
Center for Embedded Computer Systems 
University of California, Irvine 
____________________________________________________ 

 
 

 
 
 
 
 
 

Using a Flexible Fault-Tolerant Cache (FFT-Cache) to Improve 
Reliability in Ultra Low Voltage Operation 

 
 

Abbas BanaiyanMofrad, Houman Homayoun, and Nikil Dutt 
 
 
 

Center for Embedded Computer Systems 
University of California, Irvine 
Irvine, CA 92697-2620, USA 

 
 

{abanaiya, hhomayou, dutt}@uci.edu 
 
 

CECS Technical Report 11-07 
March 31, 2011 

 
 

 
 
 
 
 
 



Using a Flexible Fault-Tolerant Cache (FFT-Cache) to 
Improve Reliability in Ultra Low Voltage Operation 

Abbas BanaiyanMofrad, Houman Homayoun, and Nikil Dutt 
Technical Report CECS11-07 

Center for Embedded Computer Systems, University of California, Irvine 
Email: {abanaiya, hhomayou, dutt}@uci.edu 

 
 

ABSTRACT 
Caches are known to consume a large part of total microprocessor 
power. Traditionally, voltage scaling has been used to reduce both 
dynamic and leakage power in caches. However, aggressive 
voltage reduction causes process-variation-induced failures in 
cache SRAM arrays, which compromise cache reliability. In this 
paper, we propose Flexible Fault-Tolerant Cache (FFT-Cache) 
that uses a flexible defect map to configure its architecture to 
achieve significant reduction in energy consumption through 
aggressive voltage scaling, while maintaining high error 
reliability. FFT-Cache uses a portion of faulty cache blocks as 
redundancy – using block-level or line-level replication within or 
between sets –to tolerate other faulty caches lines and blocks. Our 
configuration algorithm categorizes the cache lines based on 
degree of conflict of their blocks to reduce the granularity of 
redundancy replacement. FFT-Cache thereby sacrifices a minimal 
number of cache lines to avoid impacting performance while 
tolerating the maximum amount of defects. Our experimental 
results on SPEC2K benchmarks demonstrate that the operational 
voltage is reduced down to 375mV, which achieves up to 80% 
reduction in dynamic power and up to 48% reduction in leakage 
power with small performance impact and area overhead. 

Categories and Subject Descriptors 
B.3.2 [Design Styles]: Cache memories 

B.3.4 [Reliability, Testing, and Fault-Tolerance]: Error-
checking, Redundant design  

General Terms 
Algorithms, Design, Reliability 

Keywords 
Low power cache, Fault-tolerant cache, Flexible fault remapping 

1. INTRODUCTION 
Caches are already known to consume a large portion (about 

30-70%) of total processor power  [3] [4] and on-chip cache size 
will continue to grow due to device scaling coupled with 
performance requirements. Therefore, it becomes critical to 
manage the power and reliability of the caches in order to reduce 
total power consumption while maintaining the reliability of the 
entire processor system. 
 
Traditionally, voltage scaling has been used to reduce the dynamic 
and the leakage power consumption of the cache. However, 
aggressive voltage scaling causes process-variation-induced 
failures in the SRAM cells. An SRAM cell can fail due to an 
access time failure, a destructive read failure or a write 
failure [1] [2]. Figure 1 represents the failure rate of an SRAM cell 
based on the operational voltage in a 90nm technology  [14][32]. 
To save power while achieving an acceptable manufacturing yield 

of 99.9% for 64KB L1 and 2MB L2 caches, a minimal operational 
voltage must be selected. From Figure 1 we can see that the 
probability of failure for each memory array must be kept at less 
than 1 out of 1000 to get this yield. Based on this assumption, we 
estimate the minimum operational voltage for L1 as 620 mV and 
for L2 660 mV, and we are not able to further reduce the 
operational voltage without incurring cell failures. 

 

64KB L1

2MB L2

Figure 1.Probability of SRAM cell failure vs.Vdd 
 

Since applications may not be tolerant to even a single bit 
error, typically caches must be operated at a high Vdd to ensure a 
very low probability of failure, leading to high energy 
consumption. However, by exploiting mechanisms that allow a 
cache to become inherently resilient to a large number of cell 
failures, we can operate the cache at a lower Vdd and thus gain 
significant energy savings. This paper presents FFT-Cache, an 
approach that aims to: 1) design a very low power, fault-tolerant 
cache architecture that can detect and replicate memory faults 
arising from operation in the near-threshold region; 2) minimize 
non-functional or redundant memory area to lessen impact on 
cache capacity; and 3) tolerate cache faults as much as possible. 

As can be seen in Figure 1, the failure rate of an SRAM cell 
increases exponentially when lowering Vdd; consequently for 
near threshold voltages the number of faulty cells is very high 
resulting in almost all of the cache lines and blocks becoming 
faulty. This poses a difficult challenge for the protection of caches 
while working in the near-threshold voltage regime. To illustrate 
this concept in L1/L2 caches, Figure 2 represents the number of 
caches lines in different categories for a 64KB 4-way set 
associative L1 and a 2MB 8-way set associative L2 cache for 
different Vdd values. In this figure we categorize the cache lines 
to five groups: No-Faulty include cache lines with no faulty block; 
Min-Faulty include cache lines with the number of faulty blocks 
below a threshold; No-Conflict include cache lines that have 
multiple faulty block but without conflict (two blocks have a 
conflict if they have faulty subblocks in the same position. A 



subblock is faulty if it has at least one faulty bit); Low-Conflict 
include cache lines with multiple faulty blocks for which their 
number of conflicts is less than the MGB parameter; and High-
Conflict include cache lines with multiple faulty blocks and the 
number of conflicts between blocks is more than the MGB 
parameter. Figure 2 shows that by increasing the probability of bit 
failure, the amount of conflicts between blocks in each cache line 
will be increased. For example for L1 cache, with Vdd values 
greater than 0.4V there is no line in the High-Conflict group, but 
by decreasing the voltage below 0.4V the amount of High-
Conflict lines increases exponentially. Therefore, for caches that 
operate below 0.4V it is essential to deal with lines in the High-
Conflict group. To the best of our knowledge most of the previous 
cache protection techniques only consider conflicts between two 
or more cache lines and almost none of them deal with conflicts 
inside of the cache lines  [18] [19] [31] [32].  

 

 
(a) A 64KB 4-way set associative L1 cache with 64B block 

size and 8b subblock size 
 

 
(b) A 2MB 8-way set associative L1 cache with 64B block 

size and 16b subblock size 
Figure 2. Number of cache lines in different categories while 

varying the supply voltage. 
 

In this work, we propose Flexible Fault-Tolerant Cache (FFT-
Cache), a cache architecture that uses a flexible defect map to 
efficiently tolerate the large number of faults when operating in 
the near threshold region. FFT-Cache uses a novel flexible defect 
map to replicate faulty data blocks in both the same set and 
different cache sets. It divides each cache block into multiple sub-
blocks. FFT-Cache uses a portion of faulty cache blocks as 
redundancy to tolerate other faulty caches lines and blocks. This 
can be accomplished by using either block-level or line-level 

replication in the same set or between two or more sets. Our 
configuration algorithm categorizes the cache lines based on 
degree of conflict between their blocks to reduce the granularity 
of redundancy replacement. Using this approach, FFT-Cache first 
attempts to replicate faulty blocks in the same set, Otherwise it 
attempts to use faulty blocks to replicate other faulty lines. If not, 
it attempts to disable the fewest number cache lines for tolerating 
faulty blocks/lines. While significantly increasing fault-tolerance, 
our FFT-Cache approach when operated in low-power mode 
incurs a small 5% performance degradation and a small 13% area 
overhead.  

The main contributions of our FFT-Cache approach are that 
we: 1) deploy a new flexible defect map to replicate faulty data 
blocks in both same set and different cache sets; 2) use a portion 
of faulty cache lines (global blocks) to store Target data for other 
faulty blocks or lines; 3) categorize the cache lines based on 
degree of conflict of their blocks to reduce the granularity of 
redundancy replacement; and 4)use a simple and efficient 
algorithm to initiate and update the flexible defect map to 
optimize the proposed fault-tolerant architecture with minimum 
non-functional cache area. 

The rest of this paper is organized as follows: Section 2 
reviews related work and distinguishes our proposed approach. 
Section 3 introduces the proposed FFT-Cache architecture.  
Section 4 evaluates the architecture and presents experimental 
results.  Section 5 concludes the paper. 

 

2. RELATED WORK 
In the literature, several fault-tolerant techniques have been 

proposed to improve the cache yield and/or lower the minimum 
achievable voltage scaling bound. A number of these works use 
circuit-level techniques to improve the reliability of each SRAM 
cell. Besides the familiar 6T SRAM cell, several other designs, 
including 8T SRAM cell  [8], 10T SRAM cell  [13], and 11T 
SRAM cell  [11] have been proposed. All of these SRAM cells 
improve read stability, though the stability of the inverter pair 
remains unchanged. Most of these cells have a large area 
overhead which poses a significant limitation for performance and 
power consumption of caches.  Kulkarni et al.  [12]proposed a 
Schmidt trigger based 10T SRAM cell with inherent tolerance 
towards process variation using a feedback-based mechanism. 
However, this SRAM cell requires a 100% increase in area and 
about 42% increase in access time for low voltage operation. 

At the system level, a wide range of Error Detection Code 
(EDC) and Error Correcting codes (ECC) have been used. ECC is 
proven as an effective mechanism for handling soft errors. 
However, in a high-failure rate situation, most coding schemes are 
not practical because of the strict bound on the number of 
tolerable faults in each protected data chunk. In addition, using 
ECC codes incurs a high overhead in terms of storage for the 
correction code, large latency, slow and complex decoding [16]. A 
recent work uses configurable part of the cache for storing 
multiple ECC check bits for different segments of cache line using 
an elaborate Orthogonal Latin Square Code ECC  [21] to enable 
dynamic error correction. This requires up to 8 levels of XOR 
gates for decoding, resulting in significant increase in cache 
critical path delay. 

Several architectural techniques have also been proposed to 
improve reliability of on-chip cache by using either redundancy or 
cache resizing. Earlier works on fault-tolerant cache design use 
various cache down-sizing techniques by disabling a faulty line or 
block of cache. Ozdemiret al. proposed Yield-Aware cache  [15]in 
which they developed multiple techniques that turn off either 



cache ways or horizontal regions of the cache which cause delay 
violation and/or have excessive leakage. Agarwal et al. 
 [1]proposed a fault tolerant cache architecture in which the 
column multiplexers are programmed to select a non-faulty block 
in the same row, if the accessed block is faulty. A similar work is 
PADed caches  [17] that use programmable address decoders 
which are programmed to select non-faulty blocks as 
replacements of faulty blocks. Sasan et al.  [19] [20] proposed a 
number of cache architectures in which the error-prone part of the 
cache is fixed using either a separate redundancy cache or parts of 
the same cache. RDC-cache [19] replicates a faulty word by 
another clean word in the last way of next cache bank. 

In  [18]two schemes called Word-disable (WDIS) and Bit-fix 
(BFIX) have been proposed. The WDIS scheme combines two 
consecutive cache blocks into a single cache block, thereby 
reducing the capacity by 50%, whereas the BFIX scheme 
sacrifices a (functional) cache block to repair defects in three 
other cache blocks, thereby reducing the capacity by 25%. 

The buddy cache  [28]pairs up two non-functional blocks in a 
cache line to yield one functional block. A similar idea was 
proposed independently in  [29]. The salvage cache improves on 
this technique by using a single non functional block to repair 
several others in the same line  [30]. However, all of these 
methods are not efficient in the near-threshold region with high 
fault probabilities.  

ZerehCache introduces an interconnection network between 
the row decoder and data array which requires significant layout 
modifications  [31]. In this scheme, an external spare cache is used 
to provide redundancy; thus, applying the interconnection network 
allows a limited redundancy borrowing across the statically 
specified, fixed-size groups. However, its interconnection network 
has a noticeable area overhead and power consumption cost. 

MC2 maintains multiple copies of each data item, exploiting 
the fact that many embedded applications have unused cache 
space resulting from small working set sizes [22]. On every cache 
access, MC2 detects and corrects errors using these multiple 
copies. ThusMC2 – while particularly useful for embedded 
applications with small working sets–may result in high area and 
performance overhead for other applications, particularly in the 
presence of high fault rates. 
Ansari et al.  [32] propose a fault-tolerant cache which intertwines 
a set of n + 1 partially functional cache lines together to give the 
appearance of n functional lines. They partition the set of all cache 
word-lines into large groups, where one word-line (the sacrificial 
line) from each group is set aside to serve as the redundant word-
line for the other word-lines in the same group. 

FFT-Cache differs from previous approaches in that it 
minimizes the number of nonfunctional and target lines by using 
target blocks inside of functional lines to keep the replication data, 
resulting in lower area and power overhead. 

 

3. PROPOSED ARCHITECTURE 
In this section, we first describe the proposed FFT-Cache 

architecture that uses a Flexible Defect Map (FDM) to efficiently 
tolerate SRAM failures. Next, we present the cache configuration 
that includes FDM generation and configuration stages to 
configure the architecture for fault-tolerant data access.   

 

3.1 FFT-Cache Organization 
Let’s first describe the baseline cache organization. Our cache 

architecture has two banks of data. The two banks can be accessed 
concurrently and they include multiple cache lines, with each line 

including multiple blocks (ways). For the rest of this paper, we 
refer to every physical cache word-line containing a set of blocks 
as a line or set. The number of blocks in a line or a set equals the 
associativity of a cache. Also, each block is divided into multiple 
equally sized subblocks that can be as small as a single bit or as 
large as an entire block. Each subblock (block) is labeled faulty if 
it has at least one faulty bit. Two blocks (lines) have a conflict if 
they have at least one faulty subblock (block) in the same 
position. 

FFT-Cache achieves fault-tolerance by using a portion of the 
faulty cache blocks as redundancy to tolerate other faulty cache 
lines and blocks. Using this approach, FFT-Cache tries to sacrifice 
the minimal number of cache lines to minimize performance 
degradation and tolerate the maximum amount of defects. This is 
done by using either block-level or line-level replication in the 
same set or between two sets. The information of faulty locations 
is kept in a Flexible Defect Map (FDM) which is then used to 
configure the address mapping. To replicate the faulty subblocks 
in a line (called a host line), our scheme tries to find a faulty block 
in the same line or in another line that has no conflict with other 
blocks in the host line. We refer to such a block as a Target block. 
If FFT-Cache cannot find a target block for the host line, it tries to 
find another faulty line (called a target line) that has no conflict 
with the host line. It then sacrifices the target line to replicate all 
faulty blocks of the host line. Thus, based on the earlier 
discussion, the sacrificial target line (block) could be one of: 
1)Local Target block, 2) Global Target block, or 3)Target line. 

Note that a local target block can be accessed in the same cycle 
as the host line, and it does not require any additional access 
overhead. This is not true for a global target block or a target line, 
for which two consecutive accesses are required if the global 
target block or target line are in the same bank as the host line. In 
order to access the host line and global target line (block) in 
parallel and to minimize the access latency overhead, the host line 
and target line should be in different banks. Note that since target 
blocks/lines do not store any independent data, they are 
considered nonfunctional. Therefore, the target lines are not 
addressable as data lines and thus they are removed from the 
address scope of the cache. This could impact performance as it 
reduces the effective size of the cache. A major advantage of FFT-
Cache over other fault-tolerant methods is we minimize the 
number of nonfunctional and target lines by initially attempting to 
find a local target block to sacrifice. If a local target block was not 
found, it then attempts to find a global target block. Finally if the 
first two attempts were not successful, FFT-Cache sacrifices a 
different cache line as a target line, as other fault-tolerant methods 
do.  

In our fault-tolerant cache architecture, each cache access in 
low power mode first accesses the FDM. Based on the fault 
information of the accessed line, the target block/line maybe 
accessed from another bank (in case of a global target block or 
target line). Then based on the location of target block/line 
retrieved from the FDM, one or two levels of MUXing is used to 
compose a fault free block by choosing appropriate subblocks 
from both host and target blocks (lines). Figure 3 outlines the 
flowchart for accesses using the FFT-Cache. 

 



 
Figure 3.FFT-Cache Access Flowchart 

3.2 FFT-Cache Configuration 
We now describe the configuration process for FFT-Cache. 

Initially, a raw defect map is generated at boot time: using the 
memory Built-In Self Test (BIST) unit, the L1 and L2cache(s) are 
tested under low voltage conditions. The output of the BIST is 
used to initialize the FDM. If there are multiple operating points 
for different combinations of voltage, temperature and frequency, 
the BIST operation is repeated for each of these settings. The 
obtained defect map is then modified and processed to be usable 
with FFT-Cache. Updating the FDM is done at full voltage and 
through a simple algorithm that we explain next. The 
configuration information can be stored on the hard-drive and is 
written to the FDM at the next system boot-up. In addition, in 
order to protect the defect map and the tag arrays we use the well 
studied8T SRAM cell  [10]which has about 30% area overhead for 
these relatively small arrays. These 8T SRAM cells are able to 
meet the target voltage in this work for the aforementioned 
memory structures without failing. An entry of FDM for a cache 
with associativity of 4 is represented in Figure 4. 
 

Way StatusWS bits

00
01
10
11

Non-faulty
Local Target
Global
Faulty

Fa
ul

ty
 L

in
e 

bi
t

S
am

e 
S

et
 b

it

W
ay

 0
 D

ef
ec

t M
ap

W
ay

 1
 D

ef
ec

t M
ap

Ta
rg

et
 L

in
e 

A
dd

re
ss

1 1 1110 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 10 1 0 0 0 0 0 0 1 1 0 0 0 0 0

W
ay

 2
 D

ef
ec

t M
ap

W
ay

 3
 D

ef
ec

t M
ap

W
ay

 0
 S

ta
tu

s

W
ay

 1
 S

ta
tu

s

W
ay

 2
 S

ta
tu

s

W
ay

 3
 S

ta
tu

s

11 01 1

Ta
rg

et
 W

ay
 N

um
be

r
Ta

rg
et

 T
yp

e

1 1

 
Figure 4. Details of a row of FDM 

 
Each FDM entry includes multiple configuration bits, the 

defect map of each way (block), status of each block and the 
address of the Target line. Each bit in the defect map section 
represents the faulty state of a subblock. Way Status bits represent 

the status of each way or block in a cache line. The status of each 
cache block can assume one of the following: 1)Non-Faulty, 
2)Faulty, 3)Local Target, and 4)Global. Initially the status of all 
blocks in the cache is Non-faulty, representing the absence of any 
faulty subblocks. If a block contains at least one faulty subblock, 
its status will be Faulty. A block that is used as a target block for 
other blocks in a line gets the status of Local Target. A block that 
has a conflict with other blocks in a set and cannot be used as a 
local target block gets the status of Global and maybe used as a 
Global target block. We define a parameter --Max Global Block 
(MGB)--that the FDM initialization algorithm uses to categorize 
the cache lines. MGB represents the maximum number of blocks 
in a line that can be set as Global block; the remaining blocks can 
then be composed as a group of blocks without conflict, which 
allows them to find a Global Target block. This would guarantee 
that at most half of the cache to be sacrificed for tolerating faults. 

 
Now, let’s explain the algorithm for FDM initialization.    
Begin FDM initialization algorithm 
1. Run BIST and find faulty cache lines at a subblock level 

and fill defect map sections of each entry 
2. Set the “Way Status” field of faulty blocks to 11(Faulty) 

and other non-faulty blocks to 00(Non-faulty) 
3. For lines with at least one faulty subblock, set the “Faulty 

Line” bit to 1 (Faulty) and for other lines with no faulty 
subblock, set it to 0 (Non-faulty)  

4. Set “Target Line” address field of all rows same as their 
address 

5. If the number of faulty blocks in a set is below MGB then 
set “Same Set” bit to 0  

6. If there is no conflict between all except MGB blocks in a 
line then: 
– Set “Same Set” bit to 1 and make them a group and 

select one of them as Target block 
– Set “Way Status” bits of the Target block to 01(Target) 

and set its number in the “Target Way” number 
– For other out of group blocks (if any), set their status 

bits to 10(Global)  
7. If there are more than one conflict between blocks then set 

Same Set bit to 0 
8. Repeat Steps 5-8 for all entries of FDM 

End FDM initialization algorithm 
 
After completion of the FDM initialization algorithm, we run the 
FDM configuration algorithm. 
Begin FDM configuration algorithm 

1. Traverse the faulty rows of FDM and based on the conflicts 
between faulty blocks in each row, categorize the FDM 
entries into four groups: 

– If the number of faulty blocks in a row is below a 
threshold (e.g., 1 for 4-way set associative cache), set it 
in the min_faulty block group. 

– If there is no conflict between faulty blocks in a row, set 
the row in the no_conflict group.  

– If there is only one conflict between one of the blocks 
with other blocks in the row, set the row in the 
low_conflict group.  

– If there is more than one conflict between the blocks 
within a group, set the row in the high_conflict group. 

2. For lines in the min_faulty block group set the status of 
faulty blocks to Global block. 



3. For lines in the no_conflict group make one of its faulty 
blocks as Local Target block. 

4. For the lines in low_conflict group, make the status of the 
block that has conflict with other blocks as Global and then 
attempt to find a Global Target block for each line. 

5. For the lines in high_conflict group, try to find another line 
from this group to make it as the Global Target line.  

End FDM configuration algorithm  
Figure 5 shows an example of the FDM configuration for a given 
distribution of faults in a 4-way set associative cache. The first 
line is a clean line without any faulty block. The second and third 
lines have a faulty block and are set as min_faulty block group. 
The fourth line is an example of a no_conflict group in which the 
first block (the block belongs to way0) is set as Local Target 
block. The fifth line is a member of the low_conflict group with 
the first block as a Global block. The sixth line is a high_conflict 
group line with two conflicts between its blocks.  
 

SS = 0
FL = 0

SS = 0
FL = 1

SS = 1
FL = 1

SS = 1
FL = 1

SS = 0
FL = 1

SS = 0
FL = 1

F N N N

N N N N

T F F F

G T F F

F F F F

N G N N

Way0 Way1 Way2 Way3

Way Status: N=Non-faulty, F=Faulty, G=Global, T=Target
SS = Same Set bit, FL = Faulty Line bit
TT = Target Type bit, 1: Line Target, 0: Block Target

TT = 0

TT = 0

TT = 0

TT = 0

TT = 0

TT = 1

 

Figure 5. An example of FDM configuration for a given 
distribution of faults in a 4-way set associative cache. 

 

3.3 Architecture Details 
We now present the architecture of the FFT-Cache. We begin 

with the architecture of a conventional 2-way set associative 
cache (labeled CC) in Figure 6. Based on the tag match results, 
either way0 or way1 is being selected. The data is transferred 
to/from memory cells using multiplexers indicated in the figure. 

Figure 7 shows the architecture of the proposed FFT-Cache. 
Let’s assume the cache is divided into two banks, with each bank 
containing two ways (blocks) that are further divided into 2 
subblocks. The new modules (muxes and FDM) added to the 
conventional cache are highlighted in the figure. Note that two 
levels of MUXing are added to compose the final fault-free block, 
based on either multiple blocks within a set or between two or 
more sets in different banks of data. The additional multiplexer 
network would allow us to compose the final fault-free block from 
any of the subblocks in any of the cache way in either Bank0 or 
Bank1, based on the FDM data. Next, we present the hardware 
implementation of the FFT-Cache and analyze its overhead. 

Way 0

MUX

Way 1

 
Figure 6.A conventional 2-way set associative cache (CC). 

 

Bank 0 Bank 1
Way 0 Way 1 Way 0 Way 1

FDM

Su
bb

lo
ck

 0

Su
bb

lo
ck

 1

 
Figure 7.Architecture details of the proposed FFT-Cache with 
FDM and 2 subblocks per block. 
 
    The total number of n to 1 multiplexer required to compose the 
final fault-free block is: )1( −×× Bnk  

Where k is the number of subblocks in a block, n is the number of 
ways (set associativity) and B is the number of banks. For 
instance for a 2 bank, 64KB, 4-way set associative cache, with 
each way with 16 subblocks, a total of 112 4-to-1 multiplexers are 
required.  

3.4 Hardware implementation 
For a quantitative comparison, we synthesized the MUXing 

layer and output logic for FFT-Cache as well as the multiplexer 
and output driver of the conventional cache (CC) using Synopsys 
Design Compiler for TSMC 90nm standard cell library for both 
L1 and L2 caches. The area and delay of various multiplexers 
(MUX2, MUX4,…MUX32) are used to estimate the overall 
area/delay overhead of the Muxing network in FFT-Cache and the 
CC. We found that the delay of FFT-Cache output logic is 
increased by only 5% compared to CC output mux network while 
area and power consumption are increased by only 2% compared 
to a CC mux network.  

Recall that the FFT-Cache architecture replaces CC’s output 
Mux with FFT-Cache MUXing layer and output logic; thus we 
expect that the proposed mechanism will only result in a minimal 
increase of the cache delay (estimated at < 5%). 

 

4. Evaluation 
This section evaluates the effectiveness of FFT-Cache 

architecture in reducing power consumption of the processor 
while keeping overheads as low as possible. Before presenting the 
experimental results, we describe our methodology/experimental 
set-up, develop an analytical failure model, and outline the 
exploration space for our experiments. 



4.1 Methodology 
Table 1 outlines our experimental setup for the baseline 

processor configuration. The processor is configured with a 64K 
4-way set associative L1 cache. The architecture was simulated 
using an extensively modified version of SimpleScalar 4.0 [5] 
using SPEC2K benchmarks. Benchmarks were compiled with the 
-O4 flag using the Compaq compiler targeting the Alpha 21264 
processor. The benchmarks were fast–forwarded for 3 billion 
instructions, then fully simulated for 4 billion instructions using 
the reference data sets. We used CACTI6.5  [7] to evaluate area, 
power and delay of both L1 and L2 caches and their related 
FDMs. The Synopsys standard industrial tool-chain (with TSMC 
90nm technology library) was used to evaluate the overheads of 
the MUXing layer components (i.e., bypass MUXes, comparators, 
MUXes selection logic, etc.). 

The load/store latency of 2 cycles is assumed to be broken into 
actual cache access taking place in cycle 1, while the bus access 
takes only a part of the next cycle. From our discussion in Section 
3.4, the cache delay is increased only slightly (<5%) in nominal 
Vdd. However, considering the increase in logic delay due to Vdd 
scaling, we assume that in the worst case, the latency of the cache 
would be increased by one full cycle for L1 and two cycles for L2. 

 

Table 1.Processor Configuration 

L1/Inst Cache 2 banks 64 KB, 4 Way, 2 Cycles,  
1 port, 64B block size  

L2 Cache 2 banks 2 MB, 8 Way, 20 Cycles,  
1 port, 128B block size 

Fetch, dispatch  4 wide 
Issue 4 way out of order 
Memory 300 cycles 
Reorder buffer 96 entry 
Instruction queue 32 entry  
Register file 128 integer and 125 floating point 
Load/store queue 32 entry 
Branch predictor 64KB entry g-share 
Arithmetic unit 4 integer, 4 floating point units 
Complex unit 2 INT, 2 FP multiply/divide units 

 
For a given set of cache parameters (e.g., associativity, 

subblock size, MGB, etc.), a Monte Carlo simulation with 1000 
iterations is performed using our FDM configuration algorithm 
described in Section 3.3 to identify the portion of the cache that 
should be disabled while achieving a 99% yield. In other words, 
probability of failure of the cache must below 0.001 when 
operating in low-power mode.  

 

4.2 Probability of Cache Failure  
To estimate the probability of failure for the cache, we 

developed an analytical model of the FFT-Cache. Assume an n-
way set-associative cache with m sets, k subblocks in a block, 
each of which has d data bits with a fault probability pF. We also 
define c as the maximum acceptable disabled blocks in a set 
(MGB). We derive the following equations: 

The probability of failure for each subblock that has at least 
one faulty bit: 

Pfaulty-subblock=Pfs= 1-(1-pF)d 

The probability of failure for each block that has at least one 
faulty subblock: 

Pfaulty-block =Pfb= 1-(1-pF)dk 

The probability of two blocks being paired with no conflict such 
that for each pair of subblocks at the same location at least one of 
them should not be faulty: 

Ppaired-block = Ppb = (1-Pfs
2)k 

The probability of finding possible blocks in a set to compose an 
operational group without any conflict between them such that 
each pair of them being a paired block without conflict: 

Pgroup-block = Pgb= ( Ppb)α ,   

The probability of two cache sets being paired with no conflict 
such that at least one of β possible groups of 𝛄 blocks in them is 
paired: 

Ppaired-set = Pps= β (Ppb) ,  

As defined, a set is faulty only if all of its blocks are faulty and 
none of the possible groups within them is operational. Hence, the 
probability that a set is functional: 

Pset= 1 - (Pfb)n (1-Pgb)β 

Let’s consider R as the number of cache lines that can be disabled, 
so at most 2R sets can be faulty but paired for the cache to be 
operational. The probability that the FFT-Cache is operational is:  

 
We used our analytical models of failure to determine the 

failure probability of a 64KB L1 FFT-Cache and compared it to 
SECDED and DECTED methods with equal area overhead. The 
results, as shown in Figure 8, demonstrate that, at a given voltage, 
FFT-Cache is the most reliable cache, while SECDED is the least 
reliable cache. If we adopt the definition for Vdd-min as the 
voltage at which 1 out of every 1000 cache instances is defective 
[18], based on this figure the FFT-Cache can reduce the Vdd 
below 375mv in comparison with 465mv and 520mv for 
DECTED and SECDED methods, respectively. 

 

 
Figure 8. Probability of cache failure vs Vdd for SECDED, 
DECTED, and FFT-Cache. 

4.3 Design Space Exploration 
Figure 9 and Figure 10 present the design space exploration of 

FFT-Cache for L1 and L2 caches, respectively. We study the 
impact of various FFT-Cache configuration parameters including 
subblock size and MGB on the number of target lines/blocks 
(non-functional cache part). In addition, we study the impact of 
cache associativity on FFT-Cache functionality. Note that since 
MGB is decided by cache associativity; i.e half of cache blocks in 
a line can be a global block candidate, it makes a lot of sense to 
study the impact of cache associativity on the size of non-
functional cache part. 

 



Vdd-min = 375 mV

 
(a) Percentage of disabled lines and global blocks for 4-way L1 (Max global block = 1) while varying Vdd and subblock size 

 

 
(b) Percentage of disabled lines and global blocks for 8-way L1 (4b subblocks) while varying Vdd and Max global block 

Figure 9.The effect of changing one design parameter of L1 FFT-Cache while fixing other parameters for different Vdd values. 
 

Vdd-min = 375 mV

 
(a) Percentage of disabled lines and global blocks for 8-way L2(Max global block = 2)while varying Vdd and subblock size 

 

 
(b) Percentage of disabled lines and global blocks for 8-way L2(4b subblocks)while varying Vdd and Max global block 

Figure 10.The effect of changing one design parameter of L2 FFT-Cache while fixing other parameters for different Vdd values. 
 
 
As mentioned earlier, to evaluate our design for a given set of 

cache parameters (associativity, MGB, subblock size, and Vdd), a 
Monte Carlo simulation with 1000 iterations is performed using 
the FDM configuration algorithm described in Section 3.2 to 
identify the Global blocks and lines that should be disabled. Our 
simulation model targets 99% yield for the cache.  

We present the results for different associativity (4 and 8) and 
various subblock size (4, 8, 16 and 32) and various MGB (1, 2, 
3and 4).   

As evident in these figures, decreasing Vdd increases the size 
of cache non-functional part. It is notable that for very low voltage 

(below 400mv), the number of global blocks decreases. This in 
fact is due to increasing the number of non-functional lines as 
reducing the voltage below 400mv. Overall, the effective size of 
cache (cache size – non-functional part) decreases as lowering the 
voltage. We can also observe from the figure that decreasing the 
size of subblocks, increases the area overhead of the FDM. 
Decreasing the size of subblocks also reduces the size of cache 
non-functional part.  

Increasing MGB, increases the number of non-functional block 
only slightly while it significantly reduces the number of non-
functional lines. In fact increasing the MGB helps the FDM 



configuration algorithm to find a global target block rather than 
sacrificing a target line. 

During the process of finding the FFT-Cache minimum 
achievable operating voltage (Vdd-min), we limit the size of 
cache non-functional part and the overhead of the FDM table. 

The number of target lines/blocks or in the other words the size 
of non-functional cache part determines the performance loss of 
FFT-Cache. To limit the performance loss we assume the relative 
size of non-functional part to be less than 25% of cache size.  

To minimize the implementation overhead we assume the 
FDM size to be less than 10% of cache size. This assumption 
limits the subblock size to 16 bits or higher (32 bits and 64 bits). 

Based on these assumptions we find the minimum achievable 
operating voltage. This has been highlighted in figure 9 and 10. 
Using FFT-Cache scheme the minimum operating voltage for L1 
and L2 caches is 375mv.  

 

22

23

24

25

26

27

28

0 5 10 15 20 25 30Pe
rc

en
ta

ge
 o

f C
ac

he
 n

on
fu

nc
tio

na
l p

ar
t 

Percentage of FDM area overhead

MGB = 1 MGB = 2

Increasing subblock size

 
(a) 4-way set associative L1 

10

15

20

25

30

35

40

0 5 10 15 20 25 30

Pe
rc

en
ta

ge
 o

f C
ac

he
 n

on
fu

nc
tio

na
l p

ar
t

Percentage of FDM area overhead

MGB = 1 MGB = 2 MGB = 3 MGB = 4

Increasing subblock size

 
(b) 8-way set associative L1 

Figure 11. L1 Design Space Exploration. 
 

Figure 11 and Figure 12 present the design space exploration 
of FFT-Cache for Vdd = 375mV for L1 and L2 caches, 
respectively. In these figures there are two parameters that vary: 
1) subblock size (from 4b to 32b) and 2) MGB (from 1 to half of 
associativity). Here, we try to find a design point which has the 
minimum sum of both FDM and nonfunctional part overheads.  
As it is evident in these figures, 4b subblock size points have the 
minimum nonfunctional part overhead, but they have the 
maximum FDM area overhead for all of MGB values. On the 
other side of this parameter, 32b subblock size pints have the 
minimum FDM area overhead, but the nonfunctional part of such 

points is more than other points. In Figure 11, if we compare the 
total overhead between design points of 8b and 16b, the 16b 
points have less overhead. So, for L1 cache we select design point 
with 16b subblock size and MGB=1 for associativity=4 and 
MGB=2 for associativity=8. By considering the same process for 
L2, as it obvious in Figure 12, we select the design point with 
either 8b or 16b subblock size and MGB=1 for associativity=4. 
We select the design point with 16b subblock size and MGB=2 
associativity=8. 

 

20

22

24

26

28

30

32

0 5 10 15 20 25 30Pe
rc

en
ta

ge
 o

f C
ac

he
 n

on
fu

nc
tio

na
l p

ar
t

Percentage of FDM area overhead

MGB = 1 MGB = 2

Increasing subblock size

 
(a) 4-way set associative L2 

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30

Pe
rc

en
ta

ge
 o

f C
ac

he
 n

on
fu

nc
tio

na
l p

ar
t

Percentage of FDM area overhead

MGB = 1 MGB = 2 MGB = 3 MGB = 4

Increasing subblock size

 
(b) 8-way set associative L2 

Figure 12. L2 Design Space Exploration  
 
By selecting the parameter values mentioned above at 

Vdd=375mV, the FDM overhead is 7% and 6.6% for L1 and L2 
respectively. To reach to such a low voltage level FFT-Cache has 
sacrificed less than 25% of L1 cache blocks and almost 0% of L1 
cache lines. For L2, FFT-Cache has sacrificed less than 20% of 
block and less than 4% of all L2 cache lines. In the next section 
we will study the impact of FFT-Cache on power and 
performance. 

4.4 Results 
A. Performance results 

In Figure 13 we report the impact of FFT-Cache on 
performance of SPEC2K benchmarks. The relative performance 
degradation in terms of IPC (instruction per cycle) is reported for 
a 64KB, 4 way set associative L1 FFT-Cache (Figure 13 (a)) and 
2MB, 8 way set associative L2 FFT-Cache (Figure 13 (b). we also 
report the performance degradation when FFT-Cache scheme is 
deployed simultaneously in L1 and L2 (Figure 13(c). we also 
report the breakdown of performance drop, either due to 



increasing in cache access delay (from 2 to 3 cycles for L1 and 20 
to 22 cycles for L2) or reduction in cache effective size. 

The results are acquired for the minimum voltage configuration 
(MGB=1, subblock size=16 for L1 and MGB=4, subblock 
size=16 for L2). On average, performance drops by 2.2% for L1 
cache and 1% for L2 cache. For L1 cache the additional delay of 
accessing cache is responsible for the majority of performance 
loss. The impact of additional delay on performance is lower for 
L2 cache mainly due to the large L2 cache access delay (2 cycles 
delay overhead compare to 20 cycles baseline access delay). The 
results also indicate that the performance degradation for both L1 
and L2 varies significantly across different benchmarks. The 
highest performance loss is observed in bzip2 and gzip 
benchmarks (more than 5% IPC loss). In fact these are high IPC 
benchmarks. In these benchmarks 1 cycle additional delay of L1 
cache access in addition to reduction of L1 cache effective size by 
20% is not tolerated.  In many benchmark almost no performance 
loss is reported. These benchmarks include facerec, galgel and 
lucas. Our investigation indicated that while in these benchmarks 
the miss rate increased slightly due to cache effective size 
reduction, the nature of out-of-order execution helped the 
benchmark to tolerate performance. 

For L2 cache the performance degradation is lower. The largest 
performance drop is 8% and is for ammp benchmark. Finally a 
3% performance loss is observed when FFT-Cache scheme is 
deployed in both L1 and L2 caches.   

 
(a)

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

am
mp    

    
    

ap
plu

    
    

    
    

ap
si 

    
    

    
    

 

art
    

    
    

    
    

  

bzip
2  

    
    

    
    

cra
fty

    
    

    
    

 

eo
n  

    
    

    
    

eq
ua

ke
    

    
    

fac
ere

c  
    

    
  

fm
a3

d    
    

    
  

galg
el 

    
    

    
 

gap
    

    
    

    
  

gcc
    

    
    

    
  

gzip
    

    
    

    
 

luca
s  

    
    

    
 

mcf 
    

    
    

    
 

mes
a  

    
    

    
 

mgrid
    

    
    

   

pars
er 

    
    

    
 

perl
bmk  

    
    

 

sw
im

    
    

    
   

tw
olf  

    
    

    
  

vo
rte

x  
    

    
    

vp
r   

    
    

    
    

wupwise
    

    
   

Ave
rag

e

L1 Performance degradation due to sacrifice line/blocks
L1 Performance degradation due to extra cycle

 
(b)

0.0%
1.0%
2.0%
3.0%
4.0%
5.0%
6.0%
7.0%
8.0%
9.0%

am
mp    

    
    

ap
plu

    
    

    
    

ap
si 

    
    

    
    

 

art
    

    
    

    
    

  

bzip
2  

    
    

    
    

cra
fty

    
    

    
    

 

eo
n  

    
    

    
    

eq
ua

ke
    

    
    

fac
ere

c  
    

    
  

fm
a3

d    
    

    
  

galg
el 

    
    

    
 

gap
    

    
    

    
  

gcc
    

    
    

    
  

gzip
    

    
    

    
 

luca
s  

    
    

    
 

mcf 
    

    
    

    
 

mes
a  

    
    

    
 

mgrid
    

    
    

   

pars
er 

    
    

    
 

perl
bmk  

    
    

 

sw
im

    
    

    
   

tw
olf  

    
    

    
  

vo
rte

x  
    

    
    

vp
r   

    
    

    
    

wupwise
    

    
   

Ave
rag

e

L2 Performance degradation due to sacrifice line/blocks
L2 Performance degradation due to extra cycle

 

(c)

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

am
mp    

    
    

ap
plu

    
    

    
    

ap
si 

    
    

    
    

 

art
    

    
    

    
    

  

bzip
2  

    
    

    
    

cra
fty

    
    

    
    

 

eo
n  

    
    

    
    

eq
ua

ke
    

    
    

fac
ere

c  
    

    
  

fm
a3

d    
    

    
  

galg
el 

    
    

    
 

gap
    

    
    

    
  

gcc
    

    
    

    
  

gzip
    

    
    

    
 

luca
s  

    
    

    
 

mcf 
    

    
    

    
 

mes
a  

    
    

    
 

mgrid
    

    
    

   

pars
er 

    
    

    
 

perl
bmk  

    
    

 

sw
im

    
    

    
   

tw
olf  

    
    

    
  

vo
rte

x  
    

    
    

vp
r   

    
    

    
    

wupwise
    

    
   

Ave
rag

e

L1-L2 Performance degradation due to sacrifice line/blocks
L1-L2 Performance degradation due to extra cycle

 
Figure 13.Performance degradation of applying FFT-Cache 
for (a) L1 (b) L2 and (c) L1 and L2 at the same time. 
B. Power Overhead Analysis 

Figure 14 summarizes the overhead of our scheme for both L1 
and L2 caches.  

We account for the overheads of using 8T SRAM cells  [10] for 
protecting the tag and defect map  arrays in low-power mode. To 
reduce the effect of leakage and dynamic power consumption of 
FDM in high power mode, we assume clock gating and power 
gating is applied in the FDM array. 

As evident in Figure 12, defect map area is major component 
of area overhead for both L1 and L2. Also, defect map is the 
major component of leakage and dynamic power in L1 and L2.  

The total area overhead for L1 is 13% and for L2 is less than 
10%.  

Based on our CACTI results in both nominal Vdd (660 mV) 
and Vdd-min (375 mV), we achieve 66% dynamic and 48% 
leakage power reduction in L1 cache and 80% dynamic and 42% 
leakage power reduction in L2 cache.  
 

 
Figure 14.Power and Area overheads of FFT-Cache. 

 
C. Comparison with Recent Methods 

In this section we present detailed comparison between our 
scheme and four state of the art works include Wilkerson et. al. 
[18], ZerehCache[31], 8T SRAM cell [10], and Ansari et. al. [32]. 
Table 2 summarizes this comparison based on the minimum 
achievable Vdd, area and power overheads for both L1 and L2 
caches, and normalized IPC. 
 

Table 2.Comparison of different Fault-Tolerant Schemes 

Scheme Min Vdd 
(mV) 

L1 Cache L2 Cache 
Norm. 
IPC 

Area 
over. 
(%) 

Power 
over. 
(%) 

Area 
over. 
(%) 

Power 
over. 
(%) 



6T cell 660 0 0 0 0 1.0 

ZerehCache [31] 430 16 15 8 12 0.97 

Wilkerson [18] 420 15 60 8 20 0.89 

Ansari [32] 420 14 10 5 4 0.95 

10T cell [10] 380 66 24 66 24 1.0 

FFT-Cache 375 13 14 10 8 0.95 

 
In this table, different techniques are sorted based on the 
minimum achievable Vdd-min, when targeting 99.9% yield. 
Overall, our proposed FFT-Cache achieves the lowest operating 
voltage (375mv) and the highest power reduction compare to all 
other techniques. The closest techniques to ours are 10T cell, 
Ansari and Wilkerson. 10T cell achieves almost similar power 
reduction to FFT-Cache but incurs a 66% area overhead. Ansari 
technique incurs slightly lower power and area overhead compare 
to FFT-Cache but it does not reduce operating voltage below 
420mw and thus achieves lower power reduction. Overall, the 
flexible defect map of FFT-Cache along with high configurability 
and high flexibility allow it to tolerate higher failure rate compare 
to other similar techniques. 

5. CONCLUSION 
In this work, we proposed a fault-tolerant cache architecture, 

FFT-Cache, which has a flexible defect map to configure its 
architecture to achieve significant reduction in power 
consumption through aggressive voltage scaling, while 
maintaining high error reliability. FFT-Cache uses a portion of 
faulty cache blocks as redundancy to tolerate other faulty cache 
lines and blocks. This can be accomplished by using either block-
level or line-level replication in the same set or between two or 
more sets. It has an efficient configuration algorithm that 
categorizes the cache lines based on degree of conflict between 
their blocks, to reduce the granularity of redundancy replacement. 
Using our approach, the operational voltage is reduced down to 
375mV in 90nm technology. This achieves 66% and 80% 
dynamic power reduction for L1 and L2 caches, respectively. It 
also reduces the leakage power of L1 and L2 caches by 48% and 
42%, respectively. This significant power saving comes with a 
small 5% performance loss and 13% area overhead. 

 

6. ACKNOWLEDGMENTS  
This research was partially supported by NSF Variability 

Expedition Grant Number CCF-1029783. 
 

7. REFERENCES 
[1] A. Agarwal, B. C. Paul, H. Mahmoodi, A. Datta, and K. Roy, 

“A process-tolerant cache architecture for improved yield in 
nanoscale technologies,” IEEE Transactions on 
VLSISystems, 13(1):27–38, Jan. 2005. 

[2] S. Mukhopadhyay, H. Mahmoodi, and K. Roy, “Modeling of 
failure probability and statistical design of SRAM array for 
yield enhancement in nanoscaled CMOS,” IEEE TCAD, vol. 
24, 2005. 

[3] W. Wong, C. Koh, et al., "VOSCH: Voltage scaled cache 
hierarchies," in Proc. ICCD 2007. 

[4] C. Zhang, F. Vahid, and W. Najjar, “A highly configurable 
cache for low energy embedded systems,” ACM TECS, vol. 
4, 2005. 

[5] T. Austin, E. Larson, and D. Ernst. Simplescalar: An 
infrastructure for computersystem modeling. IEEE 
Transactions on Computers, 35(2):59–67, Feb. 2002. 

[6] M. Guthaus, J. Ringenberg, et al., “A free, commercially 
representative embedded benchmark suite,” in Proc. IEEE 
WWC 2001. 

[7] N. Muralimanohar, R. Balasubramonian, and N.P. Jouppi, 
“CACTI 6.5,” HP Laboratories, Technical Report, 2009. 

[8] L. Chang, D. Fried, J. Hergenrother, J. Sleight, R. Dennard, 
R. Montoye,L. Sekaric, S. McNab, A. Topol, C. Adams, K. 
Guarini, and W. Haensch. Stablesram cell design for the 32 
nm node and beyond. Symposium on VLSI Technology, 
pages 128–129, June 2005. 

[9] G. Chen, D. Blaauw, T. Mudge, D. Sylvester, and N. Kim. 
Yield-drivennear-threshold sram design. In Proc. of the 2007 
International Conference on Computer Aided Design, pages 
660–666, Nov. 2007. 

[10] N. Verma and A. Chandrakasan. A 256 kb 65 nm 8t 
subthreshold sram employing sense-amplifier redundancy. 
IEEE Journal of Solid-State Circuits,43(1):141–149, Jan. 
2008. 

[11] F. Moradi, D. Wisland, S. Aunet, H. Mahmoodi, and T. Cao. 
65nmsub-threshold 11t-sram for ultra low voltage 
applications. Intl. Symposium on System-on-a-Chip, pages 
113–118, Sept. 2008. 

[12] J. P. Kulkarni, K. Kim, and K. Roy. A 160 mv, fully 
differential, robust Schmitt trigger based sub-threshold sram. 
In Proc. of the 2007 International Symposium on Low Power 
Electronics and Design, pages 171–176, 2007. 

[13] B. Calhoun and A. Chandrakasan. A 256kb sub-threshold 
sram in 65nm cmos. In Proc of IEEE International Solid-
State Circuits Conference, pages 2592–2601,Feb. 2006. 

[14] Y. Morita, H. Fujiwara, H. Noguchi, Y. Iguchi, K. Nii, H. 
Kawaguchi, andM. Yoshimoto. An area-conscious low-
voltage-oriented 8t-sram design under dvs environment. 
IEEE Symposium on VLSI Circuits, pages 256–257, 
June2007. 

[15] S. Ozdemir, D. Sinha, G. Memik, J. Adams, and H. Zhou. 
Yield-aware cache architectures. Proc. of the 39th Annual 
International Symposium on Microarchitecture, 0:15–25, 
2006. 

[16] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. C. Hoe. 
Multi-bit Error Tolerant Caches Using Two-Dimensional 
Error Coding. In Proc. of the 40thAnnual International 
Symposium on Microarchitecture, 2007. 

[17] P. Shirvani and E. McCluskey, “PADded cache: a new fault-
tolerance technique for cache memories,” in Proc. IEEE 
VTS, 1999. 

[18] C. Wilkerson, H. Gao, et al., “Trading off Cache Capacity for 
Reliability to Enable Low Voltage Operation,” in Proc. ISCA 
2008. 

[19] A. Sasan, H. Homayoun, et al., “A fault tolerant cache 
architecture for sub 500mV operation: resizable data 
composer cache (RDC-cache),” in Proc. CASES 2009. 

[20] A. Sasan, H. Homayoun, et al., “Inquisitive Defect Cache: A 
Means of Combating Manufacturing Induced Process 
Variation” IEEE Transactions on VLSI Systems, 18(12):1-13, 
Aug. 2010. 



[21] Z. Chishti, A. Alameldeen, et al., “Improving cache lifetime 
reliability at ultra-low voltages”, in Proc. MICRO 2009. 

[22] A. Chakraborty, H. Homayoun, et al., “E < MC2: Less 
Energy through Multi-Copy Cache,” in Proc CASES 2010. 

[23] C. Wilkerson, A.R. Alameldeen, et al., "Reducing Cache 
Power with Low-Cost, Multi-Bit Error-Correcting Codes,“ in 
ProcISCA-37, June 2010. 

[24] D. H. Yoon and M. Erez, “Memory Mapped ECC: Low-Cost 
Error Protection for Last Level Caches,” in Proc ISCA 2009. 

[25] D. H. Yoon and M. Erez, “Flexible Cache Error Protection 
using an ECC FIFO,” In Proc. the Int’l Conf. High 
Performance Computing, Networking, Storage, and Analysis 
(SC’09) 2009. 

[26] A. Agarwal, B. C. Paul, et al., “A process-tolerant cache 
architecture for improved yield in nanoscale Technologies,” 
IEEE Transactions on VLSI Sys., 13(1):27–38, Jan 2005. 

[27] D. Roberts, N. S. Kim, and T. Mudge. “On-chip cache device 
scaling limits and effective fault repair techniques in future 

nanoscale technology,” In Proc 10th DSD, pp. 570–578. 
2007. 

[28] C. K. Koh, W. F. Wong, Y. Chen, and H. Li., “Tolerating 
process variations in large, set associative caches: The buddy 
cache,” ACM Trans. on Arch. and Code Opt., 6(2):1–34, Jun 
2009. 

[29] D. Roberts, N. S. Kim, and T. Mudge. On-chip cache device 
scaling limits and effective fault repair techniques in future 
nanoscale technology. In 10th DSD, pp. 570–578. 2007. 

[30] C. K. Koh, W. F. Wong, Y. Chen, and H. Li., “The Salvage 
Cache: A fault-tolerant cache architecture for next-generation 
memory technologies,” in Proc. ICCD 2009. 

[31] A. Ansari, S. Gupta, et al., “ZerehCache: Armoring cache 
architectures in high defect density technologies,” in Proc. 
MICRO-42, pp. 100-110, Dec 2009. 

[32] A. Ansari, S. Feng, et al., “Enabling ultra low voltage system 
operation by tolerating on-chip cache failures,” in Proc. 
ISLPED, pp. 307-310, Aug 2009. 
 

 
 
 
 
 
 

http://portal.acm.org/citation.cfm?id=1594233.1594309&coll=DL&dl=GUIDE&CFID=5942835&CFTOKEN=78840085�
http://portal.acm.org/citation.cfm?id=1594233.1594309&coll=DL&dl=GUIDE&CFID=5942835&CFTOKEN=78840085�

	1. INTRODUCTION
	2. RELATED WORK
	3. PROPOSED ARCHITECTURE
	3.1 FFT-Cache Organization
	3.2 FFT-Cache Configuration
	3.3 Architecture Details
	3.4 Hardware implementation

	4. Evaluation
	4.1 Methodology
	4.2 Probability of Cache Failure 
	4.3 Design Space Exploration
	4.4 Results

	5. CONCLUSION
	6. ACKNOWLEDGMENTS 
	7. REFERENCES

