C Center for Embedded Computer Systems
S University of California, Irvine

A Distributed Parallel Simulator for
Transaction Level Models with Relaxed Timing

Weiwei Chen, Rainer Bmer

Technical Report CECS-11-02
May 31, 2011

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA
(949) 824-8059

{weiweic, doemef@uci.edu
http://www.cecs.uci.edu/

http://www.cecs.uci.edu/

A Distributed Parallel Simulator for
Transaction Level Models with Relaxed Timing

Weiwei Chen, Rainer Bmer

Technical Report CECS-11-02
May 31, 2011

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA
(949) 824-8059

{weiweic, doemef@uci.edu
http://www.cecs.uci.edu

Abstract

Embedded systems are captured and refined into transaaie models (TLM) written
in System Level Description Languages (SLDLs) throughdhedbwn synthesis design flow.
However, the traditional single-thread discrete event {Biulator cannot use the explicit par-
allelism in these models for effective simulation. In thaper, we present an efficient scalable
distributed parallel DE simulation system with relaxeditijmsynchronizations. Our distributed
simulation engine is suitable for un-timed or approximateed TLMs. We demonstrate the
benefits of the distributed simulator using a basic pipelim@del and a case study on a JPEG
encoder application.

http://www.cecs.uci.edu

Contents

List of Figures

he inter-ho hannel communication operations 10

4 he algorithm ©
he pipelineexample e e e
6 xperiment re or the synthetic pipeline example 11

List of Tables

[l Simulation Results, for three TLMs of the JPEG Encoder examples

.12

A Distributed Parallel Simulator for
Transaction Level Models with Relaxed Timing

Weiwei Chen, Rainer Dbmer

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

{weiweic, doemef@uci.edu
http://www.cecs.uci.edu

Abstract

Embedded systems are captured and refined into transaction levels{dt®) written in System
Level Description Languages (SLDLs) through the top-down synttesign flow. However, the
traditional single-thread discrete event (DE) simulator cannot use tpécdixparallelism in these
models for effective simulation. In this paper, we present an efficietaldeadistributed parallel
DE simulation system with relaxed timing synchronizations. Our distributedaiiom engine is
suitable for un-timed or approximate-timed TLMs. We demonstrate the tseokfhe distributed
simulator using a basic pipeline model and a case study on a JPEG enapgdkcation.

1 Introduction

Multiple processing elements are integrating onto one chip (MPSoC) for meselbedded com-
puter systems to provide various functionalities and meet tight design dossteag. real-time
computation, small chip size, and low power consumption. The processimgmig, including
general-purpose CPUs, application-specific instruction-set proe6sSIPs), digital signal pro-
cessors (DSPs), as well as dedicated hardware accelerators dledtindé property (IP) compo-
nents, can respectively accomplish complicated computing or controlling &sttsre connected
as a network in the system for communications. The complexity of the systess gosat chal-
lenges to design and validation.

Research works have been done for efficient system design andtiaiich different areas, in-
cluding system level description languages, systematic design methodpliglesr abstract level

http://www.cecs.uci.edu

modeling, as well as advanced parallel simulation engines. Modern @-Bgs&eem-level Descrip-
tion Languages (SLDLSs), like SpecC [10] and SystermnC [11] are pojpatasescribing both the
hardware and software of embedded systems, and are supportedsljke&ystem-on-Chip En-
vironment [7] and Forte Desighl[8] for design space exploration ancehsyahthesis. A systematic
top-down design methodology, called Electronic System Level (ESL) deallpws the designers
to capture their systems at high abstraction level by SLDLs and refine teprbysstep down to de-
tailed implementations. While the refinement goes down to lower levels of abstratt@models
contain more details and become more complicated which brings obstacles ieneffalidation,
e.g. fast simulation and debugging. Transaction-level Modeling [11]athan well-accepted ap-
proach to efficient model validation which abstracts away the low level impletien details and
separate communication and functional units. The high simulation speed id insfde low timing
accuracy by using TLM.

In this paper, we are focusing on the parallelization of SLDL simulation esdimreefficient
model simulation. A new distributed parallel SLDL simulator is proposed for timsideration of
using the computation resources of multiple geographically distributed maatonescted with
network. Relaxed time synchronization is applied for fast simulation speettduie in timing
accuracy for simulation speed like Transaction-level Modeling.

After a brief review of existing efforts on fast SLDL simulation in Secfibn 2, tlew distributed
parallel simulator is proposed in Sectigh 3. The design of the inter-hosheh# discussed for
inter-host communication and synchronization. In Sedtion 4, we show thdasiamuresults of a
JPEG encoder design at different abstraction levels. The speealed sathe number of simulation
hosts is achieved and the timing inaccuracy is very subtle. Conclusions deeand the future
works are discussed finally in Sectigh 5.

2 Related Work

Discrete Event (DE) simulation is used for both SpecC and SystemC SLDEssimulation is
driven by events and simulation time advances. However, the traditiondéghrgad DE simu-
lation kernel is an obstacle to utilize any potential parallel computation res®fwc performance
progresses [12].

There has been considerable effort on parallelizing DE simulation. A wedied solution is
Parallel Discrete Event Simulation (PDES)[[2, 9| 14].

Multi-core parallel simulation is discussed [n [3] and[[15]. The simulator Keemodified
to issue and properly synchronize multiple OS kernel threads in eactidoigestep. This allows
parallel execution of the models described in SLDLs on multi-core machinesevér, synchro-
nization protection overhead is introduced for safe communication simulatio@.gdin of using
multi-core simulator can be very limited when the model simulated has tight timing cimtstra
which reduces the possibility of simulation parallelism.

Distributed parallel simulation, on the other hand, partitions the model andysdegdah piece
onto geographically separated machines which talk with each other via kel perform their
own work concurrently. [[16] deals with the distributed simulation of RTL likestSynC models
without experiment results. Clusters with single-core nodes are targefépvimich uses multi-

ple schedulers on different processing nodes and defines a madeefandime synchronization.
A distribution technique for an arbitrary number of SystemC simulations is gexbn [12] for
distribute functional and approximate-timed TLMS] [6] presents a distribByestiemC simulation
environment executed on a cluster of workstations using message¢péibsamy. However, the
central global synchronization applied [0 [4,] 12] ahd [6] can be the bo#tk of the simulation
system so that a great part of the parallelism potential can be waste@dnttaized simulation
time synchronization is then proposed|in [5] to reduce the central symicatamn overheads. Each
cluster node goes on running its own delta cycle loop, and only communicatethe/others at the
end of the loop for message passing or time advancement.

Our proposed fast SLDL simulator is on the track of distributed parallel stioalaThe idea is
to achieve simulation speedup by separating workloads onto multiple distributddnas and re-
laxing the time synchronization between them. Moreover, the simulator on eatddes not have
to take care of the simulation status of all the other hosts in the system, but omtywstcates with
the hosts and synchronizing the timing information through our inter-hosinets if connected.
Inter-host channels are only used when two hosts respectively cdataitional units who have to
communicate across the hosts after partitioning.

3 Distributed Parallel Discrete Event Simulation

MPSoC models written in SLDLs usually contain explicit parallelism which maketsaightfor-
ward to increase simulation performance by partitioning the model and exgeatot part concur-
rently on different hosts. Even though each part separated ondfiffieosts may be loosely coupled,
communication cannot be ignored for correct functionalities. Furthertiorig accuracy will lose
when the model sub-pieces are simulated on separate simulators which éiavem local time
counters. Thus, cares must be taken for proper communication and tinmclgrepization between
the distributed simulators.

Our distributed parallel simulation system in this paper is based on our psewiarnk for multi-
core parallel SLDL simulatof [3] to achieve parallelism as much as possible caimmunication
and synchronization idea can also be applied on traditional single-thtézd Smulators. Without
loss of generality, we assume the use of SpecC SLDL here (i.e. our teehisigqually applicable
to SystemC).

3.1 Formal Definitions

To formally describe the distributed parallel DE simulator, we define the follpwata structures
and operations:

1. Definition of the distributed DE simulator (DISTSIM):
DISTSIM = (H, C, M), where

e H={h| his the host in the simulation system.
e C={ch| chis the inter-host communication channg]s.
e M={m| mis the inter-host messaggs.

3

2. Definition of the simulation host§k € H):
Each simulation host runs its own DE simulator. The local data structurespendtions are
the same as those defined|in [3], section IlI-A. Briefly, they are

e Thread queues in the simulat@UEUES = {READY, RUN, WAIT , WAITFOR , COM-
PLETE}.
e Operations on threath: Go(th), Stop(th), Switch(th).
e Operations on thread with set manipulatio@seate(), Deletq), PICK (), MOVE ().
e Simulation invariants and initial state of the simulator.
We focus on the essential definitions for describing the hosts in the disttilbutailation

system below. The others still remain the same in the local simulator.
Vvh € H, h=(QUEUES’, curr_t, curr_delta E), where

curr_t is the local time counter,

curr_deltais the local delta cycle counter,
E is the local event list, and

QUEUE’ = {READY, RUN, WAIT , WAITFOR’ , COMPLETE }. Here,WAITFOR’ is a
super set o'/WAITFOR with waitfor threads and messages.

3. Definition of the inter-host communicate chann&lsh(e C):
Inter-host communication channels used in our distributed simulator aretpgioint FIFO
channels. They share information between two hosts via the network.déaohel maps to
one TCP/IP socket.
vYche C, ch= (socket size ch type portNa buf fer), where
e socket is TCP/IP socket used for inter-host communication via network,
e size is the size of the FIFO buffer,

e chitype identifies whether the current hdstis the sender or the receiver of the this
channel,

e portNa is the port number of the corresponding socket,
e buf fer is the storage of the data in the channel.

The details of the inter-host communication channel will be discussed in 8Ectio

4. Definition of the inter-host messagé&s$(e M):
Messages are passing via network between hosts in the distributed simwatem s
Yme M, m= (m.type timestampcontent th_recy, ch), where
e M.type is the type of this message (data or event),
e timestampis the timestamp of the message (local current time of the sender),
e content is the content of this message (data content or event information),

4

e th_recv. is the data receiver thread,
e ch: is the corresponding inter-host channel who delivers this message.

5. Definition of the extendedAITFOR’ queue for each simulation host:
WAITFOR’ = {w | w is a threadh € WAITFOR, or a messagen, mtimestamp> curr_t
whenmis received.}.

3.2 Distributed Discrete Event Simulation System

The distributed DE simulation system is a tughe €, M) as defined in Sectidn 3.1. Figuire 1 shows
a brief picture of how the distributed DE simulator works. It consists of multipreigtion hosts
running local DE simulator respectively. Each simulation host has seweréing threads and its
own scheduler. Communication and synchronization is doneessagepassed through inter-host
communicatiorchannels

In order to receive cross-host messages on time and handle thenrlyraplstener thread
listeneris introducedlisteneris created at the beginning of the local simulation program and keep
alive as long as the simulation program is working. Oligyenerwill receive the messages from
outside through the TCP/IP sockets. It will then pass them to either the word@eiverthread
or the scheduler according to the timestamp of the messagesschidulerhelps to deliver the
message with future timestamp later at a certain scheduling step. Relaxed tinthgosymation is
done at the scheduling step when the messages with timestamps are consumed.

host1 host2 host3

S\ aVa
Distributed Local Message Working Listener Scheduling
FIFO Channels Dispensing Thread Thread Thread

Figure 1: The architecture of the distributed DE simulator

3.3 Relaxed Timing Synchronization and Local DE Simulation $heduling

To relax the timing synchronization for better simulation performance, ouilmigdd simulation
engine does not have a global monitor or the shared time counter. Thddesshot have to syn-
chronize with the others at each delta cycle and time cycle, or behave asgania waits for
the master's command for proceeding. Simulation hosts only communicate vidastechan-
nels. Local simulation time is adjusted according to the timestamps of the messagekdrother
connected host for synchronization.

The motivation for this timing synchronization mechanism is that two simulation hasts@
their own simulation work at different speed if they do not actually communieéteeach other.
This releases the hosts from central synchronizations at each $iolgestieps. However, for a
timed model, the simulation time is implicitly shared for all the functional behaviors in trdemo
In other words, all the functional units communicate with each other througtintte counter. The
time counter distribution onto different simulation hosts can introduce the Iagsiofy accuracy.
But, as the intrinsic idea of TLM modeling, the precision of the timing informationkmiraded
in a little bit for simulation speed. Or in other words, it is harmless to sacrifice st timing
accuracy of an approximate-timed model, like TLM, to gain simulation progsesse

The timing synchronization is done through inter-host message passingcbnsanulation
hosts. Messages from outside carry the timestamps from the source Hos$e timestamps help
the current host to know the progress of its partner in the system, and@guidance of timing ad-
justment to catch up the pace of the others. Messages are handled byehistietterthread and the
scheduletbefore they are used by the receiver/sender of the inter-host elsatere,use’ means
use the messages (store the data in the buffer of the FIFO channel grthetévent), anthandle’
means receive the messages from the socket and put them in a speefitooiconsumption.

In this section, we discuss the mechanism of message handling. The ideaéstileeumessage
as soon as possible when its timestamp is earlier or equal than the local timerc@therwise,
the listenerwill put the message witfuture timestamp intoNVAITFOR’ queue in the order of the
timestamp and wait for the scheduler to deliver it when the specific time comes.

Figure[2 shows the control flow of the listener thread who receives theages from the net-
work sockets.L is the central lock for scheduling resource protection, sintstateis a flag for
the status of the simulator on current hosimstatecan beBUSY stating that the local simulation
is active, orIDLE meaning the simulation is paused and wait for external triggers. liStener
thread just keep listening to the network sockets for any incoming messatpes one messages
is detected, the listener handle the message accordingly. The schedule walled then if local
simulation is currently paused since the message is the external triggerefitnal dockL is used
for safe usage of the scheduling resources.

Figure[3 shows the control flow of the local simulation scheduler. Compaitd non-
distributed simulation scheduler inl[3], the part for time cycle advancementténded. Either
a thread or a message will be picked up fromW@TFOR’' queue in the time cycle handling part.
If the one with the earliest future timestamp is a thread, the scheduler behdtiessame way as
the non-distributed one. Otherwise, the schedulerwgiithe message (put the data into the channel
buffer, or notify the event), check whether any thread intldT gets its waited event notified then,
and continue with the following steps. Local tiroarr_t will be advanced to the specific earliest

1 while (1)
{ N
3 select from the incoming channels;
receive the message m from chnl.socket;

5 Lock(L);
if (m.timestamp<= curr_t){
7 if(m is data)
chnl.listenerSend (m);
9 }
else{ // m is event
11 notify m;
}
13 }
else{
15 put m into WAITFOR’;
}
17 if(simstate == IDLEY
schedule ();
19 }
unLock (L);
21 }

Figure 2: The control flow of the listener thread

future timestamp. In distributed simulation, the simulator does not stop whetERBY queue is
empty after time cycle handling. The simulator will stay idling since none of the thecehds are
active, but still be alive to wait for external data or events. Thus, Idekdannot be detected by
checking whether thREADY queue is empty after time advancement tries. Due to limited paper
spaces, we leave the deadlock detection out of the scope of this paper.

3.4 Inter-host Communication Channels

The inter-host communication channel helps for data exchanges and tigniciyysnization among
the distributed simulation hosts. As defined in Sedfioh 3.1, the inter-host comationichannels
are FIFO channels connecting two simulation hosts. Both sending andingceperations behave
in blocking fashion. Moreover, there is none additional memory units in @twego hosts. Cares
must be taken for the storage location of the internal data structure apérpvay of communica-
tion operations.

Thesenderand thereceiverof the inter-host channel are two threads on two different hosts. The

Pick up n threads from READY and run them
(n is different from single-thread or multi-core DE simulator)

[

delta-cycle YthEWAIT, if th’s event is notified.
Move(th, WAIT, READY), Clear notifed events.

No
READY == ?

Yes

Pick up the earliest WEWAITFOR’.

if wis a thread, move w to READY, and run w;
else if w is an event, notify w;
< else (w is data for chnl) chnl.schedSend(w).
timed-cycle
Update the simulation time curr_t = w.timestamp
!
YthEWAIT, if th’s event is notified.
Move(th, WAIT, READY), Clear notifed events.
NI]

No
« READY == ?

Yes

| simstate = IDLE, sleep |
]
| simstate = BUSY |

Figure 3: The local DE scheduler of the distributed host

hosts are ordered in the system. We always assign the host with lowemortiber as the server
of the socket, and the host with higher order number as the client. Theahtita structures, e.g.
the storage buffer, synchronization flag# (ws) are stored on theeceiverhost. Both thesender
andreceiverhost have the instance of the inter-host channel whilecthiy pe of the channel are
different. The internal events, e.@SendeRecwhave their own copies on both hosts. However,
only one of the copies will be used, egSendused by the sender hostfRecwsed by the receiver
host.

Five operations are defined for inter-host channel communicatioratiqes:

e sendd): send datal,

e receivgd): receive datal,

e listenerSendd): send eternal dat@locally by the listener,
e schedSendd): send eternal dat@locally by the scheduler,
o distNotify (e): notify the eventeto the remote sender host via network.

The senderhost sends the dathvia the network socket to the receiver. Titenerthread on
the receiverhost will catch the data and tell treenderwhether to block or not according to the
buffer space availability and timestamp comparison. If the feedback is lwottesendemwill wait
on theeSendevent, and release the CPU for other threads; otherwiseset@ercontinues. The
blockedsenderthread will be notified to continue when the last data sent is consumed by itteremo
receiverby event notification via network.

On the receiver host side, both thistenerandschedulebehave as the local "sender” of the
inter-host channel who do the actual data storing into the chdmrfefier. There are slight differ-
ences between these local sendings. Folishener, it stores the data into the buffer, sends feedback
to thesendetthread, manipulates the synchronization flags, and issues event notificcetie local
receiverthread if necessary. For tlsghedulerit stores the data, manipulates the synchronization
flags, issues event notifications to the lomdeiverthread as well as the rematenderthread if
necessary .

Figurel4 shows the algorithm of the inter-host channel communicationtapesa

3.5 Model Partitioning

The rules for model partitioning onto different simulation hosts by using ioomlation engine are
as follows:

1. The functional behavior units simulated on different hosts cannathared variables, except
for the simulation time counter.

2. Inter-host communication is done by point-to-point FIFO channels.

In this paper, we manually partition the models by duplicating copies for easth treonoving
unused behavior units from each copy, and replacing the intra-hashehwith proper configured
inter-host channel when necessary. General partitioning rulesaanded workloads on different
simulation hosts lead to better simulation performance, and behaviors betwegnoemmunica-
tions are frequent shall not be separated, also applicable to the matigbpiag when using our
distributed simulation engine.

4 Experiments and Results

To demonstrate the improved simulation speed of our distributed DE simulator,ometsio sets
of experiment in this section.

1 send(d) receive (d)
{
3 Lock(L); Lock(L);
socket.send(data d); while (14)
5 socket.recv(feedback); wWr ++;
if (feedback == blockedj wait eRecv;
7 wait eSend; Wr——;
unLock(L); }
9} buffer.load(d);
if (ws){
11 distNotify (eSend);
}
13 unLock(L);
}

15 schedSend(d)
{ // L is locked;
17 buffer.store(d);
if(n < size)

listenerSend(d)
{ Il L is locked;
buffer.store (d);

19 distNotify (eSend); if(n< size)X
} socket.send(not blocked);
21 els¢
WS ++; elseg
23} socket.send(blocked);
if(wr){ WS ++;
25 notify eRecv; }
if(wr){
27 } notify eRecv;
if(simstate == IDLEY
29 distNotify (e) schedule ();
}
31 socket.send(event e); }
} }

33
/1 wait() and notify () here do not acquire the central Lock L
35 // which is already acquire outside the functions.

Figure 4: The algorithm of the inter-host channel communication operations

4.1 A basic pipeline without timing synchronization

As shown in Figurgls, our basic pipeline model cont&inzarallel stages with input and output ports
connected by FIFO channels. Each stage 1) perforgs dummy floating point multiplications to
emulate the workload in each execution iteration, and 2) waits for data frewppis stage to start
one iteration and passes data as the trigger of next stage’s execution.

The model is parametrizable and un-timed. We use it to show 1) the effeatgfutation/com-
munication ratio on simulation performance, 2) the scalability and the promisiregispeof the
distributed DE simulator.

We simulate this pipeline example 100 iterations for each stage with differenterurhiotal
stagesi = 6, 12, 18, 24), and different scale of computation loadg,§ = L, LlogL, L xL, where
L = 1024). The model is partitioned in two ways: 1) simulation on 2 hosts, eachNyRrstages,

10

behavior Sin(
i_int_sender s)

{
int cnt, dummy;
void main() {

behavior Stage(
i_int_receiverr,
i_int_sender s)

{
int cnt, dummy;
void main() {

behavior Sout(
i_int_receiverr)
{
int cnt, dummy;
void main() {

while(cnt ++ < ITER){ > while(cnt ++ < ITER){ ~ e = = = = » « while(cnt ++ < ITER)
nflop multiplication. r.receive(dummyy); r.receive(dummy);
s.send(dummy); nflop multiplication. nflop multiplication.
} s.send(dummy); }
} } }
7 } k
ki
T T
I i
| 4
n stages

Figure 5: The pipeline example

and 2) simulation on 3 hosts, each wily3 stages. Figurel6 shows the experiment results by
using the host PCs with Intel (R) Core(TM) 2 Duo CPU E6550 at 2.33 GHie reference is the
model simulation time by using the traditional single-thread DE simulator. The simugeedup

is shown by the ratio of the simulation time of the reference single-thread simwiatsus the
simulation time of our distributed simulatofi§ / Tqistsim)- When computation load is lowfjop =

L), the speedup of distributed simulation versus the reference one is lesk the to the delay of
using network sockets and synchronization protections. Howeveg theshead can be ignored
when the computation/communication ratio is highd, = LlogL, L xL). The average speedup is
3.07for 2 hosts andt.73for 3 hosts whemg|o, = LIogL. This speedup is greater than the theoretic
speedup of both single-thread simulator (speedup = 1) and multi-core simigia¢@dup = number
of cores in the PC, which is 2 here) on one host.

3.5 7
37 1 B . | B 5 4
25 7
L

2 7 LIS

Tref / Tdistsim
w

= *logl
XL

1.5 | *logl

Tref / Tdistsim

LIR/N
14

05 7

04

6stages 12stages 18stages 24stages avg 6stages 12stages 18stages 24 stages avg

(a) Results for simulation on 2 hosts (b) Result for simulation on 3 hosts

Figure 6: Experiment results for the synthetic pipeline example

4.2 Real case study: TLMs of a JPEG Encoder

The JPEG Encoder is a real-world application! [13], [1]. We use theawi@mt-based framework
for heterogeneous MPSoC design, System-on-Chip Environment (83&)perform the top-down
synthesis design flow. Figuré 7 shows the diagram of the JPEG encadepke.

11

hostl host2

ARM1 1 1 AI}MZ

1 1 1 1
1 1 1 1 1 1
[RdBmp H’[DCT1]-E-P[DCT2 B Quant H’[Zigzag }-5-’[Huff]-:hb[monitor]
1 1 1 r 1
1

180 iterations

Figure 7: The JPEG Encoder example

For distributed simulation model partitioning, we insert a transceiver motebleaDCT?2 and
Quantand encapsulate the inter-host communication channel in this transaeittee fTLM models
generated at different abstraction levels. The architecture mappitigdatesign is as follows: two
ARM7TDMI processors at 100MHz is allocated, one for the first threelutes RdBmp DCT1,
DCT2), and one for the last four module®yant Zigzag Huf f, monitor); the transceiver in
between is mapped to a standard hardware unit. We choose priority-4sstlling for the tasks
in the processor and allocate two AMBA AHB buses for communication betiveseprocessor and
the hardware units.

We generate the models at different abstraction levels of the JPEG ermodsing the SCE
refinement tool, including specificatiosgeg, architecture drch), scheduling ¢ched, network
(net), communication¢omm) as well as the implementation models. These models are timed and
described in SpecC SLDL. The first four models (spec, arch, sctedjiat the higher abstraction
levels have fewer timing details and take very short time for simulation. Due toviér@ad of
network communication and synchronization approximation, we demonstragéfitiency of our
DE simulator by using the lower abstract level models with more timing and implementsion
tails. The models we simulate are: the pin-accurate madeh(nPAM) that refines the individual
point-to-point links down to an implementation over the actual communication moéma the
corresponding transaction-level modeb(hmTLM) that abstracts away the pin-level details of in-
dividual bus transactions, and an emulation model as the instruction-séa®miSS) is running
in the ARM7TDMI processors by inserting dummy computation workloads intespeeification
modules mapped to the processors. t¢emPAM andcommTLM model are two different cases
for the communicationdomn) model, and théSSis one of the implementation models.

commTLM commPAM ISS
ref | distsim| ref distsim ref distsim
sim time (sec)| 4.27 2.81 | 4498 | 25.28 | 174.04| 87.43
timing 23757 | 23757 | 23749| 23748 | 23749 | 23749
speedup 1 1.52 1 1.78 1 1.99
error - 0 - 4.21e-5 - 0

Table 1: Simulation Results, for three TLMs of the JPEG Encoder examples

Table[1 shows the results simulated on two distributed PCs with Intel (R) Qdyef Duo CPU

12

E6550 at 2.33 GHz. Due to the tightly timed feature, the model cannot makeugeaaf the multi-
cores in one host. Nonetheless, an average speedujpit gained by distributing the simulation
onto 2 hosts. The heavier computation load the model has, the more speegpeid by using
the distributed simulator. Moreover, the timing error is very little for these thregefsawith the
relaxed timing synchronization.

5 Conclusion

In this paper, we have discussed the distributed DE simulation techniqueefddRIS0C models
described in SLDLs. The inter-host communication channel is designégef@ommunication and
timing synchronization between the distributed simulation hosts. The schedalingl ks extended
for time advancement handling and a lister thread is introduced for the detamang synchro-
nization and proper message handling. We have shown two sets of experanain-timed basic
pipeline example as well as a real-world application, JPEG encoder ré§n8@E. Great speedup
with scale to the number of simulation hosts is gained by using our distributed simidateever,
the imprecision of the timing due to the relaxed synchronization is not discystedOur pro-
posed distributed DE simulator suits better for simulating either the un-timed anapate-timed
transaction-level models.

Future work includes 1) automatic analysis algorithm and instrumentation fogelrpadition-
ing. 2) timing error boundary analyzing and error correction duringkganizations.

Acknowledgment

This work has been supported in part by funding from the National Sei€¢oundation (NSF)
under research grant NSF Award #0747523. The authors thankSkefdt the valuable support.
Any opinions, findings, and conclusions or recommendations exprastad material are those of
the authors and do not necessarily reflect the views of the Nationalcedundation.

13

References

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]
[9]

[10]

[11]

[12]

[13]

Lucai Cai, Junyu Peng, Chun Chang, Andreas Gerstlauer, Xiogd i, Anand Selka, Chuck
Siska, Lingling Sun, Shuging Zhao, and Daniel D. Gajski. Design of &J&tcoding system.
Technical Report ICS-TR-99-54, Information and Computer Scidviwersity of California,
Irvine, November 1999.

K.Mani Chandy and Jayadev Misra. Distributed Simulation: A Case StuBesign and Ver-
ification of Distributed Program&oftware Engineering, IEEE Transactions &f-5(5):440—
452, Sept 1979.

Weiwei Chen, Xu Han, and Rainerdiner. ESL Design and Multi-Core Validation using the
System-on-Chip Environment. IIHLDVT'10: Proceedings of the 15th IEEE International
High Level Design Validation and Test Workshap10.

Bastien Chopard, Philippe Combes, and Julien Zory. A ConservAfyeoach to SystemC
Parallelization. Ininternational Conference on Computational Science p&ges 653-660,
2006.

P. Combes, E. Caron, F. Desprez, B. Chopard, and J. ZorjaxRg Synchronization in a
Parallel SystemC Kernel. limternational Symposium on Parallel and Distributed Processing
with Applications pages 180 —187, 10-12 2008.

David Richard Cox. RITSim: Distributed SystemC Simulation, Sept 2005.

Rainer Dbmer, Andreas Gerstlauer, Junyu Peng, Dongwan Shin, Lukai Cabd1éu, Samar
Abdi, and Daniel Gajski. System-on-Chip Environment: A SpecC-basath&work for
Heterogeneous MPSoC DesigBURASIP Journal on Embedded Systeg®08(647953):13
pages, 2008.

Forte Design Systems. Foribttp://www.forteds.com/.

Richard Fujimoto. Parallel discrete event simulati@ommunications of the ACN3(10):30—
53, Oct 1990.

Daniel D. Gajski, Jianwen Zhu, Rainebher, Andreas Gerstlauer, and Shuqing ZtgmecC:
Specification Language and Design Methodoldghiwer, 2000.

Thorsten Gotker, Stan Liao, Grant Martin, and Stuart SwaBystem Design with SystemC
Kluwer, 2002.

Kai Huang, I. Bacivarov, F. Hugelshofer, and L. Thiele. 18bdy Distributed SystemC Sim-
ulation for Embedded Applications. limternational Symposium on Industrial Embedded
Systems, 2008pages 271-274, June 2008.

International Telecommunication Union (ITU). Digital Compression and Coding of
Continous-Tone Still ImageSeptember 1992. ITU Recommendation T.81.

14

http://www.forteds.com/

[14] David Nicol and Philip Heidelberger. Parallel Execution for Seriai@ators.ACM Transac-
tions on Modeling and Computer Simulatj@{3):210-242, July 1996.

[15] Ezudheen P, Priya Chandran, Joy Chandra, Biju Puthur Simdripaapak Ravi. Parallelizing
SystemC Kernel for Fast Hardware Simulation on SMP MachineRrdneedings of the 2009
ACM/IEEE/SCS 23rd Workshop on Principles of Advanced and Distrilsitadlation pages
80-87, Washington, DC, USA, 2009. IEEE Computer Society.

[16] Mario Trams. Conservative Distributed Discrete Event Simulation witte&SgC using Ex-
plicit Lookahead Digital Force White PaperFeb 2004.

15

	1 Introduction
	2 Related Work
	3 Distributed Parallel Discrete Event Simulation
	3.1 Formal Definitions
	3.2 Distributed Discrete Event Simulation System
	3.3 Relaxed Timing Synchronization and Local DE Simulation Scheduling
	3.4 Inter-host Communication Channels
	3.5 Model Partitioning

	4 Experiments and Results
	4.1 A basic pipeline without timing synchronization
	4.2 Real case study: TLMs of a JPEG Encoder

	5 Conclusion
	References

