
Center for Embedded Computer Systems
University of California, Irvine

A Distributed Parallel Simulator for
Transaction Level Models with Relaxed Timing

Weiwei Chen, Rainer D̈omer

Technical Report CECS-11-02
May 31, 2011

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

{weiweic, doemer}@uci.edu
http://www.cecs.uci.edu/

http://www.cecs.uci.edu/

A Distributed Parallel Simulator for
Transaction Level Models with Relaxed Timing

Weiwei Chen, Rainer D̈omer

Technical Report CECS-11-02
May 31, 2011

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

{weiweic, doemer}@uci.edu
http://www.cecs.uci.edu

Abstract

Embedded systems are captured and refined into transaction level models (TLM) written
in System Level Description Languages (SLDLs) through the top-down synthesis design flow.
However, the traditional single-thread discrete event (DE) simulator cannot use the explicit par-
allelism in these models for effective simulation. In this paper, we present an efficient scalable
distributed parallel DE simulation system with relaxed timing synchronizations. Our distributed
simulation engine is suitable for un-timed or approximate-timed TLMs. We demonstrate the
benefits of the distributed simulator using a basic pipelinemodel and a case study on a JPEG
encoder application.

http://www.cecs.uci.edu

Contents

1 Introduction 1

2 Related Work 2

3 Distributed Parallel Discrete Event Simulation 3
3.1 Formal Definitions . 3
3.2 Distributed Discrete Event Simulation System . 5
3.3 Relaxed Timing Synchronization and Local DE Simulation Scheduling 6
3.4 Inter-host Communication Channels .7
3.5 Model Partitioning . 9

4 Experiments and Results 9
4.1 A basic pipeline without timing synchronization 10
4.2 Real case study: TLMs of a JPEG Encoder 11

5 Conclusion 13

References 14

i

List of Figures

1 The architecture of the distributed DE simulator 5
2 The control flow of the listener thread .7
3 The local DE scheduler of the distributed host 8
4 The algorithm of the inter-host channel communication operations 10
5 The pipeline example . 11
6 Experiment results for the synthetic pipeline example11
7 The JPEG Encoder example . 12

ii

List of Tables

1 Simulation Results, for three TLMs of the JPEG Encoder examples 12

iii

A Distributed Parallel Simulator for
Transaction Level Models with Relaxed Timing

Weiwei Chen, Rainer D̈omer

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

{weiweic, doemer}@uci.edu
http://www.cecs.uci.edu

Abstract

Embedded systems are captured and refined into transaction level models (TLM) written in System
Level Description Languages (SLDLs) through the top-down synthesisdesign flow. However, the
traditional single-thread discrete event (DE) simulator cannot use the explicit parallelism in these
models for effective simulation. In this paper, we present an efficient scalable distributed parallel
DE simulation system with relaxed timing synchronizations. Our distributed simulation engine is
suitable for un-timed or approximate-timed TLMs. We demonstrate the benefits of the distributed
simulator using a basic pipeline model and a case study on a JPEG encoderapplication.

1 Introduction

Multiple processing elements are integrating onto one chip (MPSoC) for modern embedded com-
puter systems to provide various functionalities and meet tight design constrains, e.g. real-time
computation, small chip size, and low power consumption. The processing elements, including
general-purpose CPUs, application-specific instruction-set processors (ASIPs), digital signal pro-
cessors (DSPs), as well as dedicated hardware accelerators and intellectual property (IP) compo-
nents, can respectively accomplish complicated computing or controlling tasks, and are connected
as a network in the system for communications. The complexity of the system poses great chal-
lenges to design and validation.

Research works have been done for efficient system design and validation in different areas, in-
cluding system level description languages, systematic design methodologies, higher abstract level

1

http://www.cecs.uci.edu

modeling, as well as advanced parallel simulation engines. Modern C-based System-level Descrip-
tion Languages (SLDLs), like SpecC [10] and SystemC [11] are popularfor describing both the
hardware and software of embedded systems, and are supported by tools like System-on-Chip En-
vironment [7] and Forte Design [8] for design space exploration and model synthesis. A systematic
top-down design methodology, called Electronic System Level (ESL) design, allows the designers
to capture their systems at high abstraction level by SLDLs and refine them step by step down to de-
tailed implementations. While the refinement goes down to lower levels of abstraction, the models
contain more details and become more complicated which brings obstacles to efficient validation,
e.g. fast simulation and debugging. Transaction-level Modeling [11] is another well-accepted ap-
proach to efficient model validation which abstracts away the low level implementation details and
separate communication and functional units. The high simulation speed is traded in for low timing
accuracy by using TLM.

In this paper, we are focusing on the parallelization of SLDL simulation engines for efficient
model simulation. A new distributed parallel SLDL simulator is proposed for the consideration of
using the computation resources of multiple geographically distributed machinesconnected with
network. Relaxed time synchronization is applied for fast simulation speed but trade in timing
accuracy for simulation speed like Transaction-level Modeling.

After a brief review of existing efforts on fast SLDL simulation in Section 2, the new distributed
parallel simulator is proposed in Section 3. The design of the inter-host channel is discussed for
inter-host communication and synchronization. In Section 4, we show the simulation results of a
JPEG encoder design at different abstraction levels. The speedup scaled to the number of simulation
hosts is achieved and the timing inaccuracy is very subtle. Conclusions are made and the future
works are discussed finally in Section 5.

2 Related Work

Discrete Event (DE) simulation is used for both SpecC and SystemC SLDLs. DE simulation is
driven by events and simulation time advances. However, the traditional single-thread DE simu-
lation kernel is an obstacle to utilize any potential parallel computation resources for performance
progresses [12].

There has been considerable effort on parallelizing DE simulation. A well-studied solution is
Parallel Discrete Event Simulation (PDES) [2, 9, 14].

Multi-core parallel simulation is discussed in [3] and [15]. The simulator kernel is modified
to issue and properly synchronize multiple OS kernel threads in each scheduling step. This allows
parallel execution of the models described in SLDLs on multi-core machines. However, synchro-
nization protection overhead is introduced for safe communication simulation. The gain of using
multi-core simulator can be very limited when the model simulated has tight timing constraints
which reduces the possibility of simulation parallelism.

Distributed parallel simulation, on the other hand, partitions the model and deploys each piece
onto geographically separated machines which talk with each other via network, and perform their
own work concurrently. [16] deals with the distributed simulation of RTL like SystemC models
without experiment results. Clusters with single-core nodes are targeted in[4] which uses multi-

2

ple schedulers on different processing nodes and defines a master node for time synchronization.
A distribution technique for an arbitrary number of SystemC simulations is proposed in [12] for
distribute functional and approximate-timed TLMs. [6] presents a distributedSystemC simulation
environment executed on a cluster of workstations using message-passing library. However, the
central global synchronization applied in [4, 12] and [6] can be the bottleneck of the simulation
system so that a great part of the parallelism potential can be wasted. Decentralized simulation
time synchronization is then proposed in [5] to reduce the central synchronization overheads. Each
cluster node goes on running its own delta cycle loop, and only communicates with the others at the
end of the loop for message passing or time advancement.

Our proposed fast SLDL simulator is on the track of distributed parallel simulation. The idea is
to achieve simulation speedup by separating workloads onto multiple distributed machines and re-
laxing the time synchronization between them. Moreover, the simulator on each host does not have
to take care of the simulation status of all the other hosts in the system, but only communicates with
the hosts and synchronizing the timing information through our inter-host channels if connected.
Inter-host channels are only used when two hosts respectively containfunctional units who have to
communicate across the hosts after partitioning.

3 Distributed Parallel Discrete Event Simulation

MPSoC models written in SLDLs usually contain explicit parallelism which makes it straightfor-
ward to increase simulation performance by partitioning the model and executing each part concur-
rently on different hosts. Even though each part separated on different hosts may be loosely coupled,
communication cannot be ignored for correct functionalities. Furthermore, timing accuracy will lose
when the model sub-pieces are simulated on separate simulators which have their own local time
counters. Thus, cares must be taken for proper communication and timing synchronization between
the distributed simulators.

Our distributed parallel simulation system in this paper is based on our previous work for multi-
core parallel SLDL simulator [3] to achieve parallelism as much as possible. The communication
and synchronization idea can also be applied on traditional single-thread SLDL simulators. Without
loss of generality, we assume the use of SpecC SLDL here (i.e. our technique is equally applicable
to SystemC).

3.1 Formal Definitions

To formally describe the distributed parallel DE simulator, we define the following data structures
and operations:

1. Definition of the distributed DE simulator (DISTSIM):
DISTSIM = (H, C, M), where

• H={h | h is the host in the simulation system.},

• C={ch | ch is the inter-host communication channels.},

• M={m | m is the inter-host messages.}

3

2. Definition of the simulation hosts (∀h∈ H):
Each simulation host runs its own DE simulator. The local data structures and operations are
the same as those defined in [3], section III-A. Briefly, they are

• Thread queues in the simulator:QUEUES = {READY , RUN, WAIT , WAITFOR , COM-
PLETE}.

• Operations on threadth: Go(th), Stop(th), Switch(th).

• Operations on thread with set manipulations:Create(), Delete(), PICK (), MOVE ().

• Simulation invariants and initial state of the simulator.

We focus on the essential definitions for describing the hosts in the distributed simulation
system below. The others still remain the same in the local simulator.
∀h∈ H, h = (QUEUES’, curr t, curr delta, E), where

• curr t is the local time counter,

• curr delta is the local delta cycle counter,

• E is the local event list, and

• QUEUE’ = {READY , RUN, WAIT , WAITFOR’ , COMPLETE }. Here,WAITFOR’ is a
super set ofWAITFOR with waitfor threads and messages.

3. Definition of the inter-host communicate channels (∀ch∈ C):
Inter-host communication channels used in our distributed simulator are point-to point FIFO
channels. They share information between two hosts via the network. Eachchannel maps to
one TCP/IP socket.
∀ch∈ C, ch= (socket, size, ch type, portNo, bu f f er), where

• socket: is TCP/IP socket used for inter-host communication via network,

• size: is the size of the FIFO buffer,

• ch type: identifies whether the current hosth is the sender or the receiver of the this
channel,

• portNo: is the port number of the corresponding socket,

• bu f f er: is the storage of the data in the channel.

The details of the inter-host communication channel will be discussed in Section 3.4.

4. Definition of the inter-host messages (∀m∈ M):
Messages are passing via network between hosts in the distributed simulation system.
∀m∈ M , m= (m type, timestamp, content, th recv, ch), where

• m type: is the type of this message (data or event),

• timestamp: is the timestamp of the message (local current time of the sender),

• content: is the content of this message (data content or event information),

4

• th recv: is the data receiver thread,

• ch: is the corresponding inter-host channel who delivers this message.

5. Definition of the extendedWAITFOR’ queue for each simulation host:
WAITFOR’ = {w | w is a threadth ∈ WAITFOR , or a messagem, m.timestamp> curr t
whenm is received.}.

3.2 Distributed Discrete Event Simulation System

The distributed DE simulation system is a tuple (H, C, M) as defined in Section 3.1. Figure 1 shows
a brief picture of how the distributed DE simulator works. It consists of multiple simulationhosts
running local DE simulator respectively. Each simulation host has severalworking threads and its
own scheduler. Communication and synchronization is done viamessagespassed through inter-host
communicationchannels.

In order to receive cross-host messages on time and handle them properly, a listener thread
listeneris introduced.listeneris created at the beginning of the local simulation program and keep
alive as long as the simulation program is working. Onlylistenerwill receive the messages from
outside through the TCP/IP sockets. It will then pass them to either the working receiverthread
or the scheduler according to the timestamp of the messages. Theschedulerhelps to deliver the
message with future timestamp later at a certain scheduling step. Relaxed timing synchronization is
done at the scheduling step when the messages with timestamps are consumed.

host1 host2 host3

(event/data, timestamp)

(event/data, timestamp)

(event/data, timestamp)

(event/data, timestamp)

ch1

ch2

ch3

ch4

th1

th2

th1

th2

th3

th1

th2

th3

Distributed

FIFO Channels

Local Message

Dispensing

Working

Thread

Listener

Thread

Scheduling

Thread

Figure 1: The architecture of the distributed DE simulator

5

3.3 Relaxed Timing Synchronization and Local DE Simulation Scheduling

To relax the timing synchronization for better simulation performance, our distributed simulation
engine does not have a global monitor or the shared time counter. The hostdoes not have to syn-
chronize with the others at each delta cycle and time cycle, or behave as a slave who waits for
the master’s command for proceeding. Simulation hosts only communicate via inter-host chan-
nels. Local simulation time is adjusted according to the timestamps of the messages from the other
connected host for synchronization.

The motivation for this timing synchronization mechanism is that two simulation hosts can do
their own simulation work at different speed if they do not actually communicatewith each other.
This releases the hosts from central synchronizations at each scheduling steps. However, for a
timed model, the simulation time is implicitly shared for all the functional behaviors in the model.
In other words, all the functional units communicate with each other through the time counter. The
time counter distribution onto different simulation hosts can introduce the loss oftiming accuracy.
But, as the intrinsic idea of TLM modeling, the precision of the timing information canbe traded
in a little bit for simulation speed. Or in other words, it is harmless to sacrifice someof the timing
accuracy of an approximate-timed model, like TLM, to gain simulation progresses.

The timing synchronization is done through inter-host message passing on each simulation
hosts. Messages from outside carry the timestamps from the source hosts.These timestamps help
the current host to know the progress of its partner in the system, and provide guidance of timing ad-
justment to catch up the pace of the others. Messages are handled by both the listenerthread and the
schedulerbefore they are used by the receiver/sender of the inter-host channels. Here,’use’ means
use the messages (store the data in the buffer of the FIFO channel or notify the event), and’handle’
means receive the messages from the socket and put them in a specific order for consumption.

In this section, we discuss the mechanism of message handling. The idea is to use the message
as soon as possible when its timestamp is earlier or equal than the local time counter. Otherwise,
the listenerwill put the message withfuture timestamp intoWAITFOR’ queue in the order of the
timestamp and wait for the scheduler to deliver it when the specific time comes.

Figure 2 shows the control flow of the listener thread who receives the messages from the net-
work sockets.L is the central lock for scheduling resource protection, andsimstateis a flag for
the status of the simulator on current host.simstatecan beBUSYstating that the local simulation
is active, orIDLE meaning the simulation is paused and wait for external triggers. Thelistener
thread just keep listening to the network sockets for any incoming messages.When one messages
is detected, the listener handle the message accordingly. The scheduler willbe called then if local
simulation is currently paused since the message is the external trigger. The central lockL is used
for safe usage of the scheduling resources.

Figure 3 shows the control flow of the local simulation scheduler. Comparedwith non-
distributed simulation scheduler in [3], the part for time cycle advancement is extended. Either
a thread or a message will be picked up from theWAITFOR’ queue in the time cycle handling part.
If the one with the earliest future timestamp is a thread, the scheduler behavesin the same way as
the non-distributed one. Otherwise, the scheduler willusethe message (put the data into the channel
buffer, or notify the event), check whether any thread in theWAIT gets its waited event notified then,
and continue with the following steps. Local timecurr t will be advanced to the specific earliest

6

1 wh i le (1)
{

3 s e l e c t from t h e incoming c h a n n e l s ;
r e c e i v e t h e message m from chn l . s o c k e t ;

5 Lock (L) ;
i f (m. t imes tamp<= c u r r t){

7 i f (m i s d a t a){
chn l . l i s t e n e r S e n d (m) ;

9 }
e l s e{ / / m i s even t

11 n o t i f y m;
}

13 }
e l s e{

15 pu t m i n t o WAITFOR’ ;
}

17 i f (s i m s t a t e == IDLE){
s c h e d u l e () ;

19 }
unLock (L) ;

21 }

Figure 2: The control flow of the listener thread

future timestamp. In distributed simulation, the simulator does not stop when theREADY queue is
empty after time cycle handling. The simulator will stay idling since none of the localthreads are
active, but still be alive to wait for external data or events. Thus, deadlock cannot be detected by
checking whether theREADY queue is empty after time advancement tries. Due to limited paper
spaces, we leave the deadlock detection out of the scope of this paper.

3.4 Inter-host Communication Channels

The inter-host communication channel helps for data exchanges and timing synchronization among
the distributed simulation hosts. As defined in Section 3.1, the inter-host communication channels
are FIFO channels connecting two simulation hosts. Both sending and receiving operations behave
in blocking fashion. Moreover, there is none additional memory units in between two hosts. Cares
must be taken for the storage location of the internal data structure and proper way of communica-
tion operations.

Thesenderand thereceiverof the inter-host channel are two threads on two different hosts. The

7

start

!"#$%!""!∅!#!

∀!"∈&#'($!%&!!"'(!)*)+,!%(!+-./)01!

)*+,2!"$!&#'($!!"#$%3$!45)67!+-.&)0!)*)+,(1!!

8%9:!;<!#!,=7)60(!&7->!!"#$%-6+0!7;+!,=)>!

2+!%(!0%?)7)+,!&7->!(%+@5)A,=7)60!!-7!>;5.A9-7)!BC!(%>;56,-73!

!"#$%!""!∅!#!

!"#$%!""!∅!#!
D-!

E)(!

D-!

D-!

E)(!

E)(!

0)5,6A9F95)!

.>)0A9F95)!

(5))<!

8%9:!;<!,=)!)675%)(,!$∈&#'(./!01-

%&!$!%(!6!,=7)60$!>-*)!$!,-!!"#$%$!6+0!7;+!$G!

)5()!%&!$!%(!6+!)*)+,$!+-.&F!$G!

)5()!2$!%(!06,6!&-7!9=+53!9=+51(9=)0H)+02I31!

J<06,)!,=)!(%>;56.-+!.>)!%&''(!!"!$)*+,-!.+/0

∀!"∈&#'($!%&!!"'(!)*)+,!%(!+-./)01!

)*+,2!"$!&#'($!!"#$%3$!45)67!+-.&)0!)*)+,(1!!

2342565,-"!KBLC$!(5))<!

2342565,!"!MJHE!

Figure 3: The local DE scheduler of the distributed host

hosts are ordered in the system. We always assign the host with lower order number as the server
of the socket, and the host with higher order number as the client. The internal data structures, e.g.
the storage buffer, synchronization flags (wr, ws) are stored on thereceiverhost. Both thesender
andreceiverhost have the instance of the inter-host channel while thech typeof the channel are
different. The internal events, e.g.eSend, eRecvhave their own copies on both hosts. However,
only one of the copies will be used, e.g.eSendused by the sender host,eRecvused by the receiver
host.

Five operations are defined for inter-host channel communication operations:

• send(d): send datad,

• receive(d): receive datad,

8

• listenerSend(d): send eternal datad locally by the listener,

• schedSend(d): send eternal datad locally by the scheduler,

• distNotify (e): notify the evente to the remote sender host via network.

Thesenderhost sends the datad via the network socket to the receiver. Thelistenerthread on
the receiverhost will catch the data and tell thesenderwhether to block or not according to the
buffer space availability and timestamp comparison. If the feedback is blocked, thesenderwill wait
on theeSendevent, and release the CPU for other threads; otherwise, thesendercontinues. The
blockedsenderthread will be notified to continue when the last data sent is consumed by its remote
receiverby event notification via network.

On the receiver host side, both thelistenerandschedulerbehave as the local ”sender” of the
inter-host channel who do the actual data storing into the channelbu f f er. There are slight differ-
ences between these local sendings. For thelistener, it stores the data into the buffer, sends feedback
to thesenderthread, manipulates the synchronization flags, and issues event notification to the local
receiverthread if necessary. For thescheduler, it stores the data, manipulates the synchronization
flags, issues event notifications to the localreceiverthread as well as the remotesenderthread if
necessary .

Figure 4 shows the algorithm of the inter-host channel communication operations.

3.5 Model Partitioning

The rules for model partitioning onto different simulation hosts by using our simulation engine are
as follows:

1. The functional behavior units simulated on different hosts cannot useshared variables, except
for the simulation time counter.

2. Inter-host communication is done by point-to-point FIFO channels.

In this paper, we manually partition the models by duplicating copies for each host, removing
unused behavior units from each copy, and replacing the intra-host channel with proper configured
inter-host channel when necessary. General partitioning rules e.g. balanced workloads on different
simulation hosts lead to better simulation performance, and behaviors between which communica-
tions are frequent shall not be separated, also applicable to the model partitioning when using our
distributed simulation engine.

4 Experiments and Results

To demonstrate the improved simulation speed of our distributed DE simulator, we show two sets
of experiment in this section.

9

1 send (d) r e c e i v e (d)
{ {

3 Lock (L) ; Lock (L) ;
s o c k e t . send (d a t a d) ; wh i l e (! n){

5 s o c k e t . r ecv (feedback) ; wr ++;
i f (f eedback == b locked){ wa i t eRecv ;

7 wa i t eSend ; wr−−;
unLock (L) ; }

9 } b u f f e r . l oad (d) ;
i f (ws){

11 d i s t N o t i f y (eSend) ;
}

13 unLock (L) ;
}

15 schedSend (d)
{ / / L i s l ocked ; l i s t e n e r S e n d (d)

17 b u f f e r . s t o r e (d) ; { / / L i s l ocked ;
i f (n < s i z e){ b u f f e r . s t o r e (d) ;

19 d i s t N o t i f y (eSend) ; i f (n< s i z e){
} s o c k e t . send (no t b locked) ;

21 e l s e{ }
ws ++; e l s e{

23 } s o c k e t . send (b locked) ;
i f (wr){ ws ++;

25 n o t i f y eRecv ; }
} i f (wr){

27 } n o t i f y eRecv ;
i f (s i m s t a t e == IDLE){

29 d i s t N o t i f y (e) s c h e d u l e () ;
{ }

31 s o c k e t . send (even t e) ; }
} }

33
/ / wa i t () and n o t i f y () he re do no t a c q u i r e t h e c e n t r a l Lock L

35 / / which i s a l r e a d y a c q u i r e o u t s i d e t h e f u n c t i o n s .

Figure 4: The algorithm of the inter-host channel communication operations

4.1 A basic pipeline without timing synchronization

As shown in Figure 5, our basic pipeline model containsN parallel stages with input and output ports
connected by FIFO channels. Each stage 1) performsnf lop dummy floating point multiplications to
emulate the workload in each execution iteration, and 2) waits for data from previous stage to start
one iteration and passes data as the trigger of next stage’s execution.

The model is parametrizable and un-timed. We use it to show 1) the effect of computation/com-
munication ratio on simulation performance, 2) the scalability and the promising speedup of the
distributed DE simulator.

We simulate this pipeline example 100 iterations for each stage with different number of total
stages (N = 6, 12, 18, 24), and different scale of computation loads (nf lop = L, LlogL, L∗L, where
L = 1024). The model is partitioned in two ways: 1) simulation on 2 hosts, each withN/2 stages,

10

!"#$%&'(!"#$%!

!!#&#$'&()$*)+!(,!

-!!

)))&*+).$'/!*01123!!

!!!%'&,!14#$%,!-!

!!!!!!56#7)%.$'!88!9!:;<=,-!

!!!!!!$>?@!107A@7#.4A?$B!

!!!!!!(B()$*%*0112,3!

!!!!!C!

!!C!

C3!

!"#$%&'(!"'4D)%!

!!#&#$'&+).)#E)+!+/!!

!!#&#$'&()$*)+!(,!

-!!

)))&*+).$'/!*01123!!

!!!%'&,!14#$%,!-!

!!!!!!56#7)%.$'!88!9!:;<=,-!

!!!!!!+B+).)#E)%*0112,3!!!!!!!!!

!!!!!!$>?@!107A@7#.4A?$B!

!!!!!!(B()$*%*0112,3!

!!!!!C!

!!C!

C3!

!"#$%&'(!"?0'%!

!!#&#$'&+).)#E)+!+,!

-!!

)))&*+).$'/!*01123!!

!!!%'&,!14#$%,!-!

!!!!!!56#7)%.$'!88!9!:;<=,-!

!!!!!!+B+).)#E)%*0112,3!!!!!!!!!

!!!!!!$>?@!107A@7#.4A?$B!

!!!!!C!

!!C!

C3!

*)-+$."-)

Figure 5: The pipeline example

and 2) simulation on 3 hosts, each withN/3 stages. Figure 6 shows the experiment results by
using the host PCs with Intel (R) Core(TM) 2 Duo CPU E6550 at 2.33 GHz.The reference is the
model simulation time by using the traditional single-thread DE simulator. The simulationspeedup
is shown by the ratio of the simulation time of the reference single-thread simulatorversus the
simulation time of our distributed simulator (Tre f/Tdistsim). When computation load is low (nf lop =
L), the speedup of distributed simulation versus the reference one is less than 1 due to the delay of
using network sockets and synchronization protections. However, these overhead can be ignored
when the computation/communication ratio is high (nf lop = LlogL, L ∗L). The average speedup is
3.07for 2 hosts and4.73for 3 hosts whennf lop = LlogL. This speedup is greater than the theoretic
speedup of both single-thread simulator (speedup = 1) and multi-core simulator(speedup = number
of cores in the PC, which is 2 here) on one host.

!"

!#$"

%"

%#$"

&"

&#$"

'"

'#$"

(")*+,-)" %&")*+,-)" %.")*+,-)" &/")*+,-)" +0,"

!
"#
$%
&%
!'
()
*)
(+

%

1"

1234,1"

121"

(a) Results for simulation on 2 hosts

!"

#"

$"

%"

&"

'"

("

(")*+,-)" #$")*+,-)" #.")*+,-)" $&")*+,-)" +/,"

!
"#
$%
&%
!'
()
*)
(+

%

0"

0123,0"

010"

(b) Result for simulation on 3 hosts

Figure 6: Experiment results for the synthetic pipeline example

4.2 Real case study: TLMs of a JPEG Encoder

The JPEG Encoder is a real-world application [13], [1]. We use the refinement-based framework
for heterogeneous MPSoC design, System-on-Chip Environment (SCE)[7] to perform the top-down
synthesis design flow. Figure 7 shows the diagram of the JPEG encoder example.

11

!"#$%& '()*& '()+& ,-./0& 1234.3& 5-6& $7/2078&

97:0*&

*;<&20=8.>7/:&

!"#

$%&'#

!"#

$%&(#

97:0+&

Figure 7: The JPEG Encoder example

For distributed simulation model partitioning, we insert a transceiver model betweenDCT2 and
Quantand encapsulate the inter-host communication channel in this transceiver for the TLM models
generated at different abstraction levels. The architecture mapping forthis design is as follows: two
ARM7TDMI processors at 100MHz is allocated, one for the first three modules (RdBmp, DCT1,
DCT2), and one for the last four modules (Quant, Zigzag, Hu f f , monitor); the transceiver in
between is mapped to a standard hardware unit. We choose priority-basedscheduling for the tasks
in the processor and allocate two AMBA AHB buses for communication betweenthe processor and
the hardware units.

We generate the models at different abstraction levels of the JPEG encoder by using the SCE
refinement tool, including specification (spec), architecture (arch), scheduling (sched), network
(net), communication (comm) as well as the implementation models. These models are timed and
described in SpecC SLDL. The first four models (spec, arch, sched,net) at the higher abstraction
levels have fewer timing details and take very short time for simulation. Due to the overhead of
network communication and synchronization approximation, we demonstrate theefficiency of our
DE simulator by using the lower abstract level models with more timing and implementationde-
tails. The models we simulate are: the pin-accurate model (commPAM) that refines the individual
point-to-point links down to an implementation over the actual communication protocol and the
corresponding transaction-level model (commTLM) that abstracts away the pin-level details of in-
dividual bus transactions, and an emulation model as the instruction-set simulator (ISS) is running
in the ARM7TDMI processors by inserting dummy computation workloads into thespecification
modules mapped to the processors. ThecommPAM andcommTLM model are two different cases
for the communication (comm) model, and theISS is one of the implementation models.

commTLM commPAM ISS
ref distsim ref distsim ref distsim

sim time (sec) 4.27 2.81 44.98 25.28 174.04 87.43
timing 23757 23757 23749 23748 23749 23749

speedup 1 1.52 1 1.78 1 1.99
error – 0 – 4.21e-5 – 0

Table 1: Simulation Results, for three TLMs of the JPEG Encoder examples

Table 1 shows the results simulated on two distributed PCs with Intel (R) Core(TM) 2 Duo CPU

12

E6550 at 2.33 GHz. Due to the tightly timed feature, the model cannot make gooduse of the multi-
cores in one host. Nonetheless, an average speedup of1.76is gained by distributing the simulation
onto 2 hosts. The heavier computation load the model has, the more speedup isgained by using
the distributed simulator. Moreover, the timing error is very little for these three models with the
relaxed timing synchronization.

5 Conclusion

In this paper, we have discussed the distributed DE simulation technique for the MPSoC models
described in SLDLs. The inter-host communication channel is designed for the communication and
timing synchronization between the distributed simulation hosts. The scheduling kernel is extended
for time advancement handling and a lister thread is introduced for the relaxed timing synchro-
nization and proper message handling. We have shown two sets of experiment: an un-timed basic
pipeline example as well as a real-world application, JPEG encoder refinedby SCE. Great speedup
with scale to the number of simulation hosts is gained by using our distributed simulator. However,
the imprecision of the timing due to the relaxed synchronization is not discussedyet. Our pro-
posed distributed DE simulator suits better for simulating either the un-timed or approximate-timed
transaction-level models.

Future work includes 1) automatic analysis algorithm and instrumentation for model partition-
ing. 2) timing error boundary analyzing and error correction during synchronizations.

Acknowledgment

This work has been supported in part by funding from the National Science Foundation (NSF)
under research grant NSF Award #0747523. The authors thank the NSF for the valuable support.
Any opinions, findings, and conclusions or recommendations expressedin this material are those of
the authors and do not necessarily reflect the views of the National Science Foundation.

13

References

[1] Lucai Cai, Junyu Peng, Chun Chang, Andreas Gerstlauer, Hongxing Li, Anand Selka, Chuck
Siska, Lingling Sun, Shuqing Zhao, and Daniel D. Gajski. Design of a JPEG encoding system.
Technical Report ICS-TR-99-54, Information and Computer Science,University of California,
Irvine, November 1999.

[2] K.Mani Chandy and Jayadev Misra. Distributed Simulation: A Case Studyin Design and Ver-
ification of Distributed Programs.Software Engineering, IEEE Transactions on, SE-5(5):440–
452, Sept 1979.

[3] Weiwei Chen, Xu Han, and Rainer Dömer. ESL Design and Multi-Core Validation using the
System-on-Chip Environment. InHLDVT’10: Proceedings of the 15th IEEE International
High Level Design Validation and Test Workshop, 2010.

[4] Bastien Chopard, Philippe Combes, and Julien Zory. A ConservativeApproach to SystemC
Parallelization. InInternational Conference on Computational Science (4), pages 653–660,
2006.

[5] P. Combes, E. Caron, F. Desprez, B. Chopard, and J. Zory. Relaxing Synchronization in a
Parallel SystemC Kernel. InInternational Symposium on Parallel and Distributed Processing
with Applications, pages 180 –187, 10-12 2008.

[6] David Richard Cox. RITSim: Distributed SystemC Simulation, Sept 2005.

[7] Rainer D̈omer, Andreas Gerstlauer, Junyu Peng, Dongwan Shin, Lukai Cai, Haobo Yu, Samar
Abdi, and Daniel Gajski. System-on-Chip Environment: A SpecC-based Framework for
Heterogeneous MPSoC Design.EURASIP Journal on Embedded Systems, 2008(647953):13
pages, 2008.

[8] Forte Design Systems. Forte.http://www.forteds.com/.

[9] Richard Fujimoto. Parallel discrete event simulation.Communications of the ACM, 33(10):30–
53, Oct 1990.

[10] Daniel D. Gajski, Jianwen Zhu, Rainer Dömer, Andreas Gerstlauer, and Shuqing Zhao.SpecC:
Specification Language and Design Methodology. Kluwer, 2000.

[11] Thorsten Gr̈otker, Stan Liao, Grant Martin, and Stuart Swan.System Design with SystemC.
Kluwer, 2002.

[12] Kai Huang, I. Bacivarov, F. Hugelshofer, and L. Thiele. Scalably Distributed SystemC Sim-
ulation for Embedded Applications. InInternational Symposium on Industrial Embedded
Systems, 2008., pages 271–274, June 2008.

[13] International Telecommunication Union (ITU). Digital Compression and Coding of
Continous-Tone Still Images, September 1992. ITU Recommendation T.81.

14

http://www.forteds.com/

[14] David Nicol and Philip Heidelberger. Parallel Execution for Serial Simulators.ACM Transac-
tions on Modeling and Computer Simulation, 6(3):210–242, July 1996.

[15] Ezudheen P, Priya Chandran, Joy Chandra, Biju Puthur Simon, and Deepak Ravi. Parallelizing
SystemC Kernel for Fast Hardware Simulation on SMP Machines. InProceedings of the 2009
ACM/IEEE/SCS 23rd Workshop on Principles of Advanced and DistributedSimulation, pages
80–87, Washington, DC, USA, 2009. IEEE Computer Society.

[16] Mario Trams. Conservative Distributed Discrete Event Simulation with SystemC using Ex-
plicit Lookahead.Digital Force White Paper, Feb 2004.

15

	1 Introduction
	2 Related Work
	3 Distributed Parallel Discrete Event Simulation
	3.1 Formal Definitions
	3.2 Distributed Discrete Event Simulation System
	3.3 Relaxed Timing Synchronization and Local DE Simulation Scheduling
	3.4 Inter-host Communication Channels
	3.5 Model Partitioning

	4 Experiments and Results
	4.1 A basic pipeline without timing synchronization
	4.2 Real case study: TLMs of a JPEG Encoder

	5 Conclusion
	References

