C Center for Embedded Computer Systems
S University of California, Irvine

Improving the Accuracy of High Performance BLAS
Implementations using Adaptive Blocked Algorithms

Matthew Badin, Paolo D'Alberto,
Lubomir Bic, Michael Dillencourt, Alexandru Nicolau

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-2620, USA

mbadin@uci.edu

CECS Technical Report 11-05
April 15, 2011

Improving the Accuracy of High Performance
BLAS Implementations using Adaptive
Blocked Algorithms

Matthew Badin Paolo D’Alberto Lubomir Bic
Michael Dillencourt Alexandru Nicolau

April 2011

Abstract

Matrix multiply is ubiquitous in scientific computing. Consider-
able effort has been spent on improving its performance. Once meth-
ods that make efficient use of the processor have been exhausted, meth-
ods that use less operations than the canonical matrix multiply must
be explored. Combining the two methods yields a hybrid matrix multi-
ply algorithm. Hybrid matrix multiply algorithms tend to be less accu-
rate than the canonical matrix multiply implementation, leaving room
for improvement. There are well-known techniques for improving ac-
curacy, but they tend to be slow and it is not immediately obvious
how best to apply them to hybrid algorithms without lowering perfor-
mance. Previous attempts have focused on the bottom of the hybrid
matrix multiply algorithm, modifying the high-performance matrix
multiply implementation. In contrast, the top-down approach pre-
sented here does not require the modification of the high-performance
matrix multiply implementation at the bottom, nor does it require
modification of the fast asymptotic matrix multiply algorithm at the
top. The three-level hybrid algorithm presented here not only has up
to 10% better performance than the fastest high-performance matrix
multiply, but is also more accurate.

1 Introduction

Matrix multiplication is a fundamental operation. It is used in everything
from simulations[15] to implementation of all other level 3 Basic Linear Al-
gebra Subroutines (BLAS) [13]. Accordingly, there has been high demand to
for fast matrix multiply.

High performance implementations have reached their limit in terms of
efficient use of current processor architecture [4, 8]. This has prompted
researchers to introduce hybrid algorithms that combine two different ap-
proaches. [2]. At the top is a fast asymptotic algorithm, a recursive algo-
rithm matrix for multiplication that reduces the number of recursive calls to
multiply submatrices by increasing the number of additions [12, 14]. At the
leaves, a highly tuned high-performance matrix multiplication implementa-
tion such as [4] or [8] is used. Unfortunately these two-level hybrid approaches
have worse accuracy than simply using a high-performance matrix multiply
implementation.

There are a number of ways of improving the accuracy of matrix multiply
and consequently the hybrid matrix multiply algorithms, but they tend to
have poor performance and are difficult to adapt to hybrid matrix multiply
algorithms. Pairwise summation [5] is a well-known technique for improving
the forward error bound of matrix multiply. It reduces the forward error
from O(n) to O(logyn) by distributing the additions over a balanced tree.
Adapting pairwise summation to hybrid algorithms has been difficult. Pre-
vious attempts have focused on a bottom up approach [1], applied at the
kernel level [13]. The bottom up approach has two main drawbacks. First, it
requires the modification of a highly tuned matrix multiply implementation
[4]. Second, the improvement in accuracy comes at a direct cost in perfor-
mance. This is because the additional temporary space required for each
additional level of pairwise summation and the additional instructions nec-
essary to implement pairwise summation reduce locality and hence increase
the number of cache misses.

We introduce a different way of applying pairwise summation to matrix
multiply. We apply recursive matrix multiply, at the outer product instead
of the inner product. Our method does not require any additional tempo-
rary space and does not require the modification of the underlying matrix
multiply kernel implementation. We show how our algorithm can be applied
to traditional two level hybrid matrix multiply algorithms. This not only
improves the overall accuracy of the hybrid algorithm, but also achieves bet-

ter accuracy than high-performance matrix multiply implementations such
as Gotol4], while still improving performance by up to 10% over just using
the underlying high-performance implementation.

The rest of this paper is organized as follows. Section 2 motivates and
introduces our three-level hybrid approach. In Section 3 we discuss various
ways in which the inner product of a matrix multiply kernel can be imple-
mented and how it affects accuracy. We show that the bound on the relative
error in Goto matrix multiply [4] is effectively O(y/n). We then present a
brief overview of pairwise summation (Section 4). The fact that pairwise
summation has a relative error of O(log,n) partially explains why our ac-
curacy is better than that of the Goto implementation. In Section 5, we
describe how best to adapt pairwise summation to matrix multiply so that
it can be easily adapted to traditional two-level hybrid matrix multiply al-
gorithms, yielding recursive matrix multiply. We then develop the forward
error bound for our adaptation, which shows that the placement of recursive
matrix multiply on top of the high-performance matrix multiply implemen-
tation and rather than inside it is the better approach. Finally, we present
experimental results (Section 6). Our results demonstrate that our three-
level hybrid approach using Strassen’s algorithm [12] at the top offers better
accuracy than Strassen’s hybrid algorithm alone while still offering improved
performance over a typical high-performance implementation. When we use
Winograd’s variant[14] of Strassen’s method at the top, the resulting algo-
rithm is faster than the Goto general matrix multiply implementation, and
it is also more accurate when the input is positive.

2 Three level Hybrid

High performance matrix multiply implementations such as Atlas[13], Intel
MKL[8] and Goto[4] attempt to maximize the utilization of the processor.
These implementations have largely reached their limit. As a result, two-level
hybrid matrix have been heavily explored as a mean of further improving
the performance of matrix multiply [2, 6, 3]. These algorithms combine a
fast asymptotic algorithm for matrix multiplication at the top levels with
high performance matrix multiply kernels at the leaves. A major problem
with this approach is that fast asymptotic matrix multiply algorithms trade
off fewer matrix multiplications against more matrix additions. Since addi-
tion is a fundamental source of rounding error, this trade off increases the

error, even if only a few applications of the fast asymptotic matrix multiply
algorithm are used[5].

Rounding errors in additions can be reduced using accurate summation
algorithms, such as distillation [9] and pairwise summation [5]. Since accurate
summation algorithms can be computationally expensive, it is important to
decide where in the hybrid algorithm they are best applied. One possibility is
to apply an accurate summation algorithm within the fast asymptotic matrix
multiply algorithm, replacing all ordinary additions with the accurate sum-
mation algorithm. This fails to have any affect on the overall accuracy of the
hybrid matrix multiply algorithm because even small errors are amplified by
the multiplication inside the fast asymptotic matrix multiply algorithm [5].
A second possibility is to deploy the accurate summation algorithm inside the
matrix multiplication kernel itself, improving the accuracy of the leaf com-
putations of the hybrid matrix multiply algorithm. This approach degrades
performance due to cache constraints. Since there must be enough cache for
both the accurate summation algorithm and the high-performance matrix
multiply algorithm, the accurate summation algorithm can only be used in
a very limited manner before it impacts performance[l]. This is discussed
further in Section 6.

If we want to avoid the above difficulties, then we must deploy the accu-
rate summation algorithm outside of either the matrix multiply kernel or the
fast asymptotic matrix multiply algorithm. This will result in a three level
hybrid matrix multiply algorithm. There are three possible places where
the accurate summation algorithm may be placed: (1) beneath the high-
performance kernel, (2) above the fast asymptotic matrix multiply algorithm,
or (3) between the two. The first option is not a reasonable choice, because
placing the accurate summation algorithm beneath the high performance
kernel would completely negate the benefit of using a high performance ker-
nel. The second option has a similar disadvantage: if we deploy the accurate
summation algorithm above the fast asymptotic matrix multiply, then we
are partitioning the problem at the top and running the fast asymptotic ma-
trix multiplication on smaller problems. This significantly diminishes the
performance advantage gained by using fast asymptotic algorithm, defeating
the purpose of using it. Thus we are left with the third option, placing the
accurate summation algorithm between the fast asymptotic matrix multiply
algorithm at the top and the high performance matrix multiply-kernel at the
bottom.

We expand upon this notion further in Sections 4 and 6, below. To keep

4

the paper concise, we focus only on one family of fast asymptotic matrix
multiply algorithms, namely Strassen’s algorithm [12] and Winograd’s vari-
ant of Strassen’s algorithm[14]. But first we need to discuss the source of
rounding errors in matrix multiply implementations and, in particular, high
performance matrix multiply implementations. Then we can discuss how to
reduce this error in the context of hybrid matrix multiply algorithms.

3 Inner Product Variations

There are many different approaches to computing matrix products and to
computing individual inner products. While some of these choices are largely
dictated by architecture and performance considerations [13, 4], they impact
the overall accuracy of the computation. This becomes important when deal-
ing with high performance matrix multiply kernels. It is possible for the high
performance kernel to be more accurate than the canonical matrix multiply
algorithm, which improves the accuracy of the overall hybrid algorithm.

Tiling is a common strategy within high performance matrix multiply
kernels. The primary goal of tiling is to maximize reuse of the data in the
cache and hence improve performance. Subtleties in how the individual tiles
are added to the whole greatly impact the forward error bound on the inner
product [5]. The difference is sometimes referred to as preload vs. post-
load [1]. We adopt this terminology in this paper. The following discussion
will demonstrate that in practice these differences allow some high perfor-
mance matrix multiply kernels to achieve an error bound that is effectively
O(y/n) for common problem sizes [1, 4]. We will argue (in Section 5, below)
that not only does our three level hybrid algorithm beat this bound, it con-
tinues to do so even when using a fast asymptotic matrix multiply algorithm
that is less accurate than the canonical matrix multiply [5].

3.1 Preload and Postload

Preload and postload are best discussed in the context of a specific tiling
strategy. Consider the code shown in Figure 1, which multiplies the M x
K matrix A by the K x N matrix B to produce the M x N matrix C.
The matrices are stored in row-major order. The tiles are square, of size
bSize x bSize. For simplicity, we assume that the matrix dimensions are all
even multiples of the tile size. The strategy in Figure 1 is to compute C'

ALGORITHM: Tiled Matrix Multiply
procedure tiled(A, B, C, M, K, N,bSize)
for (1 =0,i < M, i+ = bSize)
for (j =0,7 < N,j+ = bSize)
for (k =0,k < K, k+ = bSize)
AOffset =ix K + k
BOffset = kx N + j
COffset =ix N + j
multiply (A+AOffset, K, B+ BOffset, N,
C+COffset, N,bSize, bSize, bSize)
end for
end for
end for
end procedure

Figure 1: Tiled Matrix Multiply

ALGORITHM: Direct Matrix Multiply (Preload)
procedure multiply(A, ldA, B,ldB, C,1dC, M, K, N)
begin
for (i =0,i < M,i++)
for (j =0,< N,j++)
for (k=0,k < K, k++)
Cli % 1dC + j| += Ali x ldA + k] * Bk x ldB + j]
end for
end for
end for
end procedure

Figure 2: Preload Matrix Multiply

ALGORITHM: Direct Matrix Multiply (Postload)
procedure multiply(A, ldA, B,ldB,C,ldC, M, K, N)
begin
for (1 =0,i < M,i++)
for (j =0,< N,j++)
sum = 0
for (k=0,k < K, k++)
sum += Ali x l[dA + k] « B[k x ldB + j]
end for
Cli *1dC + j| += sum
end for
end for
end procedure

Figure 3: Postload Matrix Multiply

one column of tiles at a time, always keeping in memory a bSize x k strip of
A along with the tile of C' currently being computed. The code repeatedly
multiplies a tile of A by a tile of B and adds the result to a tile of C'. Each
partial tile computation is performed by calling the procedure

multiply(A,ldA, B,ldB,C,ldC,M,K,N)

where A,B, and C are the addresses of the start of the tiles; the tiles are of
sizes M x K, K x N, and M x N respectively; and IdA, ldB, and [ldC are the
strides (i.e., the row lengths) of the three matrices.

The error of the algorithm shown in Figure 1 depends on how the inner
kernel (i.e., the multiply() procedure) is implemented. If the implemen-
tation is the preload code shown in Figure 2, the summation of the inner
product is recursive (standard) summation of K terms. In contrast, the
postload code shown in Figure 3 computes the contribution of the tile to
the inner product in a temporary variable and adds this sum to the inner
product. When the code of Figures 1 and 3 is combined, the net effect is to
compute the dot product as the sum of K/bSize partial sums, each of which
is the sum of bSize terms. This has a significant effect on the forward error
bound, as will be discussed in the next subsection.

3.2 Forward Error Bound

In order to do error analysis of the tiling strategies presented in the previous
section, a model must be used to account for the rounding errors, particularly
the rounding errors in addition. We use the standard floating point model for
estimating error bounds presented in [5], as it widely used and holds for TEEE
standard arithmetic. In this model, the result of an individual floating point
operations is fl(z+y) = (z+y)(146), where |§| < wand § is the relative error
of an individual operation, u is the “unit in last place” (commonly known
as ulp), and fI(-) is the value contained inside the parenthesis rounded to
machine precision. This means the previous statement says that the real
answer, rounded to machine precision, is equal to the real answer plus some
small relative error, less than or equal to one ulp. Using this model, the
following forward error bound for the inner product of matrix multiply is
derived in [5]:

"y = fIETY < Y iyl =l Ty, (3.1)

=1

where v, = nu/(1 — nu). If the inner product is broken up into n/k strips,
each containing & summands, the forward error bound becomes:

50— &2l < sl (32)

Here, s, is the true value of the inner product, §,, is the computed value, and
k is equal to bSize. This means that bSize, which is usually chosen based
upon the architecture of the machine, has a dramatic effect on the forward
error bound. Obviously, by allowing k = y/n the forward error bound can be
further improved, however, this is not practical for most problem sizes as k
is usually quite small as it is limited by the size of the cache. An interesting
side effect of (3.2) is when k = ¢y/n, as proven in [1]:

Vvt =1 = Vev+tyvn-1) = V(c+bva-1)- (3.3)

As illustrated by Castaldo, Whaley and Chronopoulos|[1], when & = 60, you
achieve roughly the same bound for n € [900,14400] as 60 = 2v/900 and
60 = %\/ 14400. This means for most practical problem sizes, you end up
with a forward error bound that is effectively O(y/n) in practice. This effect
is illustrated by comparing Goto BLAS [4] to the canonical O(n?®) matrix

8

multiply algorithm in figure 5. In the next section we will describe how it
is possible to achieve a lower bound by further changing the order in which
addition is carried out. This will give us a mechanism, that when combined
with a traditionally less accurate two level hybrid matrix multiply algorithm,
will allow us to produce an algorithm more accurate and faster than just the
high performance matrix multiply algorithm alone, which we demonstrate in
section 5.

4 Pairwise Summation

As discussed in the previous section, if the addition is broken up, the longest
path from the summand to the total is shortened, it is possible to reduce
the error. Where standard summation is simply linear, pairwise summation
breaks apart the addition into a balanced tree, where the leaves are the
summands and the root is the total. Pairwise summation is usually defined
as a special case of recursive (standard) summation and this time will be no
different. Recursive summation is traditionally defined in terms of a set of
summands, by removing two elements from the set, adding them together,
and placing the new sum back into the set. This recursion repeats, hence the
name, until only one element remains, the final sum. In contrast, pairwise
summation adds adjacent elements together creating new summands, then
again adds adjacent summands together. The process of adding adjacent
summands repeats until a final sum is reached. A recursive algorithm to
illustrate pairwise summation can be found in Figure 4, where n is the number
of elements and the elements are numbered x; to x,. The following forward
error bound for pairwise summation is derived in [5]:

|8n—3/;z| S 710g2n2|xi| (41)
=1

In the next section we will describe some of the pitfalls of applying pair-
wise summation directly to the inner product along with describing a better
method of adapting pairwise summation to matrix multiplication, at the
outer product level.

ALGORITHM: Pairwise Summation
procedure pwsum(n, x1, ..., T,)
begin
if(n == 1)
return x;
else if(n == 2)
return x; + 2o
else
k=|n-=2]
return pwsum(k, zq, ...,) + pwsum(n — k, Tpyq, ..., Tp)
end if
end procedure

Figure 4: Pairwise Summation

5 Direct Recursive Matrix Multiply

As suggested by Higham, the forward error bound can be greatly improved
by applying pairwise summation to the entire inner product, producing a
forward relative error bound of Yieg, n1+1|2|" y| [5]. However, the full im-
plementation of this matrix multiplication variation is not practical as the
performance tends to be abysmal. Previous attempts to apply pairwise sum-
mation to dense matrix multiply kernels have therefore focused on a bottom
up approach, attempting to increase the accuracy of the individual inner
product (or products as tiling is usually used) while using as little additional
temporary space as possible [1]. This is done by applying pairwise summa-
tion at the tile level and only applying a few levels, usually only three. The
amount of temporary space required for this approach is a multiple of the
tile size and grows linearly with the number of levels of pairwise summation
that are applied.

This approach has two main drawbacks. The first is that performance suf-
fers as the levels of pairwise summation increase, because as more temporary
space is required to store the temporary sums. This temporary space reduces
the amount of space available for the actual matrix multiply kernel, reducing
matrix reuse and harming performance. This effect can be mitigated by only
applying a few levels of pairwise summation, usually only three [1]. But this
reduces the accuracy, partially defeating the purpose of applying pairwise

10

Absolute Max Error

Goto v Preload
140E-D02

1.20E-002

100E-002

8.00E-003
=Gt

== Canonical

6.00E-003

Ahsolute Error

4.00E-003

2.00E-003

et

a 1000 2000 3000 4000 5000 BODO FOOO BOOO

0.00E+000

Problem Size

Figure 5: Goto Absolute Error

summation. The second drawback is that this implementation must be done
at the kernel level of the high performance matrix multiply implementation,
increasing the complexity of the implementation. This complexity issue is
compounded in implementations such as Goto which have a different kernel
for each specific architecture [4].

There is a much simpler way of adapting pairwise summation to matrix
multiply via a top down approach, directly using the definition of matrix
multiply. Given matrices

Asq Aso By1 Bao
Cin Cip
C= ’ ’
{ Co1 Cap

the entries of C are given by

Cip=A11xBi1+ Aia X Bay,
Cio=A11 X Big+ A2 X By,

11

Co1 = A1 X B11+ Aga X Bay,
Coo = As1 X Big+ Ago X Byp.

Each submatrix of C' can be computed using the inner products shown above.
If we further decompose the submatrices of A, B, and C' into submatrices,
this process can be repeated, yielding a balanced tree computation. This
algorithm is called recursive matrix multiply.

In the next subsection we will discuss the effect of computing a matrix
product by running direct recursion until the submatrices are down to a cer-
tain size, and then passing these leaves to a high performance matrix multiply
implementation. We compare this top-down approach to pairwise summa-
tion, with a bottom-up approach implemented within the high performance
matrix multiply implementation.

5.1 Forward Error Bound

Using the same standard model as described in Section 5.1, let k£ be the leaf
size at which direct recursion is terminated. From (3.1), we know that the
forward error in the computation of each leaf is bounded above by

k
e Y lwayil = w7y,

=1

Since there are n/k leaves, it follows from (4.1) that the forward error of
adding up the leaves after they are computed satisfies

|5n = 5n] < Aiogy (211l [yl
Combining the two bounds yields
[0 = Sl < [l lyl(1+ 8)" (1 +) e, (5.1)
which when simplified becomes
|50 = 5ul < Vnogy(zy14m 2] yl- (5.2)

In contrast, it is shown in [1] that the forward error in a bottom-up approach
with three levels of pairwise summation and a leaf size of k satisfies:

|sp — S| < ’Yk+2(\/%_1)’x‘T|3/| (5.3)

12

Increasing the number of levels degrades performance significantly and marginally
improves the forward error bound, but for any fixed number of levels the er-
ror bound is still asymptotically worse than log(n/k). Hence our approach
using direct recursion yields a smaller forward error bound than a bottom
up approach applying pairwise summation.

When the leaf size k is fixed, direct recursion is more accurate for large
problems than Goto BLAS [4], since the bound on the relative error in the
former grows in proportion to log, n, while the bound on the relative error
in the latter grows in proportion to y/n.

It can be seen from (5.2) that the leaf size dominates the relative error
when recursive matrix multiply is placed in the middle. This means that
if instead of fixing the leaf size we fix the number of levels of recursion,
accuracy will be degraded. We will see in the results section that for the
largest problem sizes, if we fix the number of levels of recursion and let the
leaf size vary, the error approaches the error of not inserting the intermediate
incursion at all. Empirically, the crossover point appears to be about 8k, as
seen in Figure 7 and Table 1. This is discussed in more detail in Section 6.

Our approach allows a large problem size to have an error very close to
that of a much smaller problem size, when k is fixed. By placing direct
recursive matrix multiply in the middle of the traditional hybrid matrix mul-
tiply implementation, we offer a path between the fast asymptotic matrix
multiply algorithm at the top and the high performance matrix multiply im-
plementation at the bottom without greatly increasing the forward error in
between.

6 Results

The high performance matrix multiply implementation chosen to illustrate
the effects of postload was Goto [4]. Atlas [13] was also considered, as was
Intel MKL [8], however, Atlas was found to have worse performance and Intel
MKL had nearly identical performance to that of Goto.

6.1 Testing Methodology

Unless otherwise stated, the matrices tested were square matrices. The ref-
erence was generated with Goto BLAS [4], using double precision general
matrix multiply (dgemm). Originally, the tests were checked against double

13

Strassen Performance

Goto v 2-Lewvel Hybrid v 3-L evel Hybrid
30

) /
20

= Ctrassen
=2y SR, 2x DR
Goto

Speed (GFlops)
)

o
0 1000 2000 3000 4000 65000 6000 TOOO 8000 9000

Froblem Size

Figure 6: Strassen Three Level Hybrid Performance

precision where the summation of the individual dot products was done us-
ing doubly compensated summation [11], however, double precision appears
to be sufficient when the test are conducted in single precision and has the
added benefit of reducing the time to generate the reference for a large num-
ber of tests. The input for all tests was a uniform distribution between [0,1],
generated using GNU R, the seeds provided by random.org. The machine
used was a Q9450 Penryn Intel Quad processor running at 3GHz on a 64-bit
Kubuntu 10.04 desktop installation. The metrics used to compare various
implementations, in terms of accuracy, are those of relative error and abso-
lute error [5]. Though several other metrics exist [16, 10, 1], they do not
appear to be widely used. For performance, we compare implementations
by how quickly each algorithm can perform the essential O(n?) operations,
whether or not the implementation actually does them, measured in flops
(floating point operations per second). The high performance matrix multi-
ply implementation used was Goto [4] where not only the implementation,
but also the entire hybrid matrix multiply algorithm, are single threaded.
Implementation details and the impact of multi-threading on accuracy and
performance will be explored in future works. The implementation used as
the performance reference for Winograd’s variant in Table 3 is described in

[2].

14

Strassen and Variants

Max Absolute Error
0.012000

0.010000

0008000

S GEN

0006000 =2k R
20 SR, 24 DR

Absolute Errar

0.004000

0.002000

0.000000

1] 1000 2000 3000 4000 5000 5000 7000 8000 9000

Problem Size

Figure 7: Strassen Three Level Hybrid Accuracy

6.2 Measuring Error

High performance implementations such as Goto have traditionally enjoyed
better accuracy than the canonical matrix multiply, as illustrated in Figure
5, which compares the absolute max error of the standard matrix multiply as
compared to Goto’s single precision general matrix multiply (sgemm), both
computed in single precision. Without this attribute of additional accuracy,
hybrid matrix multiply algorithms would not be useful as the error of the
asymptotically fast matrix multiply algorithm would be too large. In practice
though, the additional accuracy offered by high performance implementations
such as Goto makes hybrid algorithms possible[2]. The additional accuracy
provided by Goto however has been traditionally attributed to a feature of
the architecture, namely, 80 bit floating point registers that are available
on Intel x86 processors. The idea is fairly simple, if the high performance
matrix multiply kernel is effectively maximizing reuse of matrix A, B or C, or
any combination of the three, in doing so, it is preventing context switching.
Traditionally this is done through maximizing the reuse of whatever is stored
in the L1 cache and by breaking the data into tiles that can be efficiently
moved and reused in the L1 cache [13]. In addition to the previous idea,
Goto’s data strategy attempts to further reduce context switches explicitly
by reducing translation look-aside buffer (TLB) misses by changing how the

15

data is accessed [4]. Both of these strategies were developed for performance
reasons, as context switches are generally expensive. However, by reducing
the context switches, if 80 bit extended precision floating point registers are
used then additional accuracy is achieved as the summation of individual
dot products of the matrix multiply have additional bits to remember what
would have been lost to rounding error if only 64 bits or 32 bits were used, for
double and single precision respectively. This 80 bit register is not rounded
to 64 or 32 bits until it is written back to memory, such is the case when
a context switch occurs. Therefore, by improving performance, by reducing
context switches, accuracy is also improved.

Unfortunately the effect of extended precision registers has not been true
for several years, at least in modern implementations, and most importantly,
it is not true in the current version of Goto BLAS [4]. The problem dates
back to the introduction of the SSE instruction set, which mapped MMX reg-
isters to FP registers, which are 80 bit registers on Intel processors[7]. When
the SSE2 SIMD instruction set was introduced (single instruction, multiple
data), the MMX registers were replaced with XMM registers, which are 128
bit registers [7]. These register operate on packed double precision or packed
single precision data, two double precision values or four single precision val-
ues, respectively. These registers no longer offer additional accuracy. This
was tested empirically by comparing the results of vector dot products pro-
duced by the O(n3) matrix multiply algorithm in single precision against that
produced using inline assembly using the SSE2 instruction set (four vectors
each), the results were identical. By inspecting Goto’s implementation for
the Penryn processor, as the inner matrix multiply kernel in Goto is tailored
to specific processors, it is easy to see that XMM registers are used and not
MMX. This means that the error observed in Figure 5 is entirely because
of the preload affect described in Section 3 and not something specific to
the architecture. It may appear in Figure 5 that Goto’s implementation is
logarithmic, however as discussed in Section 3, Goto’s implementation is ef-
fectively square root[1]. As can be clearly seen from the graph, a simple tiling
strategy combined with postload matrix multiply offers a very low error for
practical problem sizes.

6.3 Strassen’s Algorithm

Before discussing the data further, it is important to emphasize a key pur-
pose of hybrid algorithms and ultimately the limitations of matrix multiply

16

and the machines the algorithms run on, namely, the reason for the existence
of hybrid matrix multiply algorithms. Goto’s implementation of matrix mul-
tiply and his resulting BLAS implementation is widely considered to be the
fastest implementation of the canonical matrix multiply [4]. This is achieved
through a key insight into current x86 processor architecture, resulting in a
highly efficient implementation. This means, that in order to improve per-
formance any further, a asymptotically fast matrix multiply implementation
must be used, something that reduces the total number of multiplications.
Though this detail may seem minor, it can be quickly illustrated in Figure
6 and 7. Figure 6 is the overall speed of the implementations, as described
in Subsection 1 of Section 6, comparing Goto’s matrix multiply, a standard
hybrid implementation of Strassen’s algorithm on top of Goto’s matrix mul-
tiply which applies Strassen’s algorithm until a leaf size of 1k or less before
switching to Goto, and that of our adaptation by placing direct recursive
matrix multiply in between. To be explicit, our algorithm runs Strassen’s al-
gorithm twice, unlike the standard hybrid implementation which is variable
with a fixed leaf of 1k or less, we then run direct recursive matrix multiply
twice before finally switching to a high performance matrix multiply imple-
mentation. This means the leaf size passed to the high performance matrix
multiply implementation is not fixed, that the levels of recursion are, the con-
sequences of which are discussed in Section 5, Subsection 1. By comparing
the implementations it is evident that our algorithm is faster than the high
performance matrix multiply implementation, but not as fast as a standard
Strassen hybrid. By also looking at Figure 7, which compares the algorithms
in terms of max absolute error, it is clear that our algorithm is more ac-
curate than the standard Strassen hybrid matrix multiply and that neither
are more accurate than just using Goto’s matrix multiply. The importance
of the discussion at the beginning of the subsection now becomes apparent,
namely, though both implementations are not as accurate as the high perfor-
mance matrix multiply implementation by itself, a hybrid matrix multiply
algorithm is the only way to improve performance past the high performance
canonical matrix multiply implementations. This means that if one wants
an algorithm that is faster than the fastest implementation of the canonical
matrix multiply, they must use a hybrid matrix multiply algorithm, however,
if they want more accuracy than what is offered by a standard hybrid matrix
multiply algorithm and still better performance than the canonical high per-
formance matrix multiply implementation, our algorithm offers a solution.
Fortunately this can be improved further by taking advantage of a peculiar-

17

ity of certain asymptotically fast matrix multiply algorithms, in particular,
that Winograd’s variant is more accurate in practice than Strassen’s when
the input matrices are positive, as we will see in the next subsection.

6.4 Winograd’s Algorithm

Winograd luckily has an interesting property in that it does not have “true”
subtraction, which means that when the input is positive, it is actually more
accurate than Strassn’s algorithm [2]. This is easily demonstrated in Table
1 where the first column represents the problem size and the rows are the
accuracy of individual algorithms for that problem size. When Winograd is
combined with a fixed two levels of direct recursive matrix multiply, the error
grows linearly with the size of the leaf, as described in Section 5.1, which can
be clearly seen in Table 1. This means two applications of direct recursive
matrix multiply offers better accuracy up until the size of the leaf overwhelms
the benefit of two levels of direct recursive matrix multiply, resulting in no
benefit in terms of accuracy at around 8k. Fortunately we already know this
can be further improved by using a fixed leaf size and variable levels of direct
recursive matrix multiply. By drawing attention to Table 1 we can clearly
see the benefit of a fixed leaf of 256. Instead of the error growing linearly in
terms of the leaf size, the leaf error becomes a constant and instead the error
grows linearly in terms of the level of direct recursive matrix multiply, which
grows slower, as discussed in Section 5. Table 2 contains the absolute error
using a slightly larger fixed leaf size of 320. Though not as accurate as a fixed
leaf size of 256, it has the added benefit of being faster with this particular
high performance matrix multiply kernel implementation, as seen in Table
3. By comparing both Tables 2 and 3, a fixed leaf size of 320 appears to
be a good choice in terms of accuracy and speed and that a larger leaf size
would not be desirable. The reason for this is though performance may vary
by architecture and implementation, accuracy largely does not. The only
benefit of a different leaf size would be better accuracy if the leaf was smaller
and if the high performance implementation offered it, better performance for
a smaller leaf size. Unfortunately Goto BLAS [4] appears to be implemented
with larger problem sizes in mind. This is revealed in Table 3 where Goto’s
implementation appears to plateau starting at a problem size of 2k, far too
large to be used as a leaf computation when accuracy is important.

18

Winograd Fixed Leaf Variants
Size | SGEMM | 2xWino | 2xWino2xDR | WinoDR256
1024 | 0.000331 | 0.000225 0.000108 0.000136
2048 | 0.000509 | 0.000602 0.000228 0.000231
4096 | 0.000733 | 0.000848 0.000562 0.000450
8192 | 0.001194 | 0.001413 0.001415 0.000834
Table 1: Winograd Hybrids, Absolute Error
Winograd Fixed Leaf Variants
Size | SGEMM | 2xWino | 2xWino2xDR | WinoDR320
1024 | 0.000331 | 0.000225 0.000108 0.000216
2048 | 0.000509 | 0.000602 0.000228 0.000334
4096 | 0.000733 | 0.000848 0.000562 0.000579
8192 | 0.001194 | 0.001413 0.001415 0.001001

Table 2: Winograd Hybrids, Absolute Error

Winograd Fixed Leaf Variants
Algorithm 1024 | 2048 | 4096
SGEMM 18.83 | 22.64 | 22.99
Wino 21.83 | 23.66 | 26.15
2xWino 2xDR | 14.31 | 18.47 | 22.71
2xWino 256DR | 17.89 | 18.57 | 19.80
2xWino 320DR | 20.45 | 21.07 | 22.77

9024
23.30
29.49
25.71
20.42
24.07

Table 3: Winograd Hybrids, Speed in GFlops

7 Conclusion

In this paper we have presented what we believe to be the first three level
hybrid matrix multiply algorithm. We have demonstrated not only the use-
fulness of a three level hybrid matrix multiply algorithm, but identified a clear
need for one, a need for something that improves both performance and ac-
curacy over a traditional high performance matrix multiply implementation.
We have proven that our ordering of the individual levels is the correct or-

19

dering for the hybrid matrix multiply algorithm. We have also built a model
that can be used for determining the proper number of applications of direct
recursive matrix multiply based upon the problem size, which will allow any
application programmer to tailor the three level hybrid algorithm to their
needs. We have also demonstrated empirically that this model is correct
and that it is possible to out perform a traditional high performance matrix
multiply implementation by up to 10% while still offering superior accuracy.
Furthermore, we have demonstrated that the performance and accuracy of
our three level hybrid matrix multiply algorithm will only improve in the
future with high performance matrix multiply implementations specifically
tailored for hybrid algorithms.

References

[1] A. M. Castaldo, R. C. Whaley, and A. T. Chronopoulos. Reducing float-
ing point error in dot product using the superblock family of algorithms.
SIAM J. Sci. Comput., 31(2):1156-1174, 2008.

[2] P. D’Alberto and A. Nicolau. Adaptive Winograd’s matrix multiplica-
tions. ACM Trans. Math. Softw., 36:3:1-3:23, March 2009.

[3] C. C. Douglas, M. Heroux, G. Slishman, R. M. Smith, and R. M.
Gemmw: A portable level 3 Blas Winograd variant of Strassen’s matrix-
matrix multiply algorithm, 1994.

[4] K. Goto and R. van de Geijn. On reducing TLB misses in matrix multi-
plication. Working Note 9, The University of Texas at Austin, November
2002.

[5] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
2nd edition, 2002.

[6] S. Huss-Lederman, E. M. Jacobson, J. R. Johnson, A. Tsao, and
T. Turnbull. Implementation of Strassen’s algorithm for matrix mul-
tiplication. In Proceedings of Supercomputing ’96, pages 9-6, 1996.

[7] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual -
Volume 1: Basic Architecture. Intel Corporation, June 2010.

[8] Intel. Intel math kernel library (intel mkl) 10.2, 2010.

20

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Y. Nievergelt. Analysis and applications of Priest’s distillation. ACM
Trans. Math. Softw., 30(4):402-433, 2004.

F. W. J. Olver. A new approach to error arithmetic. SIAM Journal on
Numerical Analysis, 15(2):368-393, April 1978.

D. M. Priest. On Properties of Floating Point Arithmetics: Numerical
Stability and the Cost of Accurate Computations. PhD thesis, University
of California Berkeley, 1992.

V. Strassen. Gaussian elimination is not optimal. Numerische Mathe-
matik, 14(3):354-356, 1969.

R. C. Whaley and J. Dongarra. Automatically tuned linear algebra
software. In PPSC, 1999.

S. Winograd. A new algorithm for inner product. IEEE Trans. Comput.,
17:693-694, July 1968.

M. Yokokawa, K. Itakura, A. Uno, T. Ishihara, and Y. Kaneda. 16.4
Tflops direct numerical simulation of turbulence by a Fourier spectral
method on the Earth Simulator. In Proceedings of The 2002 ACM/IEEE
Conference on Supercomputing, 2002.

A. Ziv. Relative distance - an error measure in round-off error analysis.
Mathematics of Computation, (160):563-569, October 1982.

21

