:3

Multi-tasking with Temporal/Spatial Data Placement Support

App3

App4

App2

App1

CPU0

CPU1

SPM0

SPM1

Task Priority:

High

Med. High

Medium

Low

Low

MM-SPM
Transfers:

MM

App5

Fig. 1. Optimal data placement is not guaranteed in open environments (e.g., Android based systems)

might lead it to miss its deadlines. Figure 1 shows the need for dynamic allocation of
SPM space considering the priority of the applications in a heterogenous multi-tasking
system.

Trusted Application Execution

App3

App4

App2

App1

CPU0

CPU1

SPM0

SPM1

Task Priority:

High

Med. High

Medium

Low

Low

MM-SPM
Transfers:

App5

Fig. 2. Halting all executing processes and flushing SPM contents in order to provide a trusted execution
environment

2.2. Trusted Application Execution
Trusted application execution is needed in a heterogeneous open environment as
trusted applications that process sensitive data (e.g., mobile banking) share the same
system/hardware resources as untrusted applications. In order to provide a trusted
environment various schemes can be deployed: 1) The use of virtualization to isolate
resources and run applications inside their own VM instances [Heiser 2008]. 2) The use
of small Trusted Computing Bases (TCBs) with dynamic trusted environment gener-
ation based on halting the system and granting full system access to the application

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:4 L. Bathen et al.

[McCune et al. 2008] as shown in Figure 2. To the best of our knowledge, there is no
support for on-chip distributed SPM virtualization, so we can either flush all SPM con-
tents and grant full SPM access to the VM instance running App5 or we can follow the
approach presented in [McCune et al. 2008] and flush the contents of all the executing
tasks from the SPMs (App1-4), halt the execution of all processes, and grant full sys-
tem access to App5. These approaches incur high power/performance overheads due
to the flushing of the SPM contents, hence, in order to provide trusted execution for a
given application, there is a need for protecting the on-chip memory resources so that
they are not tampered with and guarantee data confidentiality while considering both
power/performance.

2.3. Transparency for Upper Layers of
Software Stack
Our goal is to provide an efficient (dynamic, high performance, low power, secure) re-
source management layer that supports heterogeneous multi-tasking environments
and trusted application execution. In order for programmers to adopt our approach
there is a critical need for transparency as there is extensive work addressing both
SPM management (static and dynamic) [Panda et al. 1997; Banakar et al. 2002; Verma
et al. 2003; Issenin et al. 2006; Cho et al. 2008; Jung et al. 2010; Bai and Shrivastava
2010; Suhendra et al. 2006] as well as scheduling for SPM enabled systems [Suhendra
et al. 2006; Takase et al. 2010].

2.4. Contributions
In this paper we introduce the concept of SPMVisor, a hardware/software layer that
allows us to virtualize the on-chip resources (SPMs). This paper’s contributions are:

— The concept of virtual ScratchPad Memories (vSPM), allowing software programmers
logical and transparent access to SPM resources

— A dynamic and efficient resource-management mechanism built on the idea of policy-
driven allocation (based on data/application criticality)

— API for dynamic and transparent on-chip resource management

To the best of our knowledge, our work is the first to introduce the concept of
ScratchPad Memory (SPM) virtualization and policy-driven dynamic allocation for
safe, performance-driven, and energy efficient use of on-chip memory resources.

3. SPMVISOR OVERVIEW
3.1. Sw/Hw Virtualization Support Tradeoff
Our virtualization layer can be a software layer running at the hypervisor/OS
level as a module (SoftSPMVisor) or as a hardware IP block similar to an arbiter
(HardSPMVisor). The SoftSPMVisor layer should be light-weight, flexible, and mod-
ularized in a manner that allows for easy integration into existing OSes/Hypervisors.
The HardSPMVisor module should have minimal area overheads, and support a sim-
plified API for transparent use by the programmers or the OS/Hypervisor software
stacks. The SoftSPMVisor has the benefit of being flexible, portable (across various
hardware configurations) and requires no extra hardware (except a secure DMA/abil-
ity to lock part of off-chip memory). The benefits of the SoftSPMVisor comes at the
cost of higher power/performance overheads than the HardSPMVisor. Ideally, both
SoftSPMVisor and HardSPMVisor should support the same minimal API and should
require minimal changes in the programming model. For this paper, we will focus on
the HardSPMVisor, and leave the SoftSPMVisor as future work. Our goal is to have
a tightly coupled SW/HW layer that exploits the benefits of both SoftSPMVisor and

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Towards Distributed On-Chip Memory Virtualization 39:5

HardSPMVisor. For the remainder of this paper we will refer to the HardSPMVisor as
SPMVisor.

SPMVisor

SPM SPM SPM SPM

CPU CPU CPU CPU

MM

Crypto

S-DMA

Fig. 3. SPMVisor enhanced Chip-Multiprocessor

3.2. Target Platform
Figure 3 shows the high-level diagram of our target platform. Our Chip-
Multirprocessor (CMP) resembles the platform used in [Suhendra et al. 2006; blind
a; b], which consists of a set of RISC cores, distributed SPMs, an AMBA AHB [ARM
1999] on-chip bus, enhanced with a secure DMA (S-DMA), and a cryptographic engine
(Crypto) similar to the ones in [Huang et al. 2009; Mayhew and Muresan 2009].

3.3. Assumptions
We assume that the programmer/compiler can statically (or dynamically) define the
priority of the data-blocks. Priority can be defined via various metrics: 1) utilization
(e.g., number of accesses / cost of bringing data to SPM), 2) confidentiality (e.g., a crypto
key value), 3) real-time requirements (e.g., deadline-driven), etc. We focus on SPM
data, however, our approach can be used for instructions as well since we provide an
API for transparent utilization of the vSPMs (e.g., vSPM management can follow the
same policies as regular SPMs). For this work we bypass the data-cache and data that
is not mapped onto SPM space is mapped onto off-chip memory since we wanted to
focus purely on the benefits of SPMVisor. Our S-DMA supports locking of part of main
memory to be used as Protected Eviction Memory (PEM), which serves as temporal
storage for data that the SPMVisor is unable to fit in SPM space. Finally, we assume
the existence of a trusted third party where applications may be downloaded from
and installed on the system. The application developers are trusted, and priorities
are not exploited (e.g., making all data high priority unnecessarily); thus even if all
applications and data sets have the same priority, our approach will behave similarly
to traditional context-switching (e.g., RTOS) approaches.

4. SPMVISOR: SCRATCHPAD MEMORY VIRTUALIZATION
4.1. Virtual SPM (vSPM)
virtual ScratchPad Memories (vSPMs) are introduced to provide software program-
mers a transparent view of the on-chip memory space. vSPMs can be created on-
demand and deleted when no longer needed. Table I shows a subset of our API, which
allow programmers to use vSPMs with minimal changes to their applications. We
briefly describe a subset of the methods and their parameters. First, in order to specify
the need for a vSPM, a programmer needs to create it, via the v spm create method,
where the PID refers to the process/task ID of the application or process trying to
request SPM space. AppPriority refers to the application’s priority, which helps our al-
location engine make real-time decisions for efficient on-chip resource utilization as we

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:6 L. Bathen et al.

Table I: vSPM Management API
Method Parameter Type Note

v spm create PID uint Process ID
AppPriority uint Application priority

IPA uint* Intermediate Physical Address
ACL uint vSPM level access control list

v spm delete PID uint
IPA uint

v spm malloc PID uint
IPA uint

BlkSize uint Block size (B)
BlkPriority uint Priority of this block
MallocType uint Type of allocation

BlkACL uint Block access control list
v spm blk del PID uint

IPA uint
v spm clear PID uint

IPA uint
v spm poll PID uint

IPA uint
v spm transfer PID uint

SrcAddr uint Transfer source address
DstAddr uint Transfer destination address
TxType uint Transaction type sync/async/secure

MM

SPMVisor
SPM 0

SPM 1

PEM

vSPM 0

vSPM 1

vSPM 2

vSPM 3

 v_spm_create(get_pid(),MIN_PRIO, !
 &m_offset,((get_pid()<<6)|RW_ACL));!

IPA

v_spm_malloc(get_pid(), m_offset, !
 1024, MIN_PRIO, SYNC_REG, V_SPM_DEF)!

 for (i = 0; i < DCTSIZE2; i++)!
 {!
 *(omatrix++) = *(imatrix + (zz + i));!
 }!

a)

b)

c)

32-bit Intermediate Physical Address
Byte Offset SPMVisor Address

vSPM Offset
10 14

Master Offset (MSB)
8

Fig. 4. Process of SPMVisor vSPM creation/allocation with view of memory space

assume a heterogeneous environment consisting of applications with various require-
ments (real-time, security, reliability, etc.). IPA means intermediate physical address,
and is used to address vSPM space. The idea is that the CPU/hypervisor can still use
traditional virtual address (VA) to physical address (PA) translation, where the PA
coming out of the CPU refers to the IPA addressing SPMVisor space. The real SPM PA
is then obtained by the IPA to PA translation done inside the SPMVisor. vSPM block
allocation can be achieved through the v spm malloc method, which allows the pro-
grammer to specify the priority of the block so that SPMVisor can dynamically choose
whether to grant this block SPM space or map it to off-chip memory (or Protected Evict
Memory). It is possible to have two types of protection mechanisms for each vSPM: 1)
vSPM-level defined at creation (v spm create) by setting the vSPM’s access control list
(ACL). 2) Block-level by defining the BlkACL during allocation (v spm malloc).

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Towards Distributed On-Chip Memory Virtualization 39:7

1void i_zig_zag () {
2
3int i;
4int *omatrix , *imatrix , *zz;
5unsigned int m_offset = SPMBASEADDR;
6
7// point zig zag matrix to SPM
8m_lock = 0;
9status = init_dma_put(get_pid (),
10&zigzag_idx , m_offset);
11wait_dma_complete (& m_lock);
12zz = m_offset;
13
14// point input matrix to SPM
15m_lock = 0;
16status = init_dma_put(get_pid (),
17&input_matrix , m_offset +64* sizeof(int));
18wait_dma_complete (& m_lock);
19imatrix = m_offset +64* sizeof(int);
20
21// point output matrix to SPM
22omatrix = m_offset +128* sizeof(int);
23
24for (i = 0; i < DCTSIZE2; i++)
25*(omatrix ++) = *(imatrix + (zz + i));
26...

Function 1: Traditional programming model for SPM based systems

1void i_zig_zag () {
2
3int i;
4int *omatrix , *imatrix , *zz;
5unsigned int m_offset;
6
7// create v spm
8v_spm_create(get_pid (), MIN_PRIO ,
9&m_offset , ((get_pid () << 6) | RW_ACL));
10
11// allocate the block with min priority ,
12// same acl as vspm and synchronous allocation
13v_spm_malloc(get_pid (), m_offset ,
141024, MIN_PRIO , SYNC_REG , V_SPM_DEF);
15
16// point zig zag matrix to vSPM
17m_lock = 0;
18status = init_dma_put(get_pid (),
19&zigzag_idx , m_offset);
20wait_dma_complete (& m_lock);
21zz = m_offset;
22
23// point input matrix to vSPM
24m_lock = 0;
25status = init_dma_put(get_pid (),
26&input_matrix , m_offset +64* sizeof(int));
27wait_dma_complete (& m_lock);
28imatrix = m_offset +64* sizeof(int);
29
30// point output matrix to SPM
31omatrix = m_offset +128* sizeof(int);
32
33for (i = 0; i < DCTSIZE2; i++)
34*(omatrix ++) = *(imatrix + (zz + i));
35...

Function 2: vSPM programming model

Priorities can also be defined for a given application by setting the AppPriority field
when creating (v spm create) the vSPM or for a given block within a vSPM by setting

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:8 L. Bathen et al.

the BlkPriority field (v spm malloc). The MallocType entry refers to synchronous/asyn-
chronous allocation or if the data block requires extra protection such as encryption.
vSPMs support content deletion, meaning that programmers may want to zero the
contents of a vSPM for security without deleting the vSPM. It is possible to delete
a vSPM via the v spm delete method, which depending on the vSPM priority, may
zero all contents in the physical blocks for security, and then de-allocate the blocks
belonging to the vSPM. The v spm blk del method allows for single-block deletion,
which allows us to dynamically create and delete blocks. The v spm poll method can
be used to monitor the status of an asynchronous transaction such as asynchronous
v spm malloc, asynchronous v spm transfer, etc. Finally, the v spm transfer method
allows for (sync/async) secure or regular transfers between physical SPM space and
off-chip memory using SPMVisor and its secure DMA engine (S-DMA). The default
size of the vSPM blocks is set to be the same size of a mini-page (1KB), the idea is to
allow existing SPM management techniques that work with page tables to still use our
vSPMs. Again, our goal is to provide a lightweight virtualization layer for SPMs, while
allowing for existing SPM management techniques to work without much change to
their programming models.

4.2. vSPM Programming Model
Function 1 shows the traditional programming model for SPMs. We first see in Line 5
the assignment of the offsets for the target SPM, this offset is used throughout the
code. We program the DMA engine and request it to transfer the contents of the
zigzag idx buffer to the SPM offset (Line 9). We then wait for DMA to complete the
transfer (Line 11), we do the same for the input matrix buffer. We also point our point-
ers (zz, imatrix, omatrix as shown in Lines 12, 19, and 22 respectively) to the SPM
offsets holding the data we want to access. We then execute our kernel as shown in
Lines 24 through 25. Function 2 shows the vSPM programming model, which depicts
the minimal changes needed to use our vSPMs. First, we create the vSPM as shown
in Function 2 Lines 8 through 9, we provide the method with the process ID, the ap-
plication’s priority, the pointer that will hold the vSPM IPA, and set the ACL for the
vSPM. Lines 13-14 show the vSPM block allocation call, where we pass the process ID,
the IPA (stored in m offset), the block size in Bytes, the priority which is the same as
the application in this case, the allocation type as blocking/synchronous, and the block
ACL, which is set to the same value as the vSPM. Once the vSPM has been created
and the block to be used has been allocated, we can then proceed to use the vSPM as
a traditional SPM as shown in Lines 16 through 34, where the same source code is
executed as in Function 1.

Figure 4 shows the memory view of a newly created vSPM (vSPM 3), after invoca-
tion to the v spm create method (Figure 4(a)), we obtain the IPA for the vSPM from
the SPMVisor. The various blocks within vSPM space are mapped to different physi-
cal blocks (SPM or PEM) based on their priority as shown by the dashed arrows from
SPMVisor space to SPM/PEM space. We then proceed to allocate the block as shown
in Function 2, where the checkered block is mapped to PEM space (dashed arrow from
SPMVisor address space to PEM) as it was given low priority and there aren’t enough
on-chip resources to hold on to the content (Figure 4(b)). Note that the black block
pointed by SPMVisor refers to the configuration memory that serves as storage for
the metadata needed by the vSPMs and their blocks. Finally, we proceed to use the
vSPM by pointing our various pointers to the vSPM memory regions (via IPAs) in a
transparent manner, since the users are oblivious to exactly where the data is mapped
(Figure 4(c)). Figure 4 shows a high level view of the IPA and its breakdown. Pro-
grammers do not have to worry about IPA, as the back-end (SPMVisor) decodes the

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Towards Distributed On-Chip Memory Virtualization 39:9

IPA, and extracts the vSPM offset (14-bits) which is used to point to the physical block
being accessed, as well as the Byte Offset (10-bits), which address data within a block.

4.3. Protected Evict Memory (PEM)
In order to extend the ability to virtualize more vSPMs than there are physical SPMs,
we define the notion of Protected Evict Memory (PEM) space. Since SPM space is very
precious, we exploit the idea of block based priorities in order to determine exactly
what data goes on-chip and what data can be mapped to off-chip. A sample priority
mechanism would be data utilization given by the ratio: (# of accesses to a block / cost
of bringing the block to on-chip SPM). The utilization metric determines the impact
of mapping a given block to SPM/PEM memory space. Blocks with large utilizations
are better off being placed in SPM space as this would yield better energy and perfor-
mance. PEM space is protected by locking the memory space and restricting access to
it. The only master that should be able to access PEM space is the SPMVisor, and thus,
any attempt to access it by any other master would trigger an invalid access flag. PEM
access control can be implemented by the secure DMA or the arbiter where the ACL
for PEM contains the hardware ID (HW ID) of the SPMVisor, and is validated against
it. We assume that the HW ID cannot be spoofed.

4.4. Policy Driven Allocation
It is possible to have various allocation policies for the on-chip resources, be it based
on priorities or fairness (e.g., Round Robin). In this paper, we will focus on two types:
1) Data-driven, where data blocks may have individual priorities, hence, allowing the
SPMVisor to decide in real-time where each block should be mapped. 2) Application-
driven, where each application has real-time requirements or needs trusted execution,
etc., and SPMVisor decides how to allocate physical resources for entire vSPMs. The
main difference between the two approaches is the granularity and guarantees each of-
fer. The data-driven approach has block level priorities and block-level ACLs, thereby
allowing for various degrees of performance/protection for each of the vSPM blocks.
This is very useful in case a programmer wants to define memory regions within
his/her vSPM with different performance/protection requirements. The application-
driven approach has vSPM level ACL and vSPM level priority, this is useful when the
programmer may want have dedicated space of a given type. vSPM level policies are
given much higher priority as they reflect the criticality of the application using them.
The block-level/vSPM-level priorities allow us to efficiently utilize the on-chip real-
estate. Traditional approaches [Francesco et al. 2004] do not take application/data
priority and are thus unable to allocate SPM space to an application once the entire
SPMs are fully allocated, leading to energy inefficiencies and performance degrada-
tion. Our allocation engine currently supports fixed-block allocation, however, it is
possible to use variable-block allocation and exploit some of the concepts introduced
in [Francesco et al. 2004]. Of course, the more complex the back-end allocation, the
higher the overheads introduced into the system, so we must be careful when deciding
which allocation mechanism to use.

Figure 5 shows the same sequence of tasks being executed as in Figure 1, where a
new critical task is introduced into the system with high priority (dotted red block).
The main difference is the diagram which shows the status of the memories as vSPMs
are created, and blocks are allocated (States S1 through S6). On arrival of the first
application (App3), the vSPM is created and the SPMVisor maps the App3’s blocks to
SPM0, and the process continues up until S3. When App4 arrives, the SPMVisor looks
at the priorities of the blocks belonging to App4 and decides to map them to PEM space.
When App5 (red dotted block) needs to execute, rather than evicting all of App1 and
App2’s contents from SPM, the SPMVisor looks at the priorities of the various blocks,

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:10 L. Bathen et al.

vSPM Support for Heterogeneous Multi-tasking

App3

App4

App2

App1
CPU0

CPU1

Task Priority:

High
Med. High
Medium
Low
Low

MM-SPM
Transfers:

SPM0

SPM1

PEM

P1

P2

P3

Data Priority:

S1 S2 S3 S4 S5 S6

App5

Fig. 5. Data-driven priority allocation

and makes the decision to evict some of the lower priority blocks from SPM space
(App1-3), and allocating the space to App5 blocks as shown in S5. After App5 completes
and destroys the vSPM, the SPMVisor then re-loads the contents it had evicted prior
to App5’s execution. This example shows how our data-driven allocation policy works,
as blocks may have different priorities (P1-P3) and its possible that applications with
lower priority may have higher priority blocks than applications with higher priority.
This is useful when an application such as audio playback can request SPM space
because it will greatly benefit from it, whereas an image processing application with
higher priority may not benefit as much from the SPM space.

vSPM Support for Trusted Execution
Task Priority:

App3

App4

App2

App1
CPU0

CPU1

High
Med. High
Medium
Low
Low

MM-SPM
Transfers:

SPM0

SPM1

PEM

P1

P2

P3

Data Priority:

S1 S2 S3 S4 S5 S6

App5

Fig. 6. Application-driven priority allocation

Figure 6 depicts the various states undergone by the applications and their contents
when following our application-driven allocation policy. Just like in Figure 2, App5 re-
quires trusted execution, but in our case, rather than halting all processes and flush-
ing the contents of the on-chip memory, we exploit the benefits of our vSPMs and their
ability to isolate address spaces and enforce access control lists. States S1 through S4

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Towards Distributed On-Chip Memory Virtualization 39:11

go through the same allocation process as in Figure 5. When App5 is loaded, it is to
be executed by CPU0 in isolation, and a secure vSPM is created, where the ACL and
priority is at the vSPM granularity rather than block based. As we can see, S5 depicts
the state of the memory space after allocating the vSPM for App5. Notice that vSPM is
given highest priority, and as a result, its blocks have priority P1, whereas the blocks
for the other vSPMs have lower priorities (P2-P3). Both App1 and App3 data blocks
have the same priority (P2), however, App1 is lower priority than App3, and will not
benefit as much from holding the SPM space (since it will not run while App5 runs),
therefore, App1’s blocks are evicted from SPM space.

4.5. vSPM Data Protection

MM SPM

CPU

Trusted Untrusted

Dec/Enc

MM SPMVisor

CPU

Trusted Untrusted

Dec/Enc

Dec/Enc
MM SPMVisor

CPU

Trusted Untrusted

Dec/Enc

S-DMA

a) Halt (Encryption) b) SPMVisor (Encryption) c) SPMVisor (S-DMA)

Fig. 7. Data protection schemes

For this work, we assume that on-chip SPM is trusted/secure and can store sen-
sitive data in plain-text. Any piece of sensitive data placed in off-chip memory must
be encrypted. Figure 7(a) shows the traditional approach (Full Encryption) for pro-
tecting sensitive information, where transactions between on-chip and off-chip must
undergo encryption/decryption and transactions between CPU and SPM space can be
assumed to be secure (e.g., no tampering). Figure 7(b) shows configuration #1 of SP-
MVisor, where we assume that any transaction between CPU and SPMVisor is secure,
and any transaction between on-chip and off-chip memory space must undergo en-
cryption/decryption (Partial Encryption). Note that even data mapped to PEM space
(denoted as a shaded box next to MM) must also undergo encryption/decryption. The
communication between SPMVisor and PEM incurs high performance and power over-
heads due to the encryption/decryption steps each transaction must undergo. In order
to reduce this overhead, our approach (Figure 7(c)) makes use of secure DMA (S-DMA)
which locks part of main memory (referred to as PEM space), and grants full access
to only one master in the system, in our case, the SPMVisor. This allows us to bypass
the extra encryption/decryption transactions we would have to perform when trans-
ferring data between SPMVisor and PEM space. Of course, any piece of data that is
mapped to off-chip (not in PEM space) will still have to go through the encryption/de-
cryption step. Our vSPMs allow programmer to protect their memory space and exploit
on-chip access control lists in order to guarantee data confidentiality. Moreover, side-
channel attacks that monitor the memory subsystem by selectively evicting data for
other tasks are unable to do so as vSPM content can only be evicted by SPMVisor.
Applications that require trusted execution (e.g., SHA) may exploit application-driven
allocation, and thus their data may not be evicted at run-time by another task. Finally,
it is possible to provide data obfuscation by switching between SPMVisor data protec-
tion schemes (use of S-DMA and Partial Encryption) in a randomized manner, thereby

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:12 L. Bathen et al.

reducing the chances of an attacker deriving any side information from the application
at the cost of both power and performance overheads.

C
on

fig
ur

at
io

n
M

em
or

y

iS-DMA

Allocator/Evictor

De-allocator

Read
(ValidACL, CFG)

Write
(ValidACL, CFG)

SPMVisor Slave IF

S
P

M
Vi

so
r M

as
te

r I
F

S
LV

_R
D

S

LV
_W

R

SPMVisor
Manager Address Translation Layer

Fig. 8. Block diagram of SPMVisor Module

4.6. SPMVisor HW Module
Figure 8 shows a high level block diagram of our SPMVisor, which includes its con-
figuration memory, which holds the metadata for vSPMs and their blocks. SPMVisor
provides a vSPM address space of (214); however, the number of vSPMs is limited by
the block size used (can be 512B, 1024B, 4KB, etc.), the total amount of physical mem-
ory managed by the SPMVisor (# SPMs and PEM space), and the amount configuration
memory storage. Each block metadata requires 8 Bytes, and is stored in SPMVisor’s
configuration memory (can store between 512B and 256KB).

Table II: vSPM Management API
PID HW ID S Priority ACL ptr
12 6 1 4 9
IPA PA On/Off Settings Status
14 13 1 1 3

The breakdown of the block metadata is shown in Table II. The HW ID flag refers to
the owner of this block, and is used to validate any changes to the metadata. The S bit
is used to determine if there is a need to protect the block and the ACL ptr is used to
validate the transaction in case the HW ID of the request is not the block’s owner. Each
ACL entry has capacity for up to four (HW ID:rights) entries. The On/Off bit is used
to decide which offset (SPM or PEM base address) is used to translate IPA address PA.
Finally, the Status field is used when asynchronous methods are used to monitor the
status of the block creation, deletion, etc. On every read/write transaction, the SPMVi-
sor (Figure 8) will fetch the corresponding block’s metadata, and validate it against
the ACL. Based on the address, we decide if it is a control transaction or an access
transaction (read/write). If it is an access transaction, then after ACL validation and
IPA/PA translation (through the address translation layer), the SPMVisor performs
a slave transaction to SPM or PEM space (SLV RD or SLV WR). If the transaction
is a control transaction, then depending on whether it is a vSPM creation/deletion or
block creation/deletion, we invoke the Allocator/Evictor or the De-allocator modules.
The Allocator/Evictor and De-allocator blocks have access to SPMVisor’s secure DMA

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Towards Distributed On-Chip Memory Virtualization 39:13

interface, which is used to transfer data between SPMVisor and main memory or PEM
space.

5. OS/HYPERVISOR INTEGRATION
The OS/Hypervisor Layers can benefit from exploiting vSPMs since a benefit of using
the SPMVisor is much lower context switching times. As our focus is the introduction
of the SPMVisor and use the HardSPMVisor as a proof-of-concept implementation, we
will not go into details into the SoftSPMVisor implementation and how it can be in-
tegrated into a hypervisor/OS layer. However, we will briefly discuss some of the key
benefits of using vSPMs and HardSPMVisor in a virtualized environment. To the best
of our knowledge, we are the first to introduce a virtualization layer and virtualization
support for on-chip distributed memories, so the hypervisor needs to do two things
when a context switch at the application level or OS level happens: 1) flush absolutely
all contents from SPM space thereby incurring high overheads or 2) keep page tables
for SPM data, and flush the contents only for the preempted application (or applica-
tions in the case of OS level context switching). Thus, the benefits of our approach are:
First, the hypervisor/OS does not have to worry about managing the on-chip memories
as the SPMVisor will handle it, all the OS/hypervisor layers have to do is make calls
for vSPM creation/deletion or block updates. Second, on a context switch (application
level or OS level), the hypervisor does not need to flush SPM contents as long as vSPMs
are used and vSPM IPAs are used to address SPM content (e.g., the application’s page
tables that keep track of SPM data use IPA instead of PA).

6. RELATED WORK
SPMs have through the years become a critical component of the memory hierarchy
[Jung et al. 2010; Bai and Shrivastava 2010], and are expected to be the memories of
choice for future many-core platforms (e.g., [IBM 2005; Intel 2009; Tilera 2010]). Un-
like cache-based platforms where data is dynamically loaded into the cache with hopes
of some degree of reuse due to access locality, SPM based systems depend completely
on the compiler to determine what data to load. Placement of data onto memory is
often done statically by the compiler through static analysis or application profiling,
the location of data is known a priori which increases the predictability of the sys-
tem. Panda et al. [Panda et al. 1997] profiled the application and tried to allocate all
scalar variables onto the SPMs. They identified candidate arrays for placement onto
the SPMs based on the number of accesses to the arrays and their sizes. Verma et al.
[Verma et al. 2003] look at an application’s arrays, and identify candidates for splitting
with the end goal of finding an optimal split point in order to map the most commonly
used area of the array to SPM. Kandemir et al. [Kandemir et al. 2001] use loop trans-
formation techniques such as tiling to improve data locality in loop nests with array
accesses, and map array sections to different levels in the memory hierarchy. Issenin et
al. [Issenin et al. 2006] proposed a data reuse analysis technique for uniprocessor and
multiprocessor systems that statically analyses the affine index expressions of arrays
in loop nests in order to find data reuse patterns. They derive buffer sizes to hold these
reused data sets, and could be implemented on the available SPMs in the memory hi-
erarchy. Suhendra et al. [Suhendra et al. 2006] proposed and ILP formulation to find
out the optimal placement of data onto SPMs. Jung et al. [Jung et al. 2010] looked at
dynamic code mapping through static analysis in order to maximize SPM utilization
for functions. Bai et al. [Bai and Shrivastava 2010] looked at heap-data management
for SPMs. Shalan et al. [Shalan and Mooney 2000] looked at dynamic memory man-
agement for global memory through the use a hardware module.

In order to support concurrent execution of tasks sharing the same SPM resources
[Suhendra et al. 2008; Gauthier et al. 2010; Takase et al. 2010] propose various

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:14 L. Bathen et al.

static analysis approaches, which assume all working sets are known at compile time.
Francesco et al. [Francesco et al. 2004] proposed a memory manager that supports dy-
namic allocation of SPM space, which supports block-based allocation (fixed and vari-
able). Egger et al. proposed SPM management techniques for MMU supported [Egger
et al. 2008] and MMU-less embedded systems [Egger et al. 2010], where code was
divided into cacheable code and pageable (SPM) code, and the most commonly used
code is mapped onto SPM space. Pyka et al. [Pyka et al. 2007] introduced an OS-level
management layer that exploited hints from static analysis at run-time to dynamically
map objects onto SPMs.

Our approach is different from [Francesco et al. 2004] in that we exploit policy driven
allocation mechanisms (Application or Data), which allows us to better utilize the SPM
space and the Dynamic Memory Manager (DMM) presented in [Francesco et al. 2004]
stops allocating SPM space to an application as soon as the SPM space is fully allo-
cated. Our work is different from other SPM management schemes in that we provide
a means for transparent dynamic allocation of the SPM space. To the best our knowl-
edge, we are the first to propose a virtualization layer for on-chip distributed memories.
Since transparency is one of our main goals, rather than competing with existing ap-
proaches, our work can be complemented by many of the existing SPM data allocation
schemes [Panda et al. 1997; Kandemir et al. 2001; Verma et al. 2003; Suhendra et al.
2006; Suhendra et al. 2008; Gauthier et al. 2010; Takase et al. 2010; Pyka et al. 2007].
Our allocation engine can even exploit some of the allocation mechanisms presented
in [Francesco et al. 2004]. Finally, since using our vSPMs require little effort on the
programmer’s end, techniques such as [Jung et al. 2010; Bai and Shrivastava 2010;
Egger et al. 2008; Egger et al. 2010] can exploit vSPMs for code/function/instruction
management. Consider the work introduced by [Egger et al. 2008; Egger et al. 2010],
on a context switch, the page table information mapped onto SPM space would have to
be flushed, where as if they mapped the content to vSPMs, the content would remain
despite the context switch.

7. EXPERIMENTAL EVALUATION
7.1. Experimental Goals
Our goal is to show that the benefits of our approach greatly offset the overheads in-
troduced by our virtualization layer. First, we show the overheads of our approach in
an ideal world where resources are not an issue. Second, we show the benefits our our
approach in a heterogeneous multi-tasking environment. Third, we wanted to show
the benefits of using vSPMs in a virtualized environment running a light weight hy-
pervisor. Fourth, we show the benefits of using SPMVisor in order to provide a trusted
environment for secure software execution.

7.2. Experimental Setup
Figure 9 shows our experimental setup where we implemented our SPMVisor module
as a SystemC TLM/CCATB [Pasricha et al. 2008] block and integrated it into our simu-
lation framework [blind b], which interfaces with Simplescalar [Austin et al. 2002] and
CACTI [Thoziyoor et al. 2004]. We assume 65nm process technology for our memories
and a 128 MB off-chip main memory. We cross-compiled a set of applications from the
CHStone [Hara et al. 2008] and Mediabench II [Lee et al. 1997] benchmark suites and
analyzed them to obtain SPM mappable data sets. The applications we used are (AD-
PCM, AES, BLOWFISH, GSM, H.263, JPEG, MOTION, and SHA). In order to support
multiple applications running concurrently we used page tables (1KB mini-pages). The
application’s virtual addresses are translated by the CPU’s MMU unit and generates
physical addresses which point to physical SPMs, or intermediate physical addresses

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Towards Distributed On-Chip Memory Virtualization 39:15

SPMVisor

SPM SPM SPM SPM

CPU CPU CPU CPU

MM

Crypto

S-DMA

A1 A2 A3 A4 A5 A6 A7 A8
GuestOS1 GuestOS3 GuestOS2 GuestOS4

Hypervisor
A1 A2 A1

RTOS

Simulated RTOS Environment Simulated Virtualized Environment

SystemC
(TLM/CCATB)

SHA
AES

BLOWFISH
H263

MOTION
JPEG
GSM

ADPCM

SimpleScalar Traces

Fig. 9. Experimental Setup

which then point to vSPMs. Our environment can simulate a lightweight RTOS en-
vironment with context switching enabled as well as a light-weight hypervisor. Each
OS/CPU instance can run anywhere between 1-4 OSes and 1-8 applications.

SPMVisor Power and Latency Overheads

0

5

10

15

20

25

adpcm aes blowfish gsm h263 jpeg motion sha avg

O
ve

rh
ea

d
P

er
ce

nt
ag

e
(%

) Power Latency

Fig. 10. Overheads in an ideal world

7.3. SPMVisor Overheads
Figure 10 shows the power and latency overheads due to our virtualization layer. For
this experiment, we compiled and ran each of the eight applications on a single CPU
using a single 8KB SPM. On average we see 14% power consumption increase and 13%
latency (execution time) increase. This is due to the fact that in an ideal world, after
the VA/PA conversion done by MMU, the CPU read/write to the SPM using the PA
with no additional noise (e.g., waiting for arbiter, contention at the SPM, etc.). In our

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:16 L. Bathen et al.

case, in order to access vSPM data, each transaction goes through the MMU (like in
the base case) and performs the VA/IPA translation. We then use the IPA to talk to the
SPMVisor, look up the vSPM’s metadata, do a second level address translation IPA/PA,
and make the request to the physical SPM (after validating the request against the
ACL if needed). We expect to see much higher overheads if the virtualization layer
is implemented in software, so it is important to have hardware support in order to
minimize the virtualization overheads.

7.4. SPMVisor Support for Heterogenous
Multi-tasking Environments

SPMVisor Energy Savings and Latency Reduction (%)

0 20 40 60 80 100

1CPUx8KB
2CPUx8KB
4CPUx8KB

1CPUx16KB
2CPUx16KB
4CPUx16KB

AVG(8KB)
AVG(16KB)

Savings/Reduction (%) Latency Energy

Fig. 11. RTOS SPMVisor savings for various configurations

Figure 11 shows the energy savings and latency reductions for a set of configura-
tions: a) 8 Apps/CPU, 1xCPU, and 1x16KB SPM (1CPUx16KB). b) 4 Apps/CPU, 2xC-
PUs, and 2x16KB SPMs (2CPUx16KB). c) 2 Apps/CPU, 4xCPUs, and 4x16KB SPMs
(4CPUx16KB). We use the same configurations for 8KB and 16KB SPMs. We com-
pare two approaches: 1) base case which consists of a lightweight RTOs with context-
switching enabled and 2) our approach which exploits the idea of the SPMVisor. As
we can see in Figure 11, our approach achieves 85% power consumption reduction and
82% latency reduction for a CMP with 16KB distributed SPMs and 77% power con-
sumption reduction and 72% latency reduction for a CMP with 8KB distributed SPMs.
For this experiment we use Data-driven priority allocation and use data utilization as
a metric for priority. We set the context-switching window to 100K instructions (rather
than cycles to keep the comparison consistent). The reason for the savings is that the
context-switch requires swapping the contents (flushing the page tables) of the SPM
being used by the CPU. As a result, the context-switch with no SPM virtualization
(vSPMs) incurs high power/performance overheads due to the flushing/loading of the
SPM contents. The % reduction is smaller for the 16KB SPMs than the 8KB SPMs
because the amount of contention for SPM space between the applications is lower.

7.5. Benefits of vSPMs in a Virtualized

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Towards Distributed On-Chip Memory Virtualization 39:17

Table III: Virtualized Environment Configurations
Configuration # of Applications # of Guest OSes

e1 2 1
e2 4 2
e3 8 2
e4 8 4

SPMVisor Power and Latency Reduction (%)

0

20

40

60

80

100

1CPU 2CPU 4CPU 1CPU 2CPU 4CPU

Energy Latency

R
ed

uc
tio

n
(%

)

e1 e2 e3 e4

Fig. 12. Virtualized environment running on CMP with vSPM support

Environment
For this experiment we wanted to show the benefits of using vSPMs in a virtualized
environment. Table III shows a set of configurations where we varied the number of
Applications per Guest OSes, and the number of Guest OSes. In the virtualized en-
vironment, we assume application context switch costs and OS context switch costs
similar to the ones presented in [David et al. 2007]. The baseline approach assumes
that on every OS/Application context switch, the contents of the SPM where the OS-
/Application is running are flushed. The benefits of our approach (reduced latency and
better energy utilization) are depicted in Figure 12, where each of the configurations
shown in Table III were run on top of varying number of CPUs. For this experiment
we assumed that each CPU could access 8KB of SPM space (and 8KB of vSPM space)
and kept page tables for SPM mapped data in order to flush only contents belonging to
the preempted application(s). On average we see 76% reduction in energy utilization
and 49% in latency across all the configurations. As a result, a hypervisor exploiting
our vSPMs will have much lower context switch time.

7.6. Performance Comparison Among Various Secure Approaches
Figure 13 shows the energy efficiency and performance comparison between the three
schemes discussed in Section 4.5. The Halt approach evicts the contents of all processes
from SPM space and halts all tasks, thereby granting full access to the underlying
hardware to the given architecture. The Encryption scheme refers to the SPMVisor ap-
proach with no Secure-DMA support (e.g., no protection of main-memory (PEM space)
via locking of the address space). In the Encryption scheme, any request addressing
any a vSPM block mapped to PEM space needs to go through the encryption/decryp-
tion process, thereby introducing extra power consumption/latency overheads. The S-
DMA scheme refers to SPMVisor with Secure-DMA support, which locks part of the
main-memory and grants restrictive access to SPMVisor. In the X-axis we have three

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:18 L. Bathen et al.

Normalized Latency and Energy Consumption

1

10

100

2x2x8 4x2x8 2x4x8 Average

N
or

m
al

iz
ed

 (%
) Energy Halt

Energy Encryption

Energy S-DMA

Latency Halt

Latency Encryption

Latency S-DMA

Fig. 13. Comparison between various security schemes and their normalized energy utilization and laten-
cies

different platforms in the following format: (# of applications per CPU x # of CPUs x
size of SPM assigned to each CPU), so 2x2x8 means two applications per CPU (total
of 2 CPUs) and 2x8KB SPMs. We ran up to 8 applications concurrently with multi-
tasking enabled. We defined SHA, AES, and BLOWFISH as secure applications which
require trusted execution. For this experiment we used Application-driven priority al-
location of blocks, so SHA, AES and BLOWFISH were given the highest priority when
allocating SPM space. We set the context-switching window to 100K instructions same
as 7.4. As expected, SPMVisor with S-DMA support provides much better performance
and energy utilization than the other the halt approach as it does not have to halt pro-
cesses nor evict data every time a trusted application needs to run (77% and 81% on
average). The reason why SPMVisor with S-DMA and SPMVisor with full Encryption
are close to each other is that any data mapped by the compiler to off-chip memory will
be encrypted/decrypted and any data loaded/flushed to/from SPM is also encrypted/de-
crypted. The main difference in the schemes is when the SPMVisor maps vSPM blocks
to PEM space. In this case, any access to a PEM mapped vSPM block will have to
be decrypted/encrypted by the Encryption scheme, whereas the S-DMA does not have
to go through the extra encryption/decryption step. As a result, the S-DMA scheme
will always outperform (be more efficient than) the Encryption scheme. In this experi-
ment we do not observe much difference between the S-DMA and Encryption schemes
because the SPMVisor exploited Application-driven priority allocation, hence, for the
trusted applications, there were very few blocks mapped to PEM space.

8. CONCLUSION
In this paper, we introduced the concept of SPMVisor, a hardware/software layer that
virtualizes the scratchpad memory space in order to facilitate the use of distributed
SPMs in an efficient, transparent and secure manner. We introduce the notion of vir-
tual ScratchPad Memories (vSPMs) to provide software programmers a transparent
view of the on-chip memory space. To protect the on-chip memory space, the SPMVi-
sor supports vSPM-level and block-level access control lists. Finally, in order to effi-
ciently manage the on-chip real-estate, our SPMVisor supports policy-driven alloca-
tion strategies based on privilege levels. Our experimental results on Mediabench/CH-
Stone benchmarks running on various Chip-Multiprocessor configurations and soft-

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Towards Distributed On-Chip Memory Virtualization 39:19

ware stacks (RTOS, virtualization, secure execution) showed that SPMVisor enhances
performance by 71% on average and reduces power consumption by 79% on average.
We showed the benefits of using vSPMs in a various environments (a RTOS/heteroge-
neous multi-tasking environment, a virtualized environment, and a trusted execution
environment). Future work includes the integration of the SPMVisor into the OS/hy-
pervisor layer as software module, tightly coupling the SPMVisor into a fully func-
tional hardware/software virtual layer, and exploring the scalability of the SPMVisor
in a Network-on-Chip platform.

REFERENCES
AGARWAL, V., HRISHIKESH, M. S., KECKLER, S. W., AND BURGER, D. 2000. Clock rate versus ipc: the end

of the road for conventional microarchitectures. SIGARCH Comput. Archit. News 28, 248–259.
ARM. 1999. Amba specication rev 2.0. In IHI-0011A.
AUSTIN, T., LARSON, E., AND ERNST, D. 2002. Simplescalar: an infrastructure for computer system model-

ing. Computer 35, 2, 59 –67.
BAI, K. AND SHRIVASTAVA, A. 2010. Heap data management for limited local memory (llm) multi-core

processors. In Proceedings of the eighth IEEE/ACM/IFIP Int. Conf. on Hardware/software codesign
and system synthesis. CODES/ISSS ’10. 317–326.

BANAKAR, R., STEINKE, S., LEE, B.-S., BALAKRISHNAN, M., AND MARWEDEL, P. 2002. Scratchpad mem-
ory: design alternative for cache on-chip memory in embedded systems. In Proceedings of the tenth Int.
Sym. on Hardware/software codesign. CODES ’02.

BLIND. for review.
BLIND. for review.
CHO, D., PASRICHA, S., ISSENIN, I., DUTT, N., PAEK, Y., AND KO, S. 2008. Compiler driven data layout

optimization for regular/irregular array access patterns. In Proceedings of the 2008 ACM SIGPLAN-
SIGBED Conf. on Languages, compilers, and tools for embedded systems. LCTES ’08. 41–50.

COBURN, J., RAVI, S., RAGHUNATHAN, A., AND CHAKRADHAR, S. 2005. Seca: security-enhanced commu-
nication architecture. In Proceedings of the 2005 Int. Conf. on Compilers, architectures and synthesis for
embedded systems. CASES ’05. ACM, New York, NY, USA.

DAVID, F. M., CARLYLE, J. C., AND CAMPBELL, R. H. 2007. Context switch overheads for linux on arm
platforms. In Proceedings of the 2007 workshop on Experimental computer science. ExpCS ’07. ACM,
New York, NY, USA.

EGGER, B., KIM, S., JANG, C., LEE, J., MIN, S. L., AND SHIN, H. 2010. Scratchpad memory management
techniques for code in embedded systems without an mmu. Computers, IEEE Trans. on 59, 8.

EGGER, B., LEE, J., AND SHIN, H. 2008. Dynamic scratchpad memory management for code in portable
systems with an mmu. ACM Trans. Embed. Comput. Syst. 7.

FRANCESCO, P., MARCHAL, P., ATIENZA, D., BENINI, L., CATTHOOR, F., AND MENDIAS, J. M. 2004. An
integrated hardware/software approach for run-time scratchpad management. In Proceedings of the
41st annual Design Automation Conf. DAC ’04.

GAUTHIER, L., ISHIHARA, T., TAKASE, H., TOMIYAMA, H., AND TAKADA, H. 2010. Minimizing inter-task
interferences in scratch-pad memory usage for reducing the energy consumption of multi-task systems.
In Proceedings of the 2010 Int. Conf. on Compilers, architectures and synthesis for embedded systems.
CASES ’10. 157–166.

GOOGLE. Android. Google, http://www.android.com/.
HARA, Y., TOMIYAMA, H., HONDA, S., TAKADA, H., AND ISHII, K. 2008. Chstone: A benchmark program

suite for practical c-based high-level synthesis. In Circuits and Systems, 2008. ISCAS 2008. IEEE Int.
Sym. on. 1192 –1195.

HEISER, G. 2008. The role of virtualization in embedded systems. In Proceedings of the 1st workshop on
Isolation and integration in embedded systems. IIES ’08.

HUANG, W., YOU, K., ZHANG, S., HAN, J., AND ZENG, X. 2009. Unified low cost crypto architecture ac-
celerating rsa/sha-1 for security processor. In ASIC, 2009. ASICON ’09. IEEE 8th Int. Conf. on. 151
–154.

IBM. 2005. The cell project. IBM, http://www.research.ibm.com/ cell/.
INTEL. 2009. Single-chip cloud computer. Intel, http://techresearch.intel.com/ ProjectDetails.aspx?Id=1.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:20 L. Bathen et al.

ISSENIN, I., BROCKMEYER, E., DURINCK, B., AND DUTT, N. 2006. Multiprocessor system-on-chip data
reuse analysis for exploring customized memory hierarchies. In Proceedings of the 43rd annual Design
Automation Conf. DAC ’06. 49–52.

JUNG, S. C., SHRIVASTAVA, A., AND BAI, K. 2010. Dynamic code mapping for limited local memory systems.
In Application-specific Systems Architectures and Processors (ASAP), 2010 21st IEEE Int. Conf. on. 13
–20.

KANDEMIR, M., RAMANUJAM, J., IRWIN, J., VIJAYKRISHNAN, N., KADAYIF, I., AND PARIKH, A. 2001. Dy-
namic management of scratch-pad memory space. In Proceedings of the 38th annual Design Automation
Conf. DAC ’01.

LEE, C., POTKONJAK, M., AND MANGIONE-SMITH, W. H. 1997. Mediabench: a tool for evaluating and
synthesizing multimedia and communicatons systems. In Proceedings of the 30th annual ACM/IEEE
Int. Sym. on Microarchitecture. MICRO 30. IEEE Computer Society, Washington, DC, USA, 330–335.

MAYHEW, M. AND MURESAN, R. 2009. Low-power aes coprocessor in 0.18 um cmos technology for secure
microsystems. In Microsystems and Nanoelectronics Research Conf., 2009. MNRC 2009. 2nd. 140 –143.

MCCUNE, J. M., PARNO, B. J., PERRIG, A., REITER, M. K., AND ISOZAKI, H. 2008. Flicker: an execution
infrastructure for tcb minimization. SIGOPS Oper. Syst. Rev. 42, 315–328.

PANDA, P. R., DUTT, N. D., AND NICOLAU, A. 1997. Efficient utilization of scratch-pad memory in embedded
processor applications. In Proceedings of the 1997 European Conf. on Design and Test. EDTC ’97.

PASRICHA, S., DUTT, N., AND BEN-ROMDHANE, M. 2008. Fast exploration of bus-based communication
architectures at the ccatb abstraction. ACM Trans. Embed. Comput. Syst. 7, 22:1–22:32.

PYKA ET AL., R. 2007. Operating system integrated energy aware scratchpad allocation strategies for mul-
tiprocess applications. In Proc.of the 10th Int. workshop on Software & compilers for embedded systems.
SCOPES ’07.

SHALAN, M. AND MOONEY, V. J. 2000. A dynamic memory management unit for embedded real-time
system-on-a-chip. In Proceedings of the 2000 Int. Conf. on Compilers, architecture, and synthesis for
embedded systems. CASES ’00.

SUHENDRA, V., RAGHAVAN, C., AND MITRA, T. 2006. Integrated scratchpad memory optimization and task
scheduling for mpsoc architectures. In Proceedings of the 2006 Int. Conf. on Compilers, architecture and
synthesis for embedded systems. CASES ’06. 401–410.

SUHENDRA, V., ROYCHOUDHURY, A., AND MITRA, T. 2008. Scratchpad allocation for concurrent embedded
software. In Proceedings of the 6th IEEE/ACM/IFIP Int. Conf. on Hardware/Software codesign and
system synthesis. CODES+ISSS ’08. 37–42.

TAKASE, H., TOMIYAMA, H., AND TAKADA, H. 2010. Partitioning and allocation of scratch-pad memory for
priority-based preemptive multi-task systems. In Proceedings of the Conf. on Design, Automation and
Test in Europe. DATE ’10.

THOZIYOOR, S., MURALIMANOHAR, N., AHN, J. H., AND JOUPPI, N. P. 2004. Hp labs cacti v5.3. CACTI
5.1, TR, http://www.hpl.hp.com/ techreports/2008/ HPL-2008-20.html.

TILERA. 2010. Tile gx family. Tilera, http://www.tilera.com/ products/processors/TILE-Gx Family.
VERMA, M., STEINKE, S., AND MARWEDEL, P. 2003. Data partitioning for maximal scratchpad usage. In

Proceedings of the 2003 Asia and South Pacific Design Automation Conf. ASP-DAC ’03. 77–83.
WANG, Z. AND LEE, R. B. 2007. New cache designs for thwarting software cache-based side channel attacks.

SIGARCH Comput. Archit. News 35, 494–505.

Received July 2010; revised November 2010; accepted March 2011

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

	TR-COVER
	spmvisor-tr

