
Center for Embedded Computer Systems
University of California, Irvine
__

Towards Embedded RAIDs-on-Chip

Luis Angel D. Bathen and Nikil D. Dutt

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-2620, USA

{lbathen,dutt}@uci.edu

CECS Technical Report <10-12>
December 15, 2010

39

Towards Embedded RAIDs-on-Chip

LUIS ANGEL D. BATHEN, University of California, Irvine
NIKIL D. DUTT, University of California, Irvine

The dual effects of larger die sizes and technology scaling, combined with aggressive voltage scaling for
power reduction, increase the error rates for on-chip memories. Traditional on-chip memory reliability tech-
niques (e.g., ECC) incur significant power and performance overheads. In this paper, we propose a low-
power-and-performance-overhead Embedded RAID (E-RAID) strategy and present Embedded RAIDs-on-
Chip (E-RoC), a distributed dynamically managed reliable memory subsystem. E-RoC achieves reliability
through redundancy by optimizing RAID-like policies tuned for on-chip distributed memories. We achieve
on-chip reliability of memories through the use of Distributed Dynamic ScratchPad Allocatable Memories
(DSPAMs) and their allocation policies. We exploit aggressive voltage scaling to reduce power consumption
overheads due to parallel DSPAM accesses, and rely on the E-RoC manager to automatically handle any
resulting voltage-scaling-induced errors. We demonstrate how E-RAIDs can further enhance the fault tol-
erance of traditional memory reliability approaches by designing E-RAID levels that exploit ECC. Finally,
we show the power and flexibility of the E-RoC concept by showing the benefits of having a heterogeneous
E-RAID levels that fit each application’s needs (fault tolerance, power/energy, performance).

Our experimental results on multimedia benchmarks show that E-RoC’s fully distributed redundant reli-
able memory subsystem can reduce up to 85% in dynamic power consumption, and up to 61% lower latency
due to error checks/corrections. On average, we see that our E-RAID levels converge to 100% Yield much
faster than traditional ECC approaches. Moreover, E-RAID levels that exploit ECC (e.g., E-RAID ECC +
1, E-RAID RP + ECC) can guarantee 99.9% Yield at ultra low Vdd on average, where as SECDED and
DECTED were able to attain 99.1% and 99.4% Yield respectively. Our E-RAID levels (detection and correc-
tion) achieved a worst case 93.9% Yield, where as the traditional ECC approaches achieved a worst case
of 34.1% Yield. We observe an average of 22% dynamic power consumption increase by using traditional
ECC approaches (EDC1, EDC8, SEC, SECDED, DEC, DECTED), where as we observe average savings of
27% for our E-RAID schemes (E-RAID 1, E-RAID 1 + ECC, E-RAID ECC + 1, E-RAID RP, E-RAID RP +
ECC, E-RAID TMR). We see that on average traditional ECC approaches are able to save static energy by
6.4%, where as our E-RAID approaches achieve 23.4% static energy savings. We observe that on average
our approaches (E-RAID 1, E-RAID 1 + ECC, E-RAID ECC + 1, E-RAID RP, E-RAID RP + ECC, E-RAID
TMR) incur 2% higher overheads than traditional ECC approaches (EDC1, EDC8, SEC, SECDED, DEC,
DECTED). We observe that for Vdd above 0.45, on average, our E-RAID levels with error correction support
(SEC) incur 3% lower overheads over the more traditional SECDED/DECTED schemes. Finally, we observe
that mixing E-RAID levels allows us to reduce the dynamic power consumption by up to 150% at the cost of
an average 5% increase in execution time over traditional approaches.

Categories and Subject Descriptors: C.3 [Special-purpose and Application-based systems]: Real-time
and embedded systems; D.4.6 [Security and Protection]: Access Controls; Security Kernels; B.3 [Design
Styles]: Virtual Memory; D.4 [Storage Management]: Distributed memories

General Terms: Design, Management, Performance, Security

This research was partially supported by NSF Variability Expeditions Award CCF-1029783, and SFS/NSF
Grant No. 0723955.
Authors’ addresses: Luis Angel D. Bathen and Nikil Dutt, Center for Embedded Computer Systems, School
of Information and Computer Science, University of California at Irvine, Irvine, CA 92697;
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2010 ACM 1539-9087/2010/03-ART39 $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:2 L. Bathen et al.

Additional Key Words and Phrases: information assurance; security; chip-multiprocessors; policy; scratch-
pad memory; virtualization; embedded systems

1. INTRODUCTION
Embedded system designs need to satisfy multiple constraints including power, per-
formance and reliability. Continued technology scaling and larger die sizes, coupled
with the increasing amounts of on-chip memory, make memories highly vulnerable
to the threat of soft-errors and process variation induced errors [Ruckerbauer and
Georgakos 2007; Mastipuram and Wee 2004; Nassif 2001]. Aggressive voltage scal-
ing for power reduction further increases the error rates of on-chip memories [Sasan
et al. 2009a; Kurdahi et al. 2010]. Traditional memory reliability techniques utilize
ECC, or ECC-duplication hybrids, and incur significant power and performance over-
heads. This problem is exacerbated by the emergence of on-chip distributed memory
subsystems, as evidenced by the trend of chip multiprocessor systems (e.g., IBM Cell
[IBM 2005], Intel’s Single-chip Cloud Computer [Intel 2009], Teraflops Research [In-
tel 2007], and Tilera Tile-Gx [Tilera 2010]), where cores can talk to multiple on-chip
memories using different access/coherency protocols and a variety of communication
infrastructures (e.g., bus matrix, P2P, NoCs, etc.).

As technology scales, system failure rates due to radiation-induced transient errors
continues to be a major concern for embedded system designers [Lee et al. 2006]. Mem-
ories are most vulnerable to soft-errors since the total area of the die is dominated by
memory cells. This problem worsens for chip-multiprocessor platforms that have even
larger amounts of on-chip memory. Moreover, to reduce power consumption, designers
employ techniques such as aggressive voltage scaling, which exponentially increases
the impact of process variation on memory cells [Sasan et al. 2009a]. Voltage scaling
reduces the capacitance that keeps the charge in a single cell, therefore affecting its
vulnerability to low energy alpha particles, or cosmic rays [Mastipuram and Wee 2004].
Process variation is random in nature as it depends on many factors such as environ-
mental (temperature, voltage), physical (mask imperfections, wear-out mechanisms),
and in-die physical variations (layout, gate dimension). As process technology reaches
its limits, failures due to process variation are rapidly increasing [Makhzan et al. 2007;
Sasan et al. 2009b; Nassif 2001]. The probability of failure in SRAM technology is
exponentially proportional to the decrease in voltage. Unlike soft-errors, which are
transient in nature, process variation induced errors are permanent. Although aggres-
sive voltage scaling increases the rate of failures, power savings can still be achieved
by designing fault tolerant systems [Djahromi et al. 2007]. Efforts in reliable mem-
ory systems have focused on the design of error correction based memories, where
data accesses are guarded by ECC mechanisms [Vergos and Nikolos 1995; Papirla and
Chakrabarti 2009; Ghosh et al. 2004; Kim 2006; Kim et al. 2007; Ramaswamy and
Yalamanchili 2007], replication based mechanisms [Lucente et al. 1990; Zhang 2004;
Zhang et al. 2003; Li et al. 2005], as well as process variation aware designs [Makhzan
et al. 2007; Sasan et al. 2009b; 2009a]. Note that some of these techniques may com-
bine two or more different schemes to guarantee reliability of the memory subsystem.
At the system level, Redundant Array of Inexpensive Disks (RAID) systems [Patterson
et al. 1988] have been very successful in providing reliable data storage for the stor-
age/distributed systems domain, and have been used from simple low cost servers to
large scale storage area networks [Morris and Truskowski 2003], including operating
environments that need to guarantee 24/7 uptime under heavy I/O loads.

This paper makes several contributions. Since distributed on-chip memory hierar-
chies are becoming common in chip-multiprocessor systems, we adapt and tune the tra-
ditional notion of RAID to define Embedded RAID (E-RAID) and Embedded RAIDs-on-
Chip (E-RoC), a distributed dynamically managed reliable memory subsystem. Among

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Towards Embedded RAIDs-on-Chip 39:3

the key concepts introduced are: the notion of reliability via redundancy using an E-
RAID system; a set of E-RAID levels that are optimized for use in embedded SoCs; the
concept of distributed dynamic scratch pad allocatable memories (DSPAMs) and their
allocation policies. We exploit aggressive voltage scaling to reduce power consumption
overheads due to parallel DSPAM accesses. The resulting voltage-scale-induced errors
that appear in the memories are handled by the E-RAID policies. We present the first
proof-of-concept E-RoC Manager that exploits these ideas for Chip-Multiprocessors.
We explore the flexibility and benefits of Embedded RAIDs-on-Chip by 1) studying
their ability to complement existing fault tolerant approaches (e.g., ECC), 2) their abil-
ity to create a heterogeneous E-RAID level environment to match the different fault
tolerance needs of each application, 3) the effects of arbitration policies, and 4) the
power consumption/energy and performance overheads of various E-RAID levels.

2. BACKGROUND AND MOTIVATION
2.1. Background
Because of process variations, aggressive power saving techniques, technology scaling,
hazardous environments, there are two major error types that threaten the integrity
of data: transient soft-errors and permanent process variation induced errors. These
types of errors have served as a motivation for many different techniques. ECC-based
techniques [Vergos and Nikolos 1995; Papirla and Chakrabarti 2009; Ghosh et al. 2004;
Kim 2006; Kim et al. 2007; Ramaswamy and Yalamanchili 2007] are both power and
performance inefficient as the error checking/correction relies heavily on parity gen-
eration on each transaction. Duplication techniques focus mostly on cache based sys-
tems, and some even propose a secondary cache to keep track of duplicates [Zhang
2004; Zhang et al. 2003]. Software based schemes [Li et al. 2005] rely on the compiler
to fully dictate how the blocks of data are mapped onto a single SPM. This motivates
E-RoC, a power/performance/constraint-aware reliable memory system that exploits
the idea of aggressive voltage scaling to reduce power consumption, and reduces the
performance overhead inherent in reliable memory systems by exploiting the idea re-
dundancy to validate data. The next two sections will go over the types of errors we
are addressing.

2.2. Soft-Errors
Soft errors, i.e., transient faults, or single-event upsets (SEU), are caused primarily by
external radiations in microelectronic circuits, and have been investigated extensively
since the late 1970’s [Lee et al. 2006].

Fig. 1. Soft Error Event Occurrence in CMOS a Device [Lee et al. 2006].

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:4 L. Bathen et al.

Figure 1 shows a single soft-error event. As alpha or cosmic particles come into con-
tact with the silicon device, if the charge of the given cell is low enough, its chances of
suffering a single event failure (SEU) are lower. Because of techniques such as voltage
scaling, the capacitance that keeps the charge in a single cell is reduced, therefore af-
fecting its vulnerability to low energy alpha particles, or cosmic rays [Mastipuram and
Wee 2004].

Effects of Process Variations Probability of Failure (Pfail) vs. Voltage (Vdd(v))

x
y

Process
Variations

Nominal Vdd

Aggressively
Low Vdd

Parametric
Manufacturing
Errors

Low Vdd

Overdriven Vdd

Memory Array

Technology scaling + environment

+ +

+ Voltage

Fig. 2. Effects of Voltage Scaling [Kurdahi et al. 2010] (right) and Probability of Failure due to Voltage
Scaling [Sasan et al. 2009a] (left).

2.3. Process Variation Errors via Voltage Scaling
Figure 1 (right) shows the effects of voltage scaling on a memory array. On the x and
y-axis we have the memory array, and on the z-axis we have the voltage. The vertical
lines show parametric manufacturing errors (process variations). In this figure we see
that at overdriven Vdd, these process variations do not manifest on the memory array,
but as we start lowering the voltage (e.g., Nominal Vdd, Low Vdd, Aggressively Low
Vdd), we observe the process variations increasingly manifest on the memory array
plane. This is further asserted by Figure 1 (left), which shows the effects of voltage
scaling on the probability of failure for a single SRAM cell at 65nm technology. As we
can observe, the probability of failure is exponentially proportional to the voltage (left)
[Djahromi et al. 2007] .

3. CUSTOMIZING EMBEDDED RAIDS (E-RAIDS)
3.1. Traditional RAID Levels
RAID systems have been widely deployed since they were proposed in the 80’s. RAID
systems offer a wide array of levels. Each RAID level can be used to fit each applica-
tion’s needs. This section will briefly go over the most popular RAID levels.

A1 A2
B1 B2

A1 A2
B1 Pb

Pa
B2

A1 A2
B1 B2

Pa
Pb

(a) RAID 0 (b) RAID 1

A1 A1
B1 B1

(c) RAID 3 (d) RAID 5

Fig. 3. Sample RAID Levels.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Towards Embedded RAIDs-on-Chip 39:5

Figure 3 (a) shows a RAID 0 system, referred to as a striped set, where data is split
into stripes and each stripe is then mapped onto a physical disk. The idea here is that
a single transaction can be served in parallel by accessing multiple disks. A RAID 0
system requires a minimum of two disks, and the total capacity of the available disk
space is given by Equation 1 , where DSi represents the disk size of drive i. If a disk
fails, the whole RAID fails. RAID 0 is ideal for systems with high IO requirements. If
a request for block A comes through, and RAID 0 accesses blocks A1 and A2 to serve
the request for A.

C = #disks in set×min(DS0, DS1, ..., DSn) (1)

Figure 3 (b) shows a RAID 1 system, also known as mirror system, where each disk
in the system contains a copy of the data. Like RAID 0, the disks are accessed in
parallel. A minimum of two disks are needed. In case a disk fails, the second disk will
continue to serve requests, thereby keeping the system from failing. The total capacity
of RAID 1 is given by Equation 2. RAID 1 is ideal for systems that require high levels
of reliability. If a request for block A comes through, and RAID 1 accesses block A1,
if the disk fails it will then access A2. In the case of writes, block A will be written to
both A1 and A2.

C = (#disks in set/2)×min(DS0, DS1, ..., DSn) (2)

Figure 3 (c) shows a RAID 3 system, also known as striped with parity, uses byte-
level striping, where the parity is stored on a separate disk. RAID 3 does not support
parallel reads/writes as blocks are striped across multiple disks, therefore, each re-
quest for a block of data will have to access all disks in the RAID. RAID 4, is similar to
RAID 3, the main difference is that RAID 4 uses block-level parity, therefore, accesses
to different blocks may be serviced in parallel. Both RAID 3 and RAID 4 require at
least three disks to build the RAID system. In the event of a single disk failure, the
parity disk data may be used to reconstruct the lost data. The total capacity for RAIDs
3 and 4 is given by Equation 3. The main bottleneck for this level is the parity disk as
it is accessed on every transaction.

C = (#disks in set− 1)×min(DS0, DS1, , DSn) (3)

Among the RAID levels, RAID 5 is the most popular as it provides both performance
and reliability. Like RAID 3 and 4, it follows the idea of parity, which is used to recon-
struct failed disks. RAID 5 removes the bottleneck of the dedicated parity disk present
in its predecessors by distributing the parity across multiple disks. Like RAID 3 and 4,
the capacity of RAID 5 is given by (E3). Parity computation for RAID 5 are as simple
as XORing two blocks of data, for instance, on a write of block A, RAID 5 stripes A into
A1 and A2, and computes the parity A1 XOR A2 = Pa. It then writes both blocks and
the parity.

It is possible to create RAID hierarchies. One of the most popular hierarchical RAID
solutions is RAID 0 + 1 (10), where data is striped into blocks, thus helping the perfor-
mance, and mirror copies of the blocks are kept to help reliability. For a more detailed
overview of the different RAID technologies please refer to [Patterson et al. 1988; Mor-
ris and Truskowski 2003].

3.2. The Case for Embedded RAID
The goal of a traditional RAID system in storage systems is to guarantee the uptime
of the system. In case a disk goes bad, the remaining disks are used to 1) serve data

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:6 L. Bathen et al.

a) Traditional RAID – Storage Systems b) Embedded RAID – CMP SoCs

SPM SPM SPM SPM

CPU CPU CPU CPU
RAID

Controller

HD HD HD HD

HD CPU

RAID 1
(Mirroring)

RAID 5
(Stripe + Mirroring)

System Bus On-Chip Bus

System Bus

ERoC

Fig. 4. Traditional RAID vs. Proposed Embedded RAIDs-on-Chip.

requests despite the failed disk, and 2) on disk replacement, rebuild the RAID system.
In Embedded RAIDs (E-RAIDs), the notion of a failed SPM does exist; however, we
cannot take the system offline, replace the SPM, and rebuild the E-RAID. Because of
this, E-RAID levels need to be given a different purpose. The goal of an E-RAID is
to guarantee the validity of the data stored in the E-RAID. Because of this, we must
modify traditional RAID levels, and customize/optimize them for the use in embedded
SoCs. Figure 4 (a) shows the traditional view of a RAID system, which consists of a
CPU (set of CPUs), a set of distributed hard drives configured in various RAID levels
to meet the system’s performance and fault tolerant needs (RAID 1, RAID 5, etc.), and
a RAID hardware controller (could also have software RAID). Figure 4 (b) shows the
proposed Embedded RAID model for Systems-on-Chip, which consists of a series of
CPUs/Masters, the on-chip bus, a possible hardware manager (E-RoC Manager), and a
set of distributed on-chip memories (SPMs). As we can observe, these two system-level
diagrams (though completely different abstractions) are quite similar.

3.2.1. RAID Requirement Overhead. One of the first arguments against RAIDs-on-Chip
is the amount of extra memory space needed to keep a RAID system active. In the case
of a RAID 1 system, the capacity is halved. In the case of RAID 1, 3-5 the capacity is
reduced by at least a single SPM ((#SPMs−1)×size of smallest SPM). However, such
overhead is comparable to the duplication techniques presented in [Lucente et al. 1990;
Zhang 2004; Zhang et al. 2003; Angiolini et al. 2006; Li et al. 2005]. Moreover, due to
process variation induced errors, available memory is reduced as data cells become un-
usable, and technology remapping techniques need to be used [Ramaswamy and Yala-
manchili 2007]. Although resources are limited, research has shown that the memory
subsystem is underutilized by current applications [Lucente et al. 1990; Zhang et al.
2003].

3.2.2. RAID Performance Overhead. Because the target devices are SPMs rather than
disks, embedded RAID systems will benefit from parallel reads/writes to multiple
memories. Of course, support for such model is needed. The major concern would be
the parity calculation and checking. Since RAID system parity can be computed by
a simple XOR, performance wise, embedded RAID systems offer a more performance
friendly solution than any of the ECC/hybrid schemes previously proposed [Vergos and
Nikolos 1995; Lucente et al. 1990; Papirla and Chakrabarti 2009; Zhang et al. 2003;
Zhang 2004].

3.2.3. RAID Power Overhead. RAID systems may incur power overheads due to the ex-
tra accesses to memory systems necessary to access the duplicate data during reads
and writes. However, in order to offset such power consumption, aggressive voltage
scaling may be utilized, therefore efficiently reducing the penalty of the extra memory

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Towards Embedded RAIDs-on-Chip 39:7

accesses. Now, since each parity generation is done through XORs, the power consump-
tion overhead per read/write is much lower than that of ECC/hybrid based schemes.

3.2.4. Which RAID Levels Make Sense. Because of the fact that both data and time scales
are different for embedded systems and storage systems, we must be careful with the
definition of RAID. The purpose of a RAID system in storage systems is to guarantee
the uptime of the system. In the case a disk goes bad, the remaining disks are used
to 1) serve data requests despite the failed disk, and 2) on disk replacement, rebuild
the RAID system. In embedded RAIDs, the notion of failed SPM does exist; however,
we cannot just simply replace the SPM, and rebuild’ the RAID. One cannot take the
system offline, replace the SPM, and rebuild the RAID. Because of this, RAID levels
need to be given a different purpose. The goal of an embedded RAID is to guarantee
the validity of the data stored in the RAID. Because of this, we must modify existing
RAID levels, and optimize them for the use in the embedded system domain.

Embedded
RAIDs

DSPAM
Allocation
Policies

Distributed Dynamic
Scratchpad Allocatable
Memories (DSPAMs)

Logical SPMs
(Virtual Address Space)

Access
Control

Lists

Voltage
Scaling Arbitration Policies

Chip-Multiprocessor E-RoC Manager

Embedded
RAIDs-on-Chip

Embedded
RAID
Levels

Fig. 5. Concept of Embedded RAIDs-on-Chip.

4. EMBEDDED RAIDS-ON-CHIP (E-ROC)
Figure 5 outlines the concept of Embedded RAIDs-on-Chip (E-RoC). E-RoC is com-
posed of eight mutually dependent components that are used to create a customized
Chip-Multiprocessor E-RoC Manager for the specific settings of each component. In
this section, we will go over each of the different components of E-RoC, however, the
main focus of this paper is to show the power of our E-RoC customization framework,
thus we will focus more on the exploration and trade-off analysis (Yield, power/energy,
performance) between the various E-RAID levels as well as their ability to comple-
ment built-in ECC schemes. In this paper, we will focus primarily on Homogeneous
Chip-Multiprocessor platforms and will leave other platform configurations as future
work (e.g., NoC-enabled Many-core Platforms).

4.1. Embedded RAIDs (E-RAIDs)
E-RAIDS exploit the idea that aggressive voltage scaling of memories significantly
reduces power consumption, but increases the error rate in the memories. This inten-
tional increase in the error rates can be automatically handled by E-RoC’s RAID-like
built-in error resiliency mechanisms. Thus in the E-RAID context, we use customized,
reliable E-RAID levels to automatically handle the errors generated by aggressive

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:8 L. Bathen et al.

-­‐20	

-­‐10	

0	

10	

20	

30	

40	

50	

60	

1.00E-­‐20	

1.00E-­‐17	

1.00E-­‐14	

1.00E-­‐11	

1.00E-­‐08	

1.00E-­‐05	

1.00E-­‐02	
 0.9	
 0.8	
 0.75	
 0.6	

Pr
ob

ab
ili
gy
	
 o
f	
 F
ai
lu
re
	
 (S
EU

)	

Vdd	

Power	
 Reduc9on	
 through	
 Aggressive	
 Voltage	
 Scaling	
 Vs.	
 2	
 KB	
 SPM	
 @	
 1.1	
 Vdd	

Pow
er R

eduction Percentage

Incurs power consumption
overhead at high Vdd

Saves power at low Vdd

Vs.
512
B

SPM

512
B

SPM

512
B

SPM

512
B

SPM

512
B

SPM

512
B

SPM

512
B

SPM

512
B

SPM

E-RAID 0
(1 Byte striping)

E-RAID 0

(1 Byte striping)

 E-RAID 1 (Mirroring)

E-­‐RoC	
 Manager	
 IF	

8bit

4 x 8bit

Byte	
 0	
 Byte	
 1	
 Byte	
 2	
 Byte	
 3	
 32bit

2KB SPM
@ Nominal Vdd

Fig. 6. Power Reduction for E-RAID 0+1 Level.

Table I. Average Read Response Time Vs. Read Size
Policy ECC Mechanism Redundancy Space Notes
EDC1 1 bit parity 1 bit Detection Only
EDC8 8 bit interleaved parity 8 bits Detection Only
SEC HAMMING 6 bits Single Error Correction
SECDED HAMMING 7 bits Correction=1, Detection=2
DEC CYCLIC 12 bits Dual Error Correction
DECTED CYCLIC 13 bits Correction=2, Detection=3
E-RAID 1 NONE 32 bits Detection only
E-RAID 1 + ECC SEC 38 bits SEC (Original) + Non-ECC Copy
E-RAID ECC + 1 SEC 38 bits Non-ECC Copy + SEC (Original)
T-RAID 1 SECDEDx2 48 bits Traditional RAID 1, ECC x 2 in parallel
E-RAID P Parity 64 bits Majority wins + Parity
E-RAID RP Parity 32 bits Keep 32 bit parity for detection
E-RAID RP + ECC SEC 38 bits Keep 32 bit parity and ECC for word
TMR NONE 64 bits Majority wins
NO E-RAID NONE 0 bits No E-RAID needed

voltage scaling of the memories. Moreover, as a side effect, transient errors are also
automatically handled.

To illustrate the potential for power reduction using E-RAID refer to Figure 6,
consider an E-RAID configuration consisting of eight 512B/8bit width SPMs voltage-
scaled with data striping and replication (referred to as ”E-RAID 0+1 Level”). Although
the potential number of SPMs accessed per read/write transaction is 8 times that of
a single SPM running at normal Vdd (1.1) and width of 32bits, we observe up to 46%
power reduction with aggressive voltage scaling. Figure 6 shows progressive power
savings due to aggressive voltage scaling in an E-RAID 0+1 configuration consisting
of 65nm SPMs (gray bars). On the left axis we see that as voltage increases, the prob-
ability of failure increases exponentially as well (dotted line).

4.2. E-RAID Levels
Table I shows a series of traditional fault tolerant schemes (first half) and a subset
of the supported E-RAID levels (second half) to illustrate how we have adapted tradi-
tional RAID levels to the on-chip context. Unlike existing duplication approaches [Pat-

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Towards Embedded RAIDs-on-Chip 39:9

terson et al. 1988; Angiolini et al. 2006], we do not allocate an entire memory to a single
RAID level. We provide an API that allows for on-demand allocation/de-allocation of
E-RAID space, which allows efficient use of the available on-chip resources. Each of
the E-RAID levels provides a different degree of reliability guarantee proportional to
its complexity and overheads. Our E-RAID levels allow for an extra on-chip memory
refresh step in order to protect the memory subsystem against soft-errors, that is, if an
error is detected and corrected, our E-RAID scheme writes back the corrected value.
The refresh step is non-blocking, as the data is sent back to the masters/cpu and in
parallel corrected in the memory system. Note that in the case of ECC-protected mem-
ories, the data banks are voltage scaled, and we assume that we have separate banks
to store the ECC parities (G).

Algorithm 1 E-RAID Level 1 Read/Write Policy
Require: REQ PACKET{CTRL,ADDR,DATA∗}
1: if REQ PACKET.CTRL == READ CTRL then
2: A1← DSPAMx(REQ PACKET.ADDR)
3: A2← DSPAMy(REQ PACKET.ADDR)
4: if A1 == A2 then
5: REQ PACKET.DATA∗ ← A1
6: return CHANNEL OK
7: else
8: return SLV ERR
9: end if
10: else
11: if REQ PACKET.CTRL == WRITE CTRL then
12: DSPAMx(REQ PACKET.ADDR)← REQ PACKET.DATA∗

13: DSPAMy(REQ PACKET.ADDR)← REQ PACKET.DATA∗

14: end if
15: end if

4.2.1. E-RAID 1. E-RAID 1 follows the same redundancy idea of traditional RAID 1,
also referred to as mirroring, where two copies of each block are kept in the E-RAID,
each block being a 32bit word. As shown on Algorithm 1, on a read request, E-RoC
fetches both copies of a data block, compares them, and returns the data if the compar-
ison was successful (Lines 2-6). The methods DSPAMx() and DSPAMY () perform the
address translation for the transaction and are used to fetched/write/update the copies
of the data in their respective memory regions (Lines 2-3). On an error the master will
be forced to fetch the data from off-chip memory, thereby paying the penalty of a main
memory access (Line 8). The master will then issue a write to this location to update
the data (crucial in case of soft-errors). E-RAID 1 achieves lower power consumption
and lower performance overheads than parity checking schemes as the comparison of
the two blocks requires a simple AND or XOR and the reads/writes can be done in
parallel. This approach assumes that the probability that two data blocks will have
an error at the same location (bit) is very low [Zhang 2004; Zhang et al. 2003], how-
ever, unlike traditional replication approaches (e.g., [Zhang 2004; Zhang et al. 2003;
Angiolini et al. 2006; Li et al. 2005]), E-RAIDs do not assume that the backup data is
correct, thereby provide higher data-correctness guarantees.

4.2.2. E-RAID 1 + ECC. As shown in Algorithm 2, E-RAID 1 + ECC keeps two copies of
the data, one backup and one original (protected by SEC). The idea is to minimize ECC
overheads by comparing the two copies before the ECC check is done since a simple
comparison incurs less overhead than the ECC check/correction. If the comparison
fails, we try to correct it with SEC, if this fails, the data is fetched from off-chip memory
just like E-RAID 1 (Lines 4-12). On a write (Lines 16-19), we perform the two writes

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:10 L. Bathen et al.

Algorithm 2 E-RAID Level 1 + ECC Read/Write Policy
Require: REQ PACKET{CTRL,ADDR,DATA∗}
1: if REQ PACKET.CTRL == READ CTRL then
2: A1← DSPAMx(REQ PACKET.ADDR)
3: A2← DSPAMy(REQ PACKET.ADDR)
4: if A1 == A2 then
5: REQ PACKET.DATA∗ ← A1
6: return CHANNEL OK
7: else
8: if (TMP ← SEC(A1, DSPAM Gx(REQ PACKET.ADDR)))! = ERR then
9: REQ PACKET.DATA∗ ← TMP
10: return CHANNEL OK
11: else
12: return SLV ERR
13: end if
14: end if
15: else
16: if REQ PACKET.CTRL == WRITE CTRL then
17: DSPAM Gx(REQ PACKET.ADDR)← SECG(REQ PACKET.DATA∗)
18: DSPAMx(REQ PACKET.ADDR)← REQ PACKET.DATA∗

19: DSPAMy(REQ PACKET.ADDR)← REQ PACKET.DATA∗

20: end if
21: end if

to memory as in E-RAID 1, the only difference here is that we also perform the extra
ECC step to protect the data element. This level requires us to have a small (6-bit)
wide non-voltage scaled bank, which holds the parity.

Algorithm 3 E-RAID Level ECC + 1 Read/Write Policy
Require: REQ PACKET{CTRL,ADDR,DATA∗}
1: if REQ PACKET.CTRL == READ CTRL then
2: A1← DSPAMx(REQ PACKET.ADDR)
3: if (TMP ← SEC(A1, DSPAM Gx(REQ PACKET.ADDR)))! = ERR then
4: REQ PACKET.DATA∗ ← TMP
5: return CHANNEL OK
6: else
7: A2← DSPAMy(REQ PACKET.ADDR)
8: if (TMP ← SEC(A2, DSPAM Gy(REQ PACKET.ADDR)))! = ERR then
9: REQ PACKET.DATA∗ ← TMP
10: return CHANNEL OK
11: else
12: return SLV ERR
13: end if
14: end if
15: else
16: if REQ PACKET.CTRL == WRITE CTRL then
17: G← SECG(REQ PACKET.DATA∗)
18: DSPAMx(REQ PACKET.ADDR)← REQ PACKET.DATA∗

19: DSPAM Gx(REQ PACKET.ADDR)← G)
20: DSPAMy(REQ PACKET.ADDR)← REQ PACKET.DATA∗

21: DSPAM Gy(REQ PACKET.ADDR)← G)
22: end if
23: end if

4.2.3. E-RAID ECC + 1. Algorithm 3 shows the read/write policies for E-RAID ECC +
1, we first try to correct the data, if we are unable to do so, we fetch the second copy
and try to correct it (Lines 2-14). The idea is to minimize the number of extra accesses
incurred by E-RAID 1 and E-RAID 1 + ECC. As shown in Algorithm 3, this level incurs

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Towards Embedded RAIDs-on-Chip 39:11

the extra write needed to protect the copy (with respect to E-RAID 1 + ECC). Like E-
RAID 1 + ECC, we assume that we can control the built-in ECC chip in the memory
banks, which provides single error correction (SEC).

Algorithm 4 T-RAID Level 1 Read/Write Policy
Require: REQ PACKET{CTRL,ADDR,DATA∗}
1: if REQ PACKET.CTRL == READ CTRL then
2: ADDR← REQ PACKET.ADDR
3: E1← SECDED(&A1, DSPAMx(ADDR), DSPAM Gx(ADDR))
4: E2← SECDED(&A2, DSPAMy(ADDR), DSPAM Gy(ADDR))
5: if E1! = ERR then
6: REQ PACKET.DATA∗ ← A1
7: return CHANNEL OK
8: else
9: if E2! = ERR then
10: REQ PACKET.DATA∗ ← A2
11: return CHANNEL OK
12: else
13: return SLV ERR
14: end if
15: end if
16: else
17: if REQ PACKET.CTRL == WRITE CTRL then
18: G← SECDEDG(REQ PACKET.DATA∗)
19: DSPAMx(REQ PACKET.ADDR)← REQ PACKET.DATA∗

20: DSPAM Gx(REQ PACKET.ADDR)← G)
21: DSPAMy(REQ PACKET.ADDR)← REQ PACKET.DATA∗

22: DSPAM Gy(REQ PACKET.ADDR)← G)
23: end if
24: end if

4.2.4. T-RAID 1. Algorithm 4 shows the read/write policies for the T-RAID level. T-
RAID 1 executes SECDED x 2 in parallel and incurs both the extra access as well as
the SECDED check overheads (Lines 2-4). If there is no error for either data block A1
or A2, then we can successfully return the data (Lines 5-11), otherwise, like E-RAID
1, the master will have to go off-chip and fetch the correct data element. This level
provides the highest level of fault tolerance but may incur the highest overheads of all
E-RAID levels as on every read and every write (Lines 17-23) T-RAID 1 must execute
the SECDED checks/corrections.

Algorithm 5 E-RAID Level Random+Parity (RP) Read/Write Policy
Require: REQ PACKET{CTRL,ADDR,DATA∗}
1: if REQ PACKET.CTRL == READ CTRL then
2: A1← DSPAMx(REQ PACKET.ADDR)
3: P ← DSPAMp(REQ PACKET.ADDR)
4: if A1⊕R == P then
5: REQ PACKET.DATA∗ ← A1
6: return CHANNEL OK
7: else
8: return SLV ERR
9: end if
10: else
11: if REQ PACKET.CTRL == WRITE CTRL then
12: DSPAMx(REQ PACKET.ADDR)← REQ PACKET.DATA∗

13: DSPAMy(REQ PACKET.ADDR)← REQ PACKET.DATA∗ ⊕R
14: end if
15: end if

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:12 L. Bathen et al.

Algorithm 6 E-RAID Level Random+Parity (RP) Read/Write Policy - P Mapped to
Non-Voltage Scaled Memory Space
Require: REQ PACKET{CTRL,ADDR,DATA∗}
1: if REQ PACKET.CTRL == READ CTRL then
2: A1← DSPAMx(REQ PACKET.ADDR)
3: P ← DSPAMp(REQ PACKET.ADDR)
4: if A1⊕R == P then
5: REQ PACKET.DATA∗ ← A1
6: return CHANNEL OK
7: else
8: return R⊕ P
9: end if
10: else
11: if REQ PACKET.CTRL == WRITE CTRL then
12: DSPAMx(REQ PACKET.ADDR)← REQ PACKET.DATA∗

13: DSPAMy(REQ PACKET.ADDR)← REQ PACKET.DATA∗ ⊕R
14: end if
15: end if

4.2.5. E-RAID RP. The E-RAID RP schemes assume that the system has a large (32-
bit) known prime number (R), and use it to construct the parity data (P) by XORing
the data with R. This scheme is useful since R is a known value, so in case the data is
corrupted, you can re-construct the value with R XOR P (assuming that P is stored in
non-voltage scaled memory space). Note that the RP scheme is similar to the E-RAID
1 + P presented in [Bathen and Dutt 2011a], except that only a single copy is kept. E-
RAID RP incurs the extra XOR overhead on every write to the E-RAID memory space.
5 shows the read/write policies for E-RAID RP assuming the parity (P) and the data
block (A1) are stored in voltage scaled memory space, so the level is only useful for
error detection and unlike E-RAID 1, it detects an error even if both A1 and P have a
bit error in the exact same bit location. If P was stored in non-voltage scaled memory
space, then on error detection (A1 has error), we could re-construct the data by XORing
P and R as shown in Algorithm 6.

Algorithm 7 E-RAID Level Random+Parity (RP) Read/Write Policy + ECC (SEC)
Require: REQ PACKET{CTRL,ADDR,DATA∗}
1: if REQ PACKET.CTRL == READ CTRL then
2: A1← DSPAMx(REQ PACKET.ADDR)
3: P ← DSPAMp(REQ PACKET.ADDR)
4: if A1⊕R == P then
5: REQ PACKET.DATA∗ ← A1
6: return CHANNEL OK
7: else
8: if (TMP ← SEC(A1, DSPAM Gx(REQ PACKET.ADDR)))! = ERR then
9: REQ PACKET.DATA∗ ← TMP
10: return CHANNEL OK
11: else
12: return SLV ERR
13: end if
14: end if
15: else
16: if REQ PACKET.CTRL == WRITE CTRL then
17: DSPAMx(REQ PACKET.ADDR)← REQ PACKET.DATA∗

18: DSPAMy(REQ PACKET.ADDR)← REQ PACKET.DATA∗ ⊕R
19: DSPAM Gx(REQ PACKET.ADDR)← G)
20: end if
21: end if

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Towards Embedded RAIDs-on-Chip 39:13

Algorithm 8 E-RAID Level Random+Parity (RP) Read/Write Policy + ECC (SEC - P
Mapped to Non-Voltage Scaled Memory Space
Require: REQ PACKET{CTRL,ADDR,DATA∗}
1: if REQ PACKET.CTRL == READ CTRL then
2: A1← DSPAMx(REQ PACKET.ADDR)
3: P ← DSPAMp(REQ PACKET.ADDR)
4: if A1⊕R == P then
5: REQ PACKET.DATA∗ ← A1
6: return CHANNEL OK
7: else
8: if (TMP ← SEC(A1, DSPAM Gx(REQ PACKET.ADDR)))! = ERR then
9: REQ PACKET.DATA∗ ← TMP
10: return CHANNEL OK
11: else
12: if (TMP ← SEC(R⊕ P,DSPAM Gx(REQ PACKET.ADDR)))! = ERR then
13: REQ PACKET.DATA∗ ← TMP
14: return CHANNEL OK
15: else
16: return SLV ERR
17: end if
18: end if
19: end if
20: else
21: if REQ PACKET.CTRL == WRITE CTRL then
22: DSPAMx(REQ PACKET.ADDR)← REQ PACKET.DATA∗

23: DSPAMy(REQ PACKET.ADDR)← REQ PACKET.DATA∗ ⊕R
24: DSPAM Gx(REQ PACKET.ADDR)← G)
25: end if
26: end if

4.2.6. E-RAID RP + ECC. E-RAID RP + ECC enhances with E-RAID RP by keeping
the ECC for the data as backup in case the parity (P) is unable to reconstruct the
data (Algorithm 7). The main difference here is that like E-RAID 1 + ECC, on an error
detection, it attempts to correct it using SEC, if it is unable to correct the error, then
the master/CPU will have to fetch the data from off-chip memory. Algorithm 8 shows
the enhanced version of E-RAID RP + ECC, which assumes that the parity (P) is stored
in non-voltage scaled memory, and can attempt to correct the data by using SEC on
the result of R⊕ P .

4.2.7. E-RAID TMR. Triple Modular Redundancy (TMR) follows the same notion as
E-RAID 1, but maintains three copies (instead of two), and uses a majority vote to
generate the correct result. E-RAID levels provide a degree of reliability, from simple
mirroring (E-RAID 1) to complex parity checking (E-RAID RP), however, not all data
might need reliability guarantees.

4.2.8. NO E-RAID. The NO E-RAID level consists of voltage scaled logical DAMes and
allows for raw access to DAMe space with no reliability guarantee. This level is ex-
tremely useful when the applications running on the CMP are error tolerant (e.g.,
Multimedia), where we can tolerate errors in non-critical (e.g., pixel) data at the ex-
pense of lower quality-of-service (QoS).

4.2.9. Mixing E-RAID Levels. E-RAIDs are flexible enough to allow a designer/compil-
er/OS to choose the right level for a given piece of data. Like stated in Section 4.2.8, we
can combine various E-RAIDs depending on the application’s needs. Our approach can
exploit memory subsystems with built-in ECC and memory subsystems where ECC is
not present. It is possible to voltage scale some memories (SPMs), and let the E-RoC
Manager know which memories are voltage scaled, which memories have ECC support

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:14 L. Bathen et al.

(and ECC strength), and number of memories it has access to. Given these parameters,
the programmer/compiler will make the decisions for the types of E-RAIDs needed to
execute the given application, and the E-RoC Manager will handle to mapping from
E-RAIDs to physical SPMs (DSPAMs).

4.3. Complementing Existing Fault Tolerant Schemes

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

Yi
el

d
%

Error Rate

Yield Vs. Error Rate for Various Schemes

EDC1
EDC8

SEC
SECDED

DEC
DECTED
ERAID_1

ERAID_1_ECC
ERAID_ECC_1

ERAID_RP
ERAID_P_ECC

TMR

Fig. 7. Yield % vs. Error Rate for Various Schemes Assuming Backup Data in Main Memory.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

Yi
el

d
%

Error Rate

Yield Vs. Error Rate for Various Schemes (No access to Main Memory)

EDC1
EDC8

SEC
SECDED

DEC
DECTED
ERAID_1

ERAID_1_ECC
ERAID_ECC_1

ERAID_RP
ERAID_P_ECC

TMR

Fig. 8. Yield % vs. Error Rate for Various Schemes Assuming no Backup Data.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Towards Embedded RAIDs-on-Chip 39:15

E-RAID levels can exploit and enhance existing ECC/Cyclic schemes to provide
higher reliability with minimal overheads. Figure 7 shows various ECC/Cyclic error
detection and correction schemes as well as a series of E-RAID levels and compares
their Yield as a function of the error rate (#errors/bit cell) under different assumptions.
From Figure 7 we can observe that our E-RAID (E-RAID+SEC) levels can further en-
hance the Yield of a system (up to 59% at high error rates (>0.1 errors/bit cell) delivers
an average Yield improvement of 8.9% across all error rates. Note that the assump-
tion here is that on error detection, an error-free backup data can be fetched from
off-chip memory. Figure 8 shows the case where there is no backup data in off-chip
memory, and thus the Yield rate is quite low for the schemes with error-detection only
mechanism: EDC1, EDC8, [Kim et al. 2007] and ERAID 1. Even under the assump-
tion that there is no backup data in off-chip memory, we can see that E-RAID levels
can still provide better Yield than traditional approaches with error correction mecha-
nisms (even the hardened and costly DECTED). As shown in Figure 5, E-RAID levels
are one of the key components in E-RoC as different applications might have differ-
ent fault-tolerance, power, and performance requirements. Our E-RoC customization
framework allows designers to explore among the various levels and choose the one
that meets their power/performance needs.

a) Shared bus ERoC

b) ERoC with dedicated SPM bus

c) Stand alone ERoC

ERoC

ERoC DSPAM DSPAM DSPAM DSPAM

CPU CPU CPU CPU

ERoC DSPAM DSPAM DSPAM DSPAM

DSPAM DSPAM DSPAM DSPAM

CPU CPU CPU CPU

CPU CPU CPU CPU

Fig. 9. Platform Configurations.

4.4. Multi-platform Support and Dynamic Scratch Pad Allocatable Memories (DSPAMs)
We target our designs for multiprocessor embedded SoCs where each processing core
may need to configure an E-RAID system to handle its executing task. As shown in
Figure 9, E-RoC can be customized for different architectural platforms. Since this is
the first piece of work introducing E-RoC, our goal is to show the use of E-RoC on famil-
iar platforms. Thus we consider a simple homogeneous CMP architecture, consisting of
multiple processing cores (CPUs), instruction cache, distributed SPMs, a DMA engine
to facilitate the data transfers among the various SPMs, and a shared bus topology.

We introduce the notion of distributed Dynamic Scratch Pad Allocatable Memories
(DSPAMs). These memories differ from SPMs in that although they are still part of
the memory space, they are only accessed by/through the E-RoC module, and are ag-
gressively voltage scaled. Their physical space is dynamically allocated/de-allocated
by the E-RoC module using a variety of platform configurations. For instance, Figure 9
(a) shows a platform configuration consisting of an E-RoC module connected to the on-
chip bus, with the E-RoC module responsible for maintaining E-RAID systems for each
CPU. Each E-RAID data request will be routed by the bus to the E-RoC slave, which in
turn sends slave requests to each of the respective E-RAID memories it manages. This
model suffers from delays due to on-chip bus traffic. The benefits of a shared model

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:16 L. Bathen et al.

however, are the flexibility in managing the available DSPAMs. Figure 9 (b) shows a
second configuration which consists of a dedicated DSPAM bus where each E-RAID
request is routed to the E-RoC module, which then issues read requests to each of
the DSPAMs. Unlike the model in Figure 9 (a), this model does not suffer from delays
due to the extra traffic on the main on-chip bus. Figure 9 (c) shows a third configu-
ration, which consists of a single stand-alone E-RoC module that has point-to-point
connectivity to each of its managed DSPAMs. This point-to-point connectivity further
reduces the delay due to on-chip data transfers, since each E-RoC request to each of its
managed DSPAMs can be processed instantaneously. One drawback from this model
is that the available DSPAM resources are pre-defined, and therefore not as flexible as
the previous two models.

ERAID_1, 1K

CPU0 CPU1

1K 1K

1K

1K 1K

ERAID_TMR, 1K

CPU2

ERAID_1, 1K

CPU0 CPU1

4K

1K 1K

1K 1K

ERAID_TMR, 1K

CPU2

ERAID_1, 1K

CPU0 CPU1

1K

1K

1K

a)  ERAID_1, ERAID_TMR
on 4 DSPAMs

b)  ERAID_1, ERAID_TMR
on 2 DSPAMs

c) ERAID 1
on a DSPAM

Fig. 10. DSPAM Allocation Policies.

4.5. DSPAM Allocation Policies
Since DSPAMs are extremely valuable resources, the DSPAM allocation algorithm
must be optimized to efficiently allocate their space for each E-RAID system. In tra-
ditional storage systems, an entire disk is dedicated to a RAID system. If we were to
fully allocate a DSPAM to an E-RAID system, the performance degradation would be
too large. To account for this overhead, we introduce two ideas: (i) a virtual DSPAM
address space, which is a unified global address space viewed by the external world,
and (ii) the dynamic allocation of this virtualized address space. The virtual address
space makes it easy for the compiler to allocate/de-allocate space as it would if it was
targeting a regular SPM, and the dynamic support enables us to configure E-RAID
systems of various sizes at run-time, thereby providing the necessary memory space
for each task.

Figure 10 shows three different examples where block based allocation successfully
configured E-RAID systems for two different processors. CPU0 requested a 1K E-
RAID 1 system, which will be shared with CPU1, and CPU2 requested an E-RAID
TMR 1K system. The first two designs with (a) four and (b) two 4KB DSPAMs re-
spectively successfully created the E-RAID systems. The third design (c) with a single
4KB DSPAM has successfully allocated space for the E-RAID 1 1K system, and re-
turned a SLV ERR for the allocation of the second E-RAID TMR system request since
there are no more resources available for its creation. The first allocation policy we

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Towards Embedded RAIDs-on-Chip 39:17

Algorithm 9 AllocationPolicy(v start addr, v end addr,DSPAMnum, E −RAIDsize)

Require: v start addr, v end addr,DSPAMnum, E −RAIDsize

1: {input: virtual start/end addresses, number of DSPAMs to use, and the desired E-RAID size}
2: {output: an E-RAID ID - 0 if unable to allocate space}
3: tries← DSPAMdedicated

4: DSPAMcnt ← DSPAMnum

5: entries created← 0
6: while DSPAMcnt>0 ∧ tries>0 do
7: found block ← false
8: block ← 0
9: for j ← 0; j<ROC BLOCK SIZE∧!found block; j ++ do
10: if MAP [rr DSPAM malloc%DSPAMdedicated][j] == 0 then
11: block ++
12: else
13: block ← 0
14: end if
15: if (block − 1)×ROC BLOCK SIZE == E −RAIDsize then
16: found block ← true
17: p addr s← (j − (block − 1))×ROC BLOCK SIZE
18: p addr e← j ×ROC BLOCK SIZE
19: {update spm blocks occupied}
20: for i← (j − (block − 1)); i ≤ j; i++ do
21: MAP [rr DSPAM malloc%DSPAMdedicated][j] = 1
22: end for
23: {create entry}
24: create lut entry(v start addr, v end addr, p addr s, p addr e)
25: entries created++
26: DSPAMcnt −−
27: end if
28: end for
29: rr DSPAM malloc++
30: tries−−
31: end while
32: if entries created == DSPAMnum then
33: return E −RAID ID ++
34: end if
35: return 0

explore follows the Next Fit model, where DSPAM memory space is split into k blocks
(k ∈ 64, 128, 256, 512 bytes). For each DSPAM we keep a free list (single bit), and we
allocate on the next best-fit basis, while maintaining a circular list of free blocks per
DSPAM. The number of SPMs searched in parallel for allocation depends on the E-
RAID level (e.g. E-RAID 1 requires 2 DSPAMs). We walk through DSPAMs in a round-
robin mode in order to fairly distribute data across DSPAMs. Like traditional RAID
single disk failures, unusable DSPAMs are removed from the list of managed DSPAMs
and background E-RAID re-mapping is done.

Algorithm 9 shows our allocation algorithm which uses a round robin first fit block
allocation scheme. The algorithm walks through each available DSPAM (SPM dedi-
cated to E-RoC) in round robin fashion in order to evenly distribute data blocks among
the different DSPAMs. For each DSPAM, if it encounters an available data block (Line
10). It adds the block to the list. If the size of the block list matches the desired E-
RAID system size (line 15), it marks all blocks in the list as occupied (Lines 20-22).
At the same time, the physical DSPAM start and end address are computed (Lines
17, 18) and a LUT entry is created for the physical/virtual address pairs (Line 24). If
it does not find such list, then it moves to the next DSPAM until the number of tries
reaches zero (a full round robin cycle). If the E-RAID system is successfully created,
the allocation method will then return the E-RAID ID (Line 33). Otherwise it returns

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:18 L. Bathen et al.

0. Block availability information is kept in block MAPs, where a 0 in the DSPAMi’s
jth entry means that the corresponding block in the DSPAM is free, a 1 means occu-
pied. The block size can be configured, currently, we support block sizes of 64Bytes, 128
Bytes, 256 Bytes and 512 Bytes. The back end contains a look up table that maps vir-
tual DSPAM addresses which are the addresses controlled by the compiler to physical
DSPAM addresses, allowing a fast address translation mechanism to process E-RAID
requests. Each E-RAID system will contain a set of LUT entries which will allow it to
map virtual addresses to physical DSPAM addresses. All information for an E-RAID
system is stored in configuration memory. Because of this, the number of concurrent
E-RAID systems supported is limited to one per master, at a maximum of 32 mas-
ters. However, if we increment the available memory in E-RoC from 1K to say 4K, we
can quadruple this number. Note that we could potentially have fixed block mapping,
which would allow for faster address translation and less fragmentation at the cost of
extra E-RoC configuration memory space, as well as more complex allocation policies
such as variable size block allocation [Francesco et al. 2004].

The de-allocation algorithm walks through the LUT entries corresponding to the E-
RAID ID being deleted, and clears the MAP entries (sets them to 0) for each of them.
This enables the Allocation algorithm to use these freed blocks to create new E-RAID
systems.

E-RAID 1, 1K E RAID 1P, 2K NO E-RAID,
2K

CPU0 CPU1 CPU2 CPU3

1K

2K

2K

E
R

oC
:

 L
og

ic
al

 S
P

M
s

NA

ERoC
DSPAM DSPAM DSPAM DSPAM

CPU CPU CPU CPU

SPM

SPM

ERoC Managed DSPAMs

.

.

.

4K	
 4K	
 4K	
 4K	

1K	
 1K	

1K	

1K	
 1K	

1K	

1K	
 1K	
 1K	

1K	

Logical
SPM1 Logical SPM3 Logical SPM2

Fig. 11. Virtual Address Space.

4.6. Logical SPMs and Virtual Address Space
Because data placement onto the E-RAID systems is still left to the compiler, we must
make it possible for the compiler to configure E-RAIDs on demand, as well as manage
the data efficiently. We introduce the idea of Logical SPMs via virtual address spaces in
E-RAID systems. One of the main benefits of E-RoC is that it abstracts the complexity
of the E-RAID system, and presents the compiler with a simplified view of the address
space via a logical SPM. The compiler can create an E-RAID system, and regardless
of the E-RAID level being enforced, the compiler will see the E-RAID system as a

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Towards Embedded RAIDs-on-Chip 39:19

logical memory mapped DSPAM. All transfers between the CPU(s), main memory and
the E-RAID system will follow the same process as in a system with pure SPMs and
DMA support. As an example, Figure 11 shows a diagram of a 4 CPU CMP with SPM
support, and an E-RoC manager with 4 DSPAMs. As shown, CPUs 0 and 1 configured
a 1K E-RAID 1 shared system, CPU2 configured a 2K E-RAID 1 + P system, and
CPU3 has no E-RAID, but wants to access the DSPAM space. All accesses to the E-
RAID systems are transparent as the CPUs see their E-RAIDs as logical SPMs. The
virtual address space presented to the outside world is shown in the dark dashed lined
box. The main difference between DSPAMs and Logical SPMs is that DSPAMs are
physical voltage scaled SPMs visible to the E-RoC manager, while Logical SPMs are
addressable memory spaces visible to the compiler/OS. Note that a Logical SPM must
first be created before an E-RAID level can be associated with that Logical SPM, this
is reflected in Figure 11, where Logical SPM 1 is associated with an E-RAID Level of
1KB.

C
on

fig
ur

at
io

n
M

em
or

y

iDMA

Allocator

De-allocator

ERAID
Read

ERAID
Write

ERoC Slave IF

E
R

oC
 M

as
te

r I
F

E
R

A
ID

S

LV
_R

D

E
R

A
ID

S

LV
_W

R

ERoC

Fig. 12. E-RoC Manager Architecture.

4.7. E-RoC Manager Architecture
Figure 12 shows the architecture of the E-RoC manager, consisting of a master and a
slave interface. The slave interface handles incoming E-RAID requests, and the mas-
ter interface issues read/write requests to each DSPAM managed. Each master in the
system has a dedicated and restricted memory space in the E-RoC module. This mech-
anism prevents other masters from overwriting configuration information for another
master’s E-RAID system. The E-RAID Read/Write modules handle read/write requests
depending on the policies being handled. If the transaction is a configuration request,
then the validity of the request is checked. Given the allocation policy, on an E-RAID
create request, the allocator searches for space across the various DSPAMs; if there
is enough space, the E-RAID system is created. In the case the master desires the E-
RAID system to be built using data from some memory space, the allocator uses its
internal DMA engine (iDMA) to fetch the data and store it in the new E-RAID system.
On a de-allocation request, the E-RAID is offloaded onto main memory (when desired)
and the blocks occupied by the E-RAID are freed.

Figure 13 shows the configuration packet for the E-RoC manager. Because we are
dealing with software controlled memories (SPMs), what data is placed onto the E-
RAID is still left to the compiler. Therefore each E-RAID system must be configured by
a system master with the support of the compiler. E-RoC provides a set of API calls to
allocate/de-allocate an E-RAID system. Each master may have at most one configured
E-RAID, however, because of the fact that E-RoC supports access control lists (ACLs),
each master may be able to access more than one E-RAID system at a time. At the core

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:20 L. Bathen et al.

E-RoC Configuration Packet

4 4 2 2 4 8 8

M Ptr* R S L DSPAMcnt RID

Virtual Address Start

Virtual Address End

HW_ID/ACL

Payload

HW_ID/ACL HW_ID/ACL HW_ID/ACL

Fig. 13. E-RoC Manager Configuration Packet.

of the API is the configuration packet sent to the E-RoC. Every time an E-RAID is to
be configured/created/deleted a configuration packet must be constructed and sent to
the E-RoC manager. Each configuration packet is written to the configuration memory
space dedicated to the CPU sending it to the RoC module. The configuration packet
consists of the following fields:

— RID: The E-RAID ID populated by the Allocator block on a successful E-RAID cre-
ation. It is 0 otherwise

— DSPAMcnt: Number of DSPAMs managed by the E-RAID level
— L: E-RAID level to be configured
— S: Field used to determine if an E-RAID is shared
— M: The mode field is used to create/delete E-RAID systems. There are four modes

supported: CREATE, CREATE LOAD, DELETE, DELETE UNLOAD. Both CRE-
ATE and DELETE simply create/delete the E-RAID systems. CREATE LOAD and
DELETE LOAD load/unload data from/to main memory via iDMA transactions

— Virtual Start and End Addresses refer to the virtual addresses as viewed by the
program in SPM space

— ACLs: Each E-RAID system may be configured by a single master. No other master
can access the E-RAID’s data. A master may grant access to its E-RAID to other
masters as long as their respective IDs are added to the ACL (at most 5 masters may
share a Logical SPM (and an E-RAID Level)

— Ptr∗: A pointer/address field which is used to associate a level with a Logical SPM

E-RAID
RD

E-RAID
WR

Write/Read
CFG Memory

Config.
TX

Allocate E-RAID

De-Allocate
E-RAID

Valid
RAID
TX

SLV
RD

SLV
WR

iDMA

LOAD
UNLOAD

SLV_ERR

NO

YES:
ACL Valid

NO

YES:
ACL Valid

YES

Asynchronous Completion
Transaction Completes in a Single Request
Transaction Error

Fig. 14. E-RoC Manager Configuration Packet.

Figure 14 shows the control sequence for carrying transactions by the E-RoC man-
ager. If a transaction is deemed as a valid configuration memory transaction, the

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Towards Embedded RAIDs-on-Chip 39:21

packet is written to CFG memory, in case of a read request, the configuration memory
is read and returned to the master. On a write, the mode is checked. If it is a create
request, the allocator is invoked and an E-RAID is created, in case it is not feasible
(not enough space), then an error (SLV ERR) is returned to the master. In case the
E-RAID was successfully created, then the mode is checked for the LOAD option, if
so, then a DMA request is places for the data to be loaded onto the E-RAID via iDMA.
Similarly, on a delete UNLOAD option, the iDMA is configure to transfer the data from
the E-RAID onto main memory. At this point, the request returns to the master, how-
ever, it is an asynchronous completion and thus the master has to wait for its E-RAID
data to be loaded/unloaded (this process is shown by the dashed dark edges) before
it use or can create a new E-RAID system. On a simple create/delete request or E-
RAID valid transaction (TX), the transaction completes and is sent back to the master
(shown by the dark straight edges). Note that before accessing any memory region, the
transaction’s ACL is validated.

OS
Software E-RoC

Manager

Platform (CMP)

E-RoC SPM SPM SPM SPM

CPU CPU CPU CPU

Hardware E-RoC
Manager

Fig. 15. Software/Hardware E-RoC Layer.

4.8. Software/Hardware E-RoC Layer
As discussed in section 3.2, like traditional RAID, the E-RoC concepts can be imple-
mented as a Hardware module (e.g., an enhanced bus arbiter with MMU and internal
DMA capabilities as shown in the previous section) or a Software memory manage-
ment module (like software RAID) as shown in Figure 15. The software E-RoC layer
should be light-weight, flexible, and modularized in a manner that allows for easy inte-
gration into existing OSes/Hypervisors. The hardware E-RoC Manager module should
have minimal area overheads, and support a simplified API for transparent use by
the programmers or the OS/Hypervisor software stacks. The software E-RoC Manager
Module has the benefit of being flexible, portable (across various hardware configura-
tions) and requires no extra hardware. The benefits of the software implementation
comes at the cost of higher power/performance overheads than the hardware imple-
mentation. Ideally, both hardware and software E-RoC should support the same mini-
mal API and should require minimal changes in the programming model. For this pa-

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:22 L. Bathen et al.

per, we mainly focused on the hardware E-RoC implementation, and leave the software
E-RoC implementation as future work. Our goal is to have a tightly coupled SW/HW
layer that exploits the benefits of both software and hardware E-RoC modules.

4.9. Access Control Lists (ACL)
Access Control Lists (ACLs) are used to guarantee that no unauthorized masters gain
access to a given memory region (E-RAID), this is to protect memory regions from acci-
dental and malicious accesses to memory regions, thereby protecting against data cor-
ruption and possible eavesdropping by malicious processes [Bathen and Dutt 2011b].

5. RELATED WORK
SPMs have through the years become a critical component of the memory hierarchy
[Jung et al. 2010; Bai and Shrivastava 2010], and are expected to be the memories of
choice for future many-core platforms (e.g., [IBM 2005; Intel 2009; Tilera 2010]). Un-
like cache-based platforms where data is dynamically loaded into the cache with hopes
of some degree of reuse due to access locality, SPM based systems depend completely on
the compiler to determine what data to load. Placement of data onto memory is often
done statically by the compiler through static analysis or application profiling, the lo-
cation of data is known a priori which increases the predictability of the system [Panda
et al. 1997] . For these reasons we focus on exploiting distributed SPMs.

Much of the state of the art work in reliable memory systems focuses on caches.
[Makhzan et al. 2007] propose the idea of exploiting error maps to correct faulty cells
on the main cache. [Kim 2006] introduce an area efficient ECC cache protection mech-
anism. [Kim et al. 2007] proposed a multi-bit error correction scheme for Caches using
2D-ECC. [Lee et al. 2006] propose the idea of using partitioned caches to protect critical
data that is mapped onto an ECC protected cache, with non-critical data mapped onto
a regular cache. [Zhang 2004] introduce a small fully associative cache into the mem-
ory hierarchy where data is replicated; the duplicates are used to detect and correct
errors. In the event of process variation errors, techniques such as technology map-
ping and cache redundancy are used [Lucente et al. 1990; Chakraborty et al. 2010].
ECC/replication hybrids have also been composed in both the cache domain [Zhang
et al. 2003] and the SPM domain [Li et al. 2005]. Since we target SPM based systems,
the closest piece of work to E-RoC is the work done in [Li et al. 2005], which uses parity
calculations to check the validity of data; in the case of an error, an extra copy of the
data is fetched, assuming no errors in the extra. Data mapped onto the E-RAID can
follow the same process as proposed in [Panda et al. 1997; Verma et al. 2003; Issenin
et al. 2004; Issenin et al. 2006; Bathen et al. 2008; Cho et al. 2008; Bathen et al. 2009]
with a few minor modifications, mainly E-RAID configuration requests before data is
mapped onto the E-RAID. Because E-RoC relies on data duplication and simple com-
parisons/XORs to check/correct data, we have seen great improvements not only in
power but also in performance, as most ECC/replication approaches require expen-
sive ECC parity calculations on every transaction. Similarly, E-RoC’s space overhead
is very similar to existing data replication techniques as it keeps at most two copies of
the data and the parity (E-RAID 1+P and TMR).

Most SPM approaches [Panda et al. 1997; Kandemir et al. 2001; Verma et al. 2003;
Suhendra et al. 2006; Suhendra et al. 2008; Gauthier et al. 2010; Takase et al. 2010;
Pyka et al. 2007] focus on single SPM management through static analysis and pro-
filing information. [Shalan and Mooney 2000] looked at dynamic memory manage-
ment for global memory through the use a hardware module. [Francesco et al. 2004]
proposed a memory manager that supports dynamic allocation of SPM space, which
supports block-based allocation (fixed and variable). Egger et al. proposed SPM man-
agement techniques for MMU supported [Egger et al. 2008] and MMU-less embedded

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Towards Embedded RAIDs-on-Chip 39:23

systems [Egger et al. 2010], where code was divided into cacheable code and pageable
(SPM) code, and the most commonly used code is mapped onto SPM space. [Pyka et
al. 2007] introduced an OS-level management layer that exploited hints from static
analysis at run-time to dynamically map objects onto SPMs.

Our approach is the first piece of work that looks at the idea of dynamic allocation
in distributed SPMs, as well as their use from a reliability perspective. Our approach
can be complemented by existing SPM management approaches [Panda et al. 1997;
Kandemir et al. 2001; Verma et al. 2003; Suhendra et al. 2006; Suhendra et al. 2008;
Bathen et al. 2009; Gauthier et al. 2010; Takase et al. 2010; Pyka et al. 2007] and even
exploit some of the allocation policies presented in [Francesco et al. 2004].

Our approach is capable of exploiting the built-in circuitry in on-chip memories,
and enhance their fault tolerance by building the E-RAID levels on top. Moreover,
our approach is dynamic enough so that you can have a fully heterogeneous E-RAID
environment, each meeting different fault tolerance, power, and performance needs for
each application.

Finally, this work is different from all existing SPM management and memory re-
liability approaches in that it is the first to propose a system-level solution for both
efficient on-chip distributed SPM management and exploiting said distribution to pro-
vide a fully distributed fault tolerant scheme.

6. EXPERIMENTAL EVALUATION
6.1. Experimental Goals
The goals of the experimentation section are to highlight the many benefits of having
an E-RAID enabled memory subsystem. First, we compare our approach with state-of-
the-art approaches. Second, we show the effects of the load of the system on E-RoC’s
performance. Third, we evaluate the effects of different bus-arbitration policies on E-
RoC’s performance. Fourth, we look at how E-RoC and the E-RAID concepts can be
applied and used to exploit (enhance) traditional ECC schemes and evaluate their effi-
ciency in terms of Yield, Dynamic/Static Energy, and Performance. Fifth, we look at the
effects of having limited E-RAID space for a given application on performance/power
consumption. Finally, we explore the notion of creating heterogeneous E-RAID systems
and show how an application can benefit from partitioning its data and mapping it to
the right E-RAID level.

6.2. Experimental Setup
We implemented our E-RAID ideas in the Chip-Multiprocessor E-RoC Manager. The
E-RoC concept has been implemented in SystemC [OSCI 2005] and embedded into our
SystemC based modeling framework [Pasricha 2002; Bathen et al. 2009; Bathen et al.
2009], which allows us to estimate both power and performance for the entire system.
Our framework allows us to interface with CACTI [Thoziyoor et al. 2004], voltage scale
our memories and observe the effects of the scaling (e.g., increased access latency, uni-
form error distribution, etc.). Since we deal with SPM based systems, we compare our
work with two existing approaches: (i) a standard ECC based approach (SECDED) that
verifies and corrects the data (labeled ECC), and (ii) the duplication with parity work
[Li et al. 2005] (labeled DUP), we explored various CMP configurations and mapped a
series of benchmarks from [Hara et al. 2008; Lee et al. 1997]. We implemented various
ECC schemes presented in [Chen and Hsiao 1984; Kim et al. 2007]. Our approach can
be used for protection against both soft and hard errors, however, for this work we will
focus solely on process variation induced errors, and we base our fault models on the
work presented in [Makhzan et al. 2007; Jahinuzzaman et al. 2008; Kalter et al. 1990]
for the various voltages used.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:24 L. Bathen et al.

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

SPM ECC DUP ERAID1 ERAID1
Partial

ERAID1P ERAID1P
Partial

Normalized Performance

JPEGENC JPEGDEC H263

0

1

2

3

4

SPM ECC DUP ERAID1 ERAID1
Partial

ERAID1P ERAID1P
Partial

Normalized Power

JPEGENC JPEGDEC H263

Fig. 16. Normalized performance (left) and power consumption (right) for three different benchmarks.

6.3. Normalized Performance and Power Consumption
Figure 16 shows the normalized performance and power consumption for a CMP with
8 cores and 8 4KB SPMs. For this experiment we configured the E-RoC manager as
shown in Figure 9 (a). The base case is a CMP with no voltage scaling applied to
the SPMs. The standard SPM case outperforms all other configurations because a)
the ECC/parity check overheads incurred in the ECC/DUP cases and b) the backend
address translation as well as fetching the data from up to three different DSPAMs
(in case data needs to be reconstructed) performed by E-RAID. Our E-RAID systems
outperforms the ECC/DUP configurations by up to 14% and consumes up to 80% less
power than the standard high voltage SPM CMP and up to 85% less power than the
ECC/DUP approaches.

6.4. Selective Data Partitioning
E-RoC is well suited for approaches that can selectively partition data into critical/vul-
nerable and non-critical data [Lee et al. 2006]. Such approaches allow us to further
reduce power consumption and improve performance as E-RoC offers the ability to
choose low power policies such as NO E-RAID, where non-critical (e.g., image pixel)
data may be mapped. This is illustrated in Figure 16 (labeled: Partial in the graphs),
where by selectively creating E-RAID systems (i.e., mapping critical data to E-RAID1
space and non-critical to NO E-RAID space), performance can be improved by up to
5%, and power consumption can be further reduced by up to 15%.

0 0.2 0.4 0.6 0.8 1 1.2

DUP
ECC

ERAID1C1
ERAID1PC1

ERAID1C2
ERAID1PC2

ERAID1C3
ERAID1PC3

Normalized Performance

16CPUx8KBSPM 8CPUx8KBSPM 4CPUx8KBSPM

0 0.2 0.4 0.6 0.8 1 1.2

DUP
ECC

ERAID1C1
ERAID1PC1

ERAID1C2
ERAID1PC2

ERAID1C3
ERAID1PC3

Normalized Power

16CPUx8KBSPM 8CPUx8KBSPM 4CPUx8KBSPM

Fig. 17. Normalized performance (left) and power consumption (right) for a pipelined JPEG Encoder using
different platform configurations with E-RoC manager support as shown in Figure 9 .

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Towards Embedded RAIDs-on-Chip 39:25

6.5. Choosing the Right Platform Configuration
The platform configuration affects the systems performance and power consumption
footprint. Figure 17 shows the normalized performance and power consumption for
different CMP configurations, where C1-3 refer to configurations (a-c) from Figure 9.
As expected, performance was greatly improved when migrating from configuration
C1 (shared bus) to C2 (dual bus) due to less bus contention. Configuration C3 (stand
alone E-RoC), was able to further improve performance by 10% with respect to C1.
Power consumption remains within a 2% difference for all three configurations (C1-3).
This pipelined implementation of JPEG showed up to 61% latency reduction and 67%
power reduction when compared to standard ECC/DUP approaches.

0

500

1000

1500

2000

2500

3000

0

0.5

1

1.5

2

2.5

1.1 0.9 0.8 0.75 0.7 0.65 0.6

NORMALIZED POWER

CPU HANDLED ERRORS

Effects	
 of	
 Voltage	
 Scaling	
 on	
 a	
 16	
 Core	
 CMP	
 U8lizing	
 an	
 E-­‐RAID1	
 System	

Fig. 18. Effects of Voltage Scaling on E-RoC.

6.6. Effects of Voltage Scaling on E-RoC
Figure 18 shows the effects of voltage scaling on a 16 Core CMP with a total of 16 con-
currently managed E-RAID systems. As we scale down voltage, power consumption
is indeed being reduced (dashed line), while the error rate skyrockets (straight line).
This behavior confirms our initial observations from Section 4.1 that aggressive volt-
age scaling of SPMs increases the memory error rate (handled by our E-RAID systems)
but reduces the power consumption.

6.7. Pipelined JPEG Encoder Performance and Power Consumption
For this experiment we took the JPEG Encoder and pipelined its execution [Bathen
et al. 2009] in order to fully utilize the system’s resources. The goal is to evaluate the
effects of the workload on the memory subsystem.

Figure 19 (a) shows the performance improvements for multiple configurations (C1-3
refer to the configurations proposed in Section 4.4), as well as different E-RAID levels
over the ECC/DUB techniques. As we can observe, performance improvements are
higher when we move away from the shared bus model as well as when the number
of masters concurrently accessing the bus, memory subsystem and E-RoC is reduced.
This can be verified by looking at the behavior of the CMP with 16 Cores and the CMP
with 4 cores.

Figure 19 (b) shows the power reduction achieved through E-RoC. On average, over
system wide 55% power consumption has been reduced as our E-RAID levels have been
optimized to minimize both power consumption and performance degradation due to
our redundant memory subsystem. As it was the case with performance, as the num-
ber of masters accessing E-RoC increases, both power and performance improvements
remain moderate.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:26 L. Bathen et al.

0 10 20 30 40 50 60 70

cmp_16_c1.raid1/dup
cmp_16_c1.raid1p/dup

cmp_16_c2.raid1/dup
cmp_16_c2.raid1p/dup

cmp_16_c3.raid1/dup
cmp_16_c3.raid1p/dup

cmp_16_c1.raid1/ecc
cmp_16_c1.raid1p/ecc

cmp_16_c2.raid1/ecc
cmp_16_c2.raid1p/ecc

cmp_16_c3.raid1/ecc
cmp_16_c3.raid1p/ecc

cmp_8_c1.raid1/dup
cmp_8_c1.raid1p/dup

cmp_8_c2.raid1/dup
cmp_8_c2.raid1p/dup

cmp_8_c3.raid1/dup
cmp_8_c3.raid1p/dup

cmp_8_c1.raid1/ecc
cmp_8_c1.raid1p/ecc

cmp_8_c2.raid1/ecc
cmp_8_c2.raid1p/ecc

cmp_8_c3.raid1/ecc
cmp_8_c3.raid1p/ecc
cmp_4_c1.raid1/dup

cmp_4_c1.raid1p/dup
cmp_4_c2.raid1/dup

cmp_4_c2.raid1p/dup
cmp_4_c3.raid1/dup

cmp_4_c3.raid1p/dup
cmp_4_c1.raid1/ecc

cmp_4_c1.raid1p/ecc
cmp_4_c2.raid1/ecc

cmp_4_c2.raid1p/ecc
cmp_4_c3.raid1/ecc

cmp_4_c3.raid1p/ecc
Performance Improvements

50 60 70

cmp_16_c1.raid1/dup
cmp_16_c1.raid1p/dup

cmp_16_c2.raid1/dup
cmp_16_c2.raid1p/dup

cmp_16_c3.raid1/dup
cmp_16_c3.raid1p/dup

cmp_16_c1.raid1/ecc
cmp_16_c1.raid1p/ecc
cmp_16_c2.raid1/ecc

cmp_16_c2.raid1p/ecc
cmp_16_c3.raid1/ecc

cmp_16_c3.raid1p/ecc
cmp_8_c1.raid1/dup

cmp_8_c1.raid1p/dup
cmp_8_c2.raid1/dup

cmp_8_c2.raid1p/dup
cmp_8_c3.raid1/dup

cmp_8_c3.raid1p/dup
cmp_8_c1.raid1/ecc

cmp_8_c1.raid1p/ecc
cmp_8_c2.raid1/ecc

cmp_8_c2.raid1p/ecc
cmp_8_c3.raid1/ecc

cmp_8_c3.raid1p/ecc
cmp_4_c1.raid1/dup

cmp_4_c1.raid1p/dup
cmp_4_c2.raid1/dup

cmp_4_c2.raid1p/dup
cmp_4_c3.raid1/dup

cmp_4_c3.raid1p/dup
cmp_4_c1.raid1/ecc

cmp_4_c1.raid1p/ecc
cmp_4_c2.raid1/ecc

cmp_4_c2.raid1p/ecc
cmp_4_c3.raid1/ecc

cmp_4_c3.raid1p/ecc

Power Reduction

Fig. 19. Improvements over Traditional Approaches.

6.8. Effects of Arbitration Policy
Arbitration policies will have a major impact in E-RoCs performance and power con-
sumption, as shown in Figure 20 (a), (b), respectively. The reason behind this depen-
dence is the fact that E-RoC serves both as a slave to all the CPUs/masters in the sys-
tem who need a reliable memory system and a master to all of its managed DSPAMS.
As we can see from Figure 20, E-RoC suffers degradation in both power and perfor-
mance when a round-robin arbitration scheme is used in configuration 1 (C1 in Fig-
ure 9 (a)) as E-RoC must compete with all other masters for bus cycles. This overhead
is minimized when we move away from the single shared bus model, as shown in con-
figurations 2 and 3, Figure 9 (b), and (c) respectively.

6.9. Comparison Among Various Schemes
Figures 21, 22, 23, and 24 show the Yield, Dynamic Power Consumption, Static Power
Consumption, and Performance Overheads for the various fault tolerant schemes
shown in Table I. For this set of experiments we varied the voltage for each of the
dedicated DSPAMs allocated to our E-RoC manager. We set the configuration to the
bus-based CMP (Figure 9 (a)), with one active processing core and a total of eight 8KB
SPMs. Each SPM was aggressively voltage scaled, ranging from 0.35 Vdd to 1.1 (Nom-
inal) Vdd per [Jahinuzzaman et al. 2008]. We then mapped a set of benchmarks from
[Hara et al. 2008; Lee et al. 1997] assuming no data cache, and all data either being

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Towards Embedded RAIDs-on-Chip 39:27

0 20 40 60 80 100 120

RR_C1
STATIC_C1

TDMA_RR_C1
TDMA_C1

RR_C2
STATIC_C2

TDMA_RR_C2
TDMA_C2

RR_C3
STATIC_C3

TDMA_RR_C3
TDMA_C3

A
rb

itr
at

io
n

Po
lic

ie
s

Effects of Arbitration Policies on Execution Time (E-RAID1)

NORMALIZED EXECUTION

92 93 94 95 96 97 98 99 100

RR_C1
STATIC_C1

TDMA_RR_C1
TDMA_C1

RR_C2
STATIC_C2

TDMA_RR_C2
TDMA_C2

RR_C3
STATIC_C3

TDMA_RR_C3
TDMA_C3

A
rb

itr
at

io
n

Po
lic

ie
s

Effects of Arbitration Policies on Power Consumption (E-RAID1)

NORMALIZED POWER

a)

b)

Fig. 20. Effects of Arbitration Policy.

mapped onto SPMs (Logical SPMs with E-RAID support), or main memory. All results
are normalized to the case where the SPMs are running at Nominal Vdd (1.1 Vdd),
and do not have any error protection mechanism in place. We denote the baseline as
Nominal. Note that for all approaches, the same amount of physical space is available,
the only difference is the usable space which is determined by the number of Logical
SPMs created and their respective E-RAID levels (if any). The goal here is to show
how our framework can be used by designers to investigate through tradeoff analy-
sis (yield, power, performance) which E-RAID levels would make sense for their given
applications (sets of applications).

For this experiment we assumed that in the case of error detection schemes (EDC,
EDC8, E-RAID1, etc.), we could fetch the correct copy from main memory at the cost
of the extra power/performance overhead. Because of this, most schemes achieve near
100% Yield around 0.5 - 0.65 Vdd. On average, we see that our E-RAID levels converge
to 100% Yield much faster than traditional ECC approaches. Moreover, E-RAID levels
that exploit ECC (e.g., E-RAID ECC + 1, E-RAID RP + ECC) can guarantee 99.9%
Yield at ultra low Vdd on average, where as SECDED and DECTED were able to at-
tain 99.1% and 99.4% Yield respectively. Our E-RAID levels (detection and correction)
achieved a worst case 93.9% Yield (AES), where as the traditional ECC approaches
achieved a worst case of 34.1% Yield (MOTION).

Dynamic power consumption can be observed in Figure 22. As expected, at ultra
low Vdd, the error rate is so high that on error detection, many schemes fetch data
from off-chip memory, so the increased off-chip traffic offsets the energy savings due
to the voltage scaling and this can be observed by the first set of points in the graphs
where the power consumption with respect to the Nominal case is much higher. As we
start increasing the voltage we start seeing a decline in dynamic power consumption

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:28 L. Bathen et al.

ADCPM AES

 75

 80

 85

 90

 95

 100

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Yi
el

d
%

Vdd (v)

Yield Vs. Vdd (v)

EDC1
EDC8

SEC
SECDED

DEC
DECTED
ERAID_1

ERAID_1_ECC
ERAID_ECC_1

ERAID_RP
ERAID_P_ECC

TMR
 60

 65

 70

 75

 80

 85

 90

 95

 100

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Yi
el

d
%

Vdd (v)

Yield Vs. Vdd (v)

EDC1
EDC8

SEC
SECDED

DEC
DECTED
ERAID_1

ERAID_1_ECC
ERAID_ECC_1

ERAID_RP
ERAID_P_ECC

TMR

BLOWFISH GSM

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Yi
el

d
%

Vdd (v)

Yield Vs. Vdd (v)

EDC1
EDC8

SEC
SECDED

DEC
DECTED
ERAID_1

ERAID_1_ECC
ERAID_ECC_1

ERAID_RP
ERAID_P_ECC

TMR
 84

 86

 88

 90

 92

 94

 96

 98

 100

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Yi
el

d
%

Vdd (v)

Yield Vs. Vdd (v)

EDC1
EDC8

SEC
SECDED

DEC
DECTED
ERAID_1

ERAID_1_ECC
ERAID_ECC_1

ERAID_RP
ERAID_P_ECC

TMR

H263 JPEG

 75

 80

 85

 90

 95

 100

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Yi
el

d
%

Vdd (v)

Yield Vs. Vdd (v)

EDC1
EDC8

SEC
SECDED

DEC
DECTED
ERAID_1

ERAID_1_ECC
ERAID_ECC_1

ERAID_RP
ERAID_P_ECC

TMR
 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Yi
el

d
%

Vdd (v)

Yield Vs. Vdd (v)

EDC1
EDC8

SEC
SECDED

DEC
DECTED
ERAID_1

ERAID_1_ECC
ERAID_ECC_1

ERAID_RP
ERAID_P_ECC

TMR

MOTION SHA

 30

 40

 50

 60

 70

 80

 90

 100

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Yi
el

d
%

Vdd (v)

Yield Vs. Vdd (v)

EDC1
EDC8

SEC
SECDED

DEC
DECTED
ERAID_1

ERAID_1_ECC
ERAID_ECC_1

ERAID_RP
ERAID_P_ECC

TMR
 94

 95

 96

 97

 98

 99

 100

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Yi
el

d
%

Vdd (v)

Yield Vs. Vdd (v)

EDC1
EDC8

SEC
SECDED

DEC
DECTED
ERAID_1

ERAID_1_ECC
ERAID_ECC_1

ERAID_RP
ERAID_P_ECC

TMR

Fig. 21. Yield Comparison

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Towards Embedded RAIDs-on-Chip 39:29

ADCPM AES

 0.1

 1

 10

 100

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
or

m
al

iz
ed

 P
ow

er
 C

on
su

m
pt

io
n

(v
s.

 N
om

in
al

 V
dd

)

Vdd (v)

Normalized Power Consumption Vs. Vdd (v)

EDC1
EDC8

SEC
SECDED

DEC
DECTED
ERAID_1

ERAID_1_ECC
ERAID_ECC_1

ERAID_RP
ERAID_P_ECC

TMR
Nominal

 0.1

 1

 10

 100

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
or

m
al

iz
ed

 P
ow

er
 C

on
su

m
pt

io
n

(v
s.

 N
om

in
al

 V
dd

)

Vdd (v)

Normalized Power Consumption Vs. Vdd (v)

EDC1
EDC8

SEC
SECDED

DEC
DECTED
ERAID_1

ERAID_1_ECC
ERAID_ECC_1

ERAID_RP
ERAID_P_ECC

TMR
Nominal

BLOWFISH GSM

 0.1

 1

 10

 100

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
or

m
al

iz
ed

 P
ow

er
 C

on
su

m
pt

io
n

(v
s.

 N
om

in
al

 V
dd

)

Vdd (v)

Normalized Power Consumption Vs. Vdd (v)

EDC1
EDC8

SEC
SECDED

DEC
DECTED
ERAID_1

ERAID_1_ECC
ERAID_ECC_1

ERAID_RP
ERAID_P_ECC

TMR
Nominal

 0.1

 1

 10

 100

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
or

m
al

iz
ed

 P
ow

er
 C

on
su

m
pt

io
n

(v
s.

 N
om

in
al

 V
dd

)

Vdd (v)

Normalized Power Consumption Vs. Vdd (v)

EDC1
EDC8

SEC
SECDED

DEC
DECTED
ERAID_1

ERAID_1_ECC
ERAID_ECC_1

ERAID_RP
ERAID_P_ECC

TMR
Nominal

H263 JPEG

 0.1

 1

 10

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
or

m
al

iz
ed

 P
ow

er
 C

on
su

m
pt

io
n

(v
s.

 N
om

in
al

 V
dd

)

Vdd (v)

Normalized Power Consumption Vs. Vdd (v)

EDC1
EDC8

SEC
SECDED

DEC
DECTED
ERAID_1

ERAID_1_ECC
ERAID_ECC_1

ERAID_RP
ERAID_P_ECC

TMR
Nominal

 0.1

 1

 10

 100

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
or

m
al

iz
ed

 P
ow

er
 C

on
su

m
pt

io
n

(v
s.

 N
om

in
al

 V
dd

)

Vdd (v)

Normalized Power Consumption Vs. Vdd (v)

EDC1
EDC8

SEC
SECDED

DEC
DECTED
ERAID_1

ERAID_1_ECC
ERAID_ECC_1

ERAID_RP
ERAID_P_ECC

TMR
Nominal

MOTION SHA

 0.1

 1

 10

 100

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
or

m
al

iz
ed

 P
ow

er
 C

on
su

m
pt

io
n

(v
s.

 N
om

in
al

 V
dd

)

Vdd (v)

Normalized Power Consumption Vs. Vdd (v)

EDC1
EDC8

SEC
SECDED

DEC
DECTED
ERAID_1

ERAID_1_ECC
ERAID_ECC_1

ERAID_RP
ERAID_P_ECC

TMR
Nominal

 0.1

 1

 10

 100

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
or

m
al

iz
ed

 P
ow

er
 C

on
su

m
pt

io
n

(v
s.

 N
om

in
al

 V
dd

)

Vdd (v)

Normalized Power Consumption Vs. Vdd (v)

EDC1
EDC8

SEC
SECDED

DEC
DECTED
ERAID_1

ERAID_1_ECC
ERAID_ECC_1

ERAID_RP
ERAID_P_ECC

TMR
Nominal

Fig. 22. Normalized Dynamic Power Consumption Comparison

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:30 L. Bathen et al.

ADCPM AES

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
or

m
al

iz
ed

 S
ta

tic
 E

ne
rg

y
(v

s.
 N

om
in

al
 V

dd
)

Vdd (v)

Normalized Static Energy Vs. Vdd (v)

EDC1
EDC8

SEC
SECDED

DEC
DECTED
ERAID_1

ERAID_1_ECC
ERAID_ECC_1

ERAID_RP
ERAID_P_ECC

TMR
Nominal

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
or

m
al

iz
ed

 S
ta

tic
 E

ne
rg

y
(v

s.
 N

om
in

al
 V

dd
)

Vdd (v)

Normalized Static Energy Vs. Vdd (v)

EDC1
EDC8

SEC
SECDED

DEC
DECTED
ERAID_1

ERAID_1_ECC
ERAID_ECC_1

ERAID_RP
ERAID_P_ECC

TMR
Nominal

BLOWFISH GSM

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
or

m
al

iz
ed

 S
ta

tic
 E

ne
rg

y
(v

s.
 N

om
in

al
 V

dd
)

Vdd (v)

Normalized Static Energy Vs. Vdd (v)

EDC1
EDC8

SEC
SECDED

DEC
DECTED
ERAID_1

ERAID_1_ECC
ERAID_ECC_1

ERAID_RP
ERAID_P_ECC

TMR
Nominal

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
or

m
al

iz
ed

 S
ta

tic
 E

ne
rg

y
(v

s.
 N

om
in

al
 V

dd
)

Vdd (v)

Normalized Static Energy Vs. Vdd (v)

EDC1
EDC8

SEC
SECDED

DEC
DECTED
ERAID_1

ERAID_1_ECC
ERAID_ECC_1

ERAID_RP
ERAID_P_ECC

TMR
Nominal

H263 JPEG

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
or

m
al

iz
ed

 S
ta

tic
 E

ne
rg

y
(v

s.
 N

om
in

al
 V

dd
)

Vdd (v)

Normalized Static Energy Vs. Vdd (v)

EDC1
EDC8

SEC
SECDED

DEC
DECTED
ERAID_1

ERAID_1_ECC
ERAID_ECC_1

ERAID_RP
ERAID_P_ECC

TMR
Nominal

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
or

m
al

iz
ed

 S
ta

tic
 E

ne
rg

y
(v

s.
 N

om
in

al
 V

dd
)

Vdd (v)

Normalized Static Energy Vs. Vdd (v)

EDC1
EDC8

SEC
SECDED

DEC
DECTED
ERAID_1

ERAID_1_ECC
ERAID_ECC_1

ERAID_RP
ERAID_P_ECC

TMR
Nominal

MOTION SHA

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
or

m
al

iz
ed

 S
ta

tic
 E

ne
rg

y
(v

s.
 N

om
in

al
 V

dd
)

Vdd (v)

Normalized Static Energy Vs. Vdd (v)

EDC1
EDC8

SEC
SECDED

DEC
DECTED
ERAID_1

ERAID_1_ECC
ERAID_ECC_1

ERAID_RP
ERAID_P_ECC

TMR
Nominal

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
or

m
al

iz
ed

 S
ta

tic
 E

ne
rg

y
(v

s.
 N

om
in

al
 V

dd
)

Vdd (v)

Normalized Static Energy Vs. Vdd (v)

EDC1
EDC8

SEC
SECDED

DEC
DECTED
ERAID_1

ERAID_1_ECC
ERAID_ECC_1

ERAID_RP
ERAID_P_ECC

TMR
Nominal

Fig. 23. Normalized Static Energy Comparison

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Towards Embedded RAIDs-on-Chip 39:31

ADCPM AES

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

(v
s.

 N
om

in
al

 V
dd

)

Vdd (v)

Normalized Execution Time Vs. Vdd (v)

EDC1
EDC8

SEC
SECDED

DEC
DECTED
ERAID_1

ERAID_1_ECC
ERAID_ECC_1

ERAID_RP
ERAID_P_ECC

TMR
Nominal

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

(v
s.

 N
om

in
al

 V
dd

)

Vdd (v)

Normalized Execution Time Vs. Vdd (v)

EDC1
EDC8

SEC
SECDED

DEC
DECTED
ERAID_1

ERAID_1_ECC
ERAID_ECC_1

ERAID_RP
ERAID_P_ECC

TMR
Nominal

BLOWFISH GSM

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

(v
s.

 N
om

in
al

 V
dd

)

Vdd (v)

Normalized Execution Time Vs. Vdd (v)

EDC1
EDC8

SEC
SECDED

DEC
DECTED
ERAID_1

ERAID_1_ECC
ERAID_ECC_1

ERAID_RP
ERAID_P_ECC

TMR
Nominal

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

(v
s.

 N
om

in
al

 V
dd

)

Vdd (v)

Normalized Execution Time Vs. Vdd (v)

EDC1
EDC8

SEC
SECDED

DEC
DECTED
ERAID_1

ERAID_1_ECC
ERAID_ECC_1

ERAID_RP
ERAID_P_ECC

TMR
Nominal

H263 JPEG

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

(v
s.

 N
om

in
al

 V
dd

)

Vdd (v)

Normalized Execution Time Vs. Vdd (v)

EDC1
EDC8

SEC
SECDED

DEC
DECTED
ERAID_1

ERAID_1_ECC
ERAID_ECC_1

ERAID_RP
ERAID_P_ECC

TMR
Nominal

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

(v
s.

 N
om

in
al

 V
dd

)

Vdd (v)

Normalized Execution Time Vs. Vdd (v)

EDC1
EDC8

SEC
SECDED

DEC
DECTED
ERAID_1

ERAID_1_ECC
ERAID_ECC_1

ERAID_RP
ERAID_P_ECC

TMR
Nominal

MOTION SHA

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

(v
s.

 N
om

in
al

 V
dd

)

Vdd (v)

Normalized Execution Time Vs. Vdd (v)

EDC1
EDC8

SEC
SECDED

DEC
DECTED
ERAID_1

ERAID_1_ECC
ERAID_ECC_1

ERAID_RP
ERAID_P_ECC

TMR
Nominal

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

(v
s.

 N
om

in
al

 V
dd

)

Vdd (v)

Normalized Execution Time Vs. Vdd (v)

EDC1
EDC8

SEC
SECDED

DEC
DECTED
ERAID_1

ERAID_1_ECC
ERAID_ECC_1

ERAID_RP
ERAID_P_ECC

TMR
Nominal

Fig. 24. Normalized Execution Time Comparison

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:32 L. Bathen et al.

and find that for these set of experiments, the sweet spot for our E-RAID schemes is
between 0.4 and 0.5 Vdd. As we start increasing the voltage further (0.8+ Vdd) we
see that the extra accesses to the DSPAMs (SPMs) by our E-RAIDs start to impact
the power consumption of the system, and thus, the power consumption is on the in-
cline. These set of graphs show how our framework would allow designers to explore
various workloads and customize the E-RAID levels that would meet their power bud-
get. H263 is the one example where it is difficult to observe a sweet spot in terms of
power consumption, this is due to the fact that H.263 incurred many off-chip memory
accesses, which led the off-chip traffic to dominate system power consumption, how-
ever, a much smarter allocation scheme that exploits data reuse may be used to reduce
the off-chip traffic [Panda et al. 1997; Verma et al. 2003; Issenin et al. 2004; Issenin
et al. 2006; Bathen et al. 2008; Cho et al. 2008; Bathen et al. 2009]. DECTED achieves
the highest Yield from all the ECC approaches at the cost in both power consumption
and performance, as we can see, no single instance shows power consumption savings
for DECTED even with the voltage scaling of SPM’s data banks. We observe an aver-
age of 22% dynamic power consumption increase by using traditional ECC approaches
(EDC1, EDC8, SEC, SECDED, DEC, DECTED), where as we observe average sav-
ings of 27% for our E-RAID schemes (E-RAID 1, E-RAID 1 + ECC, E-RAID ECC + 1,
E-RAID RP, E-RAID RP + ECC, E-RAID TMR).

Static energy for various applications can be observed in Figure 23. In our experi-
mental setup, all DSPAMs to our E-RoC manager (physical SPM space to be used for
Logical SPMs and E-RAIDs) are voltage scaled, if the memories have a built-in ECC
chip, then the banks holding the ECC parities are not voltage scaled, but their data
banks are. So for each of the different schemes in Figure 23 we observe different static
power consumption. As with dynamic power consumption, static energy is high at ul-
tra low Vdd (0.35) because of the many off-chip accesses that increases the execution
time of the application. Just line with dynamic power, we can find the sweet spot to be
around 0.4 to 0.45 Vdd for these set of applications. Again, this set of examples show
how our approach can be used to find the right E-RAID level to save both static and
dynamic power. We observe that E-RAID levels with no ECC (SEC) support (E-RAID
1, E-RAID TMR) consume the less amount of static power, mainly because all of their
data banks are voltage scaled, where as any scheme with ECC support must not volt-
age scale the banks that contain the parities. We see that on average traditional ECC
approaches are able to save static energy by 6.4%, where as our E-RAID approaches
achieve 23.4% static energy savings.

The dynamic and static power consumption savings come at a cost however. Fig-
ure 24 shows the performance overheads for the various fault tolerant schemes. We ob-
serve that for ultra-low Vdd most schemes pay the price of going off-chip, and like with
power consumption (energy), the off-chip memory accesses greatly influence the per-
formance of the system (increased execution time, increased power consumption, etc.).
As we slightly increase the voltage, we observe that our E-RAID schemes are on-par
with simple error detection approaches (with respect to increased latency), and greatly
outperform the error-correction approaches (SECDED, DECTED). We observe latency
increase from 4% (EDC1 0.65 Vdd+ / H.263) to 61% (E-RAID 1 0.35 Vdd / MOTION).
We observe that on average our approaches (E-RAID 1, E-RAID 1 + ECC, E-RAID
ECC + 1, E-RAID RP, E-RAID RP + ECC, E-RAID TMR) incur 2% higher overheads
than traditional ECC approaches (EDC1, EDC8, SEC, SECDED, DEC, DECTED). We
observe that for Vdd above 0.45, on average, our E-RAID levels with error correction
support (SEC) incur 3% lower overheads over the more traditional SECDED/DECTED
schemes. On average, for higher Vdd, EDC1, EDC8, and E-RAID 1 achieve the lowest
overheads, this is because they only need a simple XOR or AND to check the correct-

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Towards Embedded RAIDs-on-Chip 39:33

ness of the data. Note that, at low Vdd, EDC1 and EDC8 achieve the poorest Yield of
all the schemes we tested.

0

0.5

1

1.5

2

2.5

adpcm aes blowfish gsm h263 jpeg motion sha avg

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e Effect of Dedicated DSPAM Space on Execution Time

Limited 25

Limited 50

Limited 75

Unlimited

Fig. 25. Effects of Limited DSPAM Space on Performance.

0

10

20

30

40

50

60

70

80

adpcm aes blowfish gsm h263 jpeg motion sha avg

N
or

m
al

iz
e

P
ow

er
 C

on
su

m
pt

io
n Effect of Dedicated DSPAM Space on Power Consumption

Limited 25

Limited 50

Limited 75

Unlimited

Fig. 26. Effects of Limited DSPAM Space on Power Consumption.

6.10. Effects of Limited DSPAM Space
For this experiment we wanted to evaluate the the effect of having limited on-chip
space for a series of applications. The goal was to investigate what would happen if
our allocation algorithms were unable to accommodate the application’s data in Log-
ical SPMs (e.g., the DSPAM space became too fragmented or there are already too
many Logical SPMs with their respective E-RAID levels created/allocated). Our basic
configuration consists of a single active core, the E-RoC manager, and a series of 8KB
DSPAMs. We varied the amount of data we can map to our Logical SPMs (25% to full
allocation), and normalized the execution time/power consumption to the case where
we have unlimited resources (full allocation). For this experiment, we created a Logical
SPM to hold a given percentage (25%, 50%, 75%, 100%) of SPM mappable data with
an E-RAID 1 level. From Figure 25 and Figure 26 we can see that on average, latency
increases by 24% and dynamic power consumption increases by 96% due to the extra
off-chip memory accesses. Similarly, we observe 9% latency increase and 90% dynamic
power consumption increase on average with 50% of data mapped to our Logical SPM.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:34 L. Bathen et al.

Finally, we see that if we further increase the amount of data mapped to our Logi-
cal SPMs from 50% to 75% we greatly reduce both, power consumption and latency
overheads to 9% and 0.1% respectively.

0

0.5

1

1.5

2

adpcm aes blowfish gsm h263 jpeg motion sha avg

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e Effect of Mixing E-RAID Levels on Execution Time

Nominal All SECDED All ERAID 1+ECC E-RAID 1+ECC, E-RAID1 E-RAID 1+ECC, NO ERAID

Fig. 27. Effects of Mixing E-RAID’s on Performance.

0

0.2

0.4

0.6

0.8

1

1.2

adpcm aes blowfish gsm h263 jpeg motion sha avg

N
or

m
al

iz
ed

 P
ow

er
 C

on
su

m
pt

io
n Effect of Mixing E-RAID Levels on Power Consumption

Nominal All SECDED All ERAID 1+ECC E-RAID 1+ECC, E-RAID1 E-RAID 1+ECC, NO ERAID

Fig. 28. Effects of Mixing E-RAID’s on Power Consumption.

6.11. Exploiting E-RAID’s Flexibility
For this experiment we wanted to evaluate the benefits of mixing E-RAID levels for a
series of applications. The baseline in this experiment consists of an 8KB SPM run-
ning at nominal Vdd with a single core and the E-RoC manager. We have four voltage
scaled (Vdd = 0.5 V, which is around the sweet spot discussed in Section 6.9) configu-
rations: 1) ALL SECDED, which means that the on-chip memory space is protected by
SECDED, 2) ALL E-RAID 1 + ECC, which means that the entire on-chip memory space
is protected by an E-RAID 1 + ECC level, 3) E-RAID 1 + ECC, E-RAID 1, which means
that we have created two separate Logical SPMs, each Logical SPM is associated with
a different E-RAID Level (one has E-RAID 1 + ECC, the other one has E-RAID 1),
4) E-RAID 1 + ECC, NO E-RAID, which means that we have two Logical SPMs, one
protected by an E-RAID 1 + ECC level and the other by a NO E-RAID level. Note that
though the logical partitioning of the memory space is different, the physical space is
the same for all cases and the same data is mapped to on-chip and off-chip memory

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Towards Embedded RAIDs-on-Chip 39:35

space. The only difference is the level/scheme protecting the data. This type of parti-
tioning follows the notion of critical data (e.g., control variables) and non-critical data
(e.g., data pixels) discussed in [Lee et al. 2006]. As we can see from Figures 27 and 28,
the ALL SECDED scheme incurs an average 10.7% increase in execution time while
saving an average of 22% dynamic power with respect to the Nominal case. The ALL
E-RAID 1 + ECC scheme incurs a higher increase in execution time (19% on average)
and higher power consumption savings (23%). The third scheme (E-RAID 1 + ECC,
E-RAID 1) incurs a lower overhead (12%) than the second scheme (ALL E-RAID 1 +
ECC) while further reducing power consumption (an average reduction of 33% over
the Nominal case). Finally, the fourth scheme (E-RAID 1 + ECC, NO E-RAID), which
shows the true power of mixing E-RAID levels is able to reduce the dynamic power
consumption by 150% (note that NO E-RAID is pure low voltage storage, with no extra
protection) at the cost of an average 5% increase in execution time. This all translates
to 9.8% energy savings for the first approach, 0.72% energy savings for the second ap-
proach, 17% energy savings for the third approach, and 138% energy savings for the
fourth approach.

7. CONCLUSIONS AND FUTURE WORK
In this paper we introduced the notions of Embedded RAID (E-RAID) and Embedded
RAIDs-on-Chip (E-RoC), a distributed dynamically managed reliable memory subsys-
tem. Among the key concepts introduced are: the notion of reliability via redundancy
using an E-RAID system; a set of E-RAID levels that are optimized for use in embed-
ded SoCs; and the concept of distributed dynamic scratch pad allocatable memories
(DSPAMs) and their allocation policies. We exploited aggressive voltage scaling to re-
duce power consumption overheads due to parallel DSPAM accesses. We defined the
first proof-of-concept E-RoC manager that exploits these ideas. We presented a set of
architectural designs by which E-RoC based systems can be configured. We explored
the flexibility and benefits of Embedded RAIDs-on-Chip by 1) studying their ability to
complement existing fault tolerant approaches (e.g., ECC), 2) their ability to create a
heterogeneous E-RAID level environment to match the different fault tolerance needs
of each application, 3) the effects of arbitration policies, and 4) the power consump-
tion/energy and performance overheads of various E-RAID levels.

Our experimental results on multimedia benchmarks show that E-RoC’s fully dis-
tributed redundant reliable memory subsystem can attain up to 85% in power con-
sumption reduction, and up to 61% latency reduction due to error checks/corrections.
On average, we see that our E-RAID levels converge to 100% Yield much faster than
traditional ECC approaches. Moreover, E-RAID levels that exploit ECC (e.g., E-RAID
ECC + 1, E-RAID RP + ECC) can guarantee 99.9% Yield at ultra low Vdd on average,
where as SECDED and DECTED were able to attain 99.1% and 99.4% Yield respec-
tively. Our E-RAID levels (detection and correction) achieved a worst case 93.9% Yield
(AES), where as the traditional ECC approaches achieved a worst case of 34.1% Yield
(MOTION). We observe an average of 22% dynamic power consumption increase by us-
ing traditional ECC approaches (EDC1, EDC8, SEC, SECDED, DEC, DECTED), where
as we observe average savings of 27% for our E-RAID schemes (E-RAID 1, E-RAID 1
+ ECC, E-RAID ECC + 1, E-RAID RP, E-RAID RP + ECC, E-RAID TMR). We see that
on average traditional ECC approaches are able to save static energy by 6.4%, where
as our E-RAID approaches achieve 23.4% static energy savings. We observe that on
average our approaches (E-RAID 1, E-RAID 1 + ECC, E-RAID ECC + 1, E-RAID RP,
E-RAID RP + ECC, E-RAID TMR) incur 2% higher overheads than traditional ECC
approaches (EDC1, EDC8, SEC, SECDED, DEC, DECTED). We observe that for Vdd
above 0.45, on average, our E-RAID levels with error correction support (SEC) incur
3% lower overheads over the more traditional SECDED/DECTED schemes. Finally, we

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:36 L. Bathen et al.

observe that mixing E-RAID levels allows us to reduce the dynamic power consump-
tion by 150% at the cost of an average 5% increase in execution time over traditional
approaches.

Since E-RoC is a first of its kind piece of work, there are many opportunities for
further optimization that we are currently exploring: E-RAID allocation policies might
lead to DSPAM space fragmentation. Similarly, the shared bus model drives E-RoC
performance down, thereby motivating the use of more complex communication fabrics
(i.e., Bus Matrix and NoCs).

REFERENCES
ANGIOLINI, F., ATIENZA, D., MURALI, S., BENINI, L., AND DE MICHELI, G. 2006. Reliability support for

on-chip memories using networks-on-chip. In Int. Conf. on Computer Design (ICCD) 2006.
BAI, K. AND SHRIVASTAVA, A. 2010. Heap data management for limited local memory (llm) multi-core

processors. In Proceedings of the eighth IEEE/ACM/IFIP Int. Conf. on Hardware/software codesign
and system synthesis. CODES/ISSS ’10. 317–326.

BATHEN, L., AHN, Y., DUTT, N., AND PASRICHA, S. 2009. Inter-kernel data reuse and pipelining on chip-
multiprocessors for multimedia applications. In Embedded Systems for Real-Time Multimedia, 2009.
ESTIMedia 2009. IEEE/ACM/IFIP 7th Workshop on.

BATHEN, L. AND DUTT, N. 2011a. E-roc: Embedded raids-on-chip for low power distributed dynamically
managed reliable memories. In Design, Automation Test in Europe Conf. Exhibition (DATE), 2011.

BATHEN, L. A. D., AHN, Y., PASRICHA, S., AND DUTT, N. D. 2009. A methodology for power-aware pipelin-
ing via high-level performance model evaluations. In Proceedings of the 2009 10th International Work-
shop on Microprocessor Test and Verification. MTV ’09. 19–24.

BATHEN, L. A. D. AND DUTT, N. 2011b. Tustgem: Dynamic trusted environment generation for chip-
multiprocessors. to appear, Proceedings of the 2011 IEEE Int. Symposium on Hardware-Oriented Se-
curity and Trust.

BATHEN, L. A. D., DUTT, N. D., AND PASRICHA, S. 2008. A framework for memory-aware multimedia
application mapping on chip-multiprocessors. In ESTImedia. 89–94.

CHAKRABORTY, A., HOMAYOUN, H., KHAJEH, A., DUTT, N., ELTAWIL, A., AND KURDAHI, F. 2010.
e = mc2: less energy through multi-copy cache. In Proceedings of the 2010 international conference
on Compilers, architectures and synthesis for embedded systems. CASES ’10. 237–246.

CHEN, C. L. AND HSIAO, M. Y. 1984. Error-correcting codes for semiconductor memory applications: a
state-of-the-art review. IBM J. Res. Dev. 28, 124–134.

CHO, D., PASRICHA, S., ISSENIN, I., DUTT, N., PAEK, Y., AND KO, S. 2008. Compiler driven data layout
optimization for regular/irregular array access patterns. In Proceedings of the 2008 ACM SIGPLAN-
SIGBED Conf. on Languages, compilers, and tools for embedded systems. LCTES ’08. 41–50.

DJAHROMI, A. K., ELTAWIL, A. M., KURDAHI, F. J., AND KANJ, R. 2007. Cross layer error exploitation for
aggressive voltage scaling. In Proceedings of the 8th Int. Sym. on Quality Electronic Design. ISQED ’07.
IEEE Computer Society, Washington, DC, USA, 192–197.

EGGER, B., KIM, S., JANG, C., LEE, J., MIN, S. L., AND SHIN, H. 2010. Scratchpad memory management
techniques for code in embedded systems without an mmu. Computers, IEEE Trans. on 59, 8.

EGGER, B., LEE, J., AND SHIN, H. 2008. Dynamic scratchpad memory management for code in portable
systems with an mmu. ACM Trans. Embed. Comput. Syst. 7.

FRANCESCO, P., MARCHAL, P., ATIENZA, D., BENINI, L., CATTHOOR, F., AND MENDIAS, J. M. 2004. An
integrated hardware/software approach for run-time scratchpad management. In Proceedings of the
41st annual Design Automation Conf. DAC ’04.

GAUTHIER, L., ISHIHARA, T., TAKASE, H., TOMIYAMA, H., AND TAKADA, H. 2010. Minimizing inter-task
interferences in scratch-pad memory usage for reducing the energy consumption of multi-task systems.
In Proceedings of the 2010 Int. Conf. on Compilers, architectures and synthesis for embedded systems.
CASES ’10. 157–166.

GHOSH, S., BASU, S., AND TOUBA, N. 2004. Reducing power consumption in memory ecc checkers. In Test
Conf., 2004. Proceedings. ITC 2004. Int.

HARA, Y., TOMIYAMA, H., HONDA, S., TAKADA, H., AND ISHII, K. 2008. Chstone: A benchmark program
suite for practical c-based high-level synthesis. In Circuits and Systems, 2008. ISCAS 2008. IEEE Int.
Sym. on. 1192 –1195.

IBM. 2005. The cell project. IBM, http://www.research.ibm.com/ cell/.
INTEL. 2007. Teraflops research chip. Intel, http://techresearch.intel.com/ProjectDetails.aspx?Id=151.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Towards Embedded RAIDs-on-Chip 39:37

INTEL. 2009. Single-chip cloud computer. Intel, http://techresearch.intel.com/ ProjectDetails.aspx?Id=1.
ISSENIN, I., BROCKMEYER, E., DURINCK, B., AND DUTT, N. 2006. Multiprocessor system-on-chip data

reuse analysis for exploring customized memory hierarchies. In Proceedings of the 43rd annual Design
Automation Conf. DAC ’06. 49–52.

ISSENIN, I., BROCKMEYER, E., MIRANDA, M., AND DUTT, N. 2004. Data reuse analysis technique for
software-controlled memory hierarchies. In DATE. 202–207.

JAHINUZZAMAN, S., SHAKIR, T., LUBANA, S., SHAH, J., AND SACHDEV, M. 2008. A multiword based high
speed ecc scheme for low-voltage embedded srams. In Solid-State Circuits Conf., 2008. ESSCIRC 2008.
34th European.

JUNG, S. C., SHRIVASTAVA, A., AND BAI, K. 2010. Dynamic code mapping for limited local memory systems.
In Application-specific Systems Architectures and Processors (ASAP), 2010 21st IEEE Int. Conf. on. 13
–20.

KALTER, H. L., STAPPER, C. H., BARTH, J. E., DILORENZO, J., DRAKE, C. E., FIFIELD, J. A., KELLEY,
G. A., LEWIS, S. C., VAN DER HOEVEN, W. B., AND YANKOSKY, J. A. 1990. A 50-ns 16-mb dram with a
10-ns data rate and on-chip ecc. IEEE Journal of Solid-state Circuits 25, 1118–1128.

KANDEMIR, M., RAMANUJAM, J., IRWIN, J., VIJAYKRISHNAN, N., KADAYIF, I., AND PARIKH, A. 2001. Dy-
namic management of scratch-pad memory space. In Proceedings of the 38th annual Design Automation
Conf. DAC ’01.

KIM, J., HARDAVELLAS, N., MAI, K., FALSAFI, B., AND HOE, J. C. 2007. Multi-bit error tolerant caches
using two-dimensional error coding. In MICRO. 197–209.

KIM, S. 2006. Area-efficient error protection for caches. In Proceedings of the conference on Design, automa-
tion and test in Europe: Proceedings. DATE ’06. European Design and Automation Association, 3001
Leuven, Belgium, Belgium, 1282–1287.

KURDAHI, F., ELTAWIL, A., YI, K., CHENG, S., AND KHAJEH, A. 2010. Low-power multimedia system
design by aggressive voltage scaling. Very Large Scale Integration (VLSI) Systems, IEEE Trans. on 18, 5.

LEE, C., POTKONJAK, M., AND MANGIONE-SMITH, W. H. 1997. Mediabench: a tool for evaluating and
synthesizing multimedia and communicatons systems. In Proceedings of the 30th annual ACM/IEEE
Int. Sym. on Microarchitecture. MICRO 30. IEEE Computer Society, Washington, DC, USA, 330–335.

LEE, K., SHRIVASTAVA, A., ISSENIN, I., DUTT, N., AND VENKATASUBRAMANIAN, N. 2006. Mitigating soft
error failures for multimedia applications by selective data protection. In Proceedings of the 2006 Int.
Conf. on Compilers, architecture and synthesis for embedded systems. CASES ’06.

LI, F., CHEN, G., KANDEMIR, M., AND KOLCU, I. 2005. Improving scratch-pad memory reliability through
compiler-guided data block duplication. In Proceedings of the 2005 IEEE/ACM Int. Conf. on Computer-
aided design. ICCAD ’05. IEEE Computer Society, Washington, DC, USA, 1002–1005.

LUCENTE, M., HARRIS, C., AND MUIR, R. 1990. Memory system reliability improvement through associa-
tive cache redundancy. In Custom Integrated Circuits Conf., 1990., Proceedings of the IEEE 1990.

MAKHZAN, M., KHAJEH, A., ELTAWIL, A., AND KURDAHI, F. 2007. Limits on voltage scaling for caches
utilizing fault tolerant techniques. In Computer Design, 2007. ICCD 2007. 25th Int. Conf. on. 488 –495.

MASTIPURAM, R. AND WEE, E. C. 2004. Soft errors impact on system reliability. In http://www.edn.com/
article/ CA454636.

MORRIS, R. J. T. AND TRUSKOWSKI, B. J. 2003. The evolution of storage systems. IBM Syst. J. 42.
NASSIF, S. 2001. Modeling and analysis of manufacturing variations. In Custom Integrated Circuits, 2001,

IEEE Conf. on. 223 –228.
OSCI. 2005. Systemc lrm (ver2.1). http://www.systemc.org.
PANDA, P. R., DUTT, N. D., AND NICOLAU, A. 1997. Efficient utilization of scratch-pad memory in embedded

processor applications. In Proceedings of the 1997 European Conf. on Design and Test. EDTC ’97.
PAPIRLA, V. AND CHAKRABARTI, C. 2009. Energy-aware error control coding for flash memories. In Pro-

ceedings of the 46th Annual Design Automation Conf. DAC ’09. ACM, New York, NY, USA, 658–663.
PASRICHA, S. 2002. Tlm of soc with systemc 2.0. Synopsys User Group Conf. (SNUG).
PATTERSON, D. A., GIBSON, G., AND KATZ, R. H. 1988. A case for redundant arrays of inexpensive disks

(raid). In Proceedings of the 1988 ACM SIGMOD Int. Conf. on Management of data. SIGMOD ’88.
PYKA ET AL., R. 2007. Operating system integrated energy aware scratchpad allocation strategies for mul-

tiprocess applications. In Proc.of the 10th Int. workshop on Software & compilers for embedded systems.
SCOPES ’07.

RAMASWAMY, S. AND YALAMANCHILI, S. 2007. Improving cache efficiency via resizing + remapping. In
ICCD (2008-09-22). IEEE, 47–54.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:38 L. Bathen et al.

RUCKERBAUER, F. AND GEORGAKOS, G. 2007. Soft error rates in 65nm srams–analysis of new phenomena.
In On-Line Testing Sym., 2007. IOLTS 07. 13th IEEE Int. 203 –204.

SASAN, A., HOMAYOUN, H., ELTAWIL, A., AND KURDAHI, F. 2009a. A fault tolerant cache architecture for
sub 500mv operation: resizable data composer cache (rdc-cache). In Proceedings of the 2009 Int. Conf.
on Compilers, architecture, and synthesis for embedded systems. CASES ’09. 251–260.

SASAN, A., HOMAYOUN, H., ELTAWIL, A., AND KURDAHI, F. 2009b. Process variation aware sram/cache
for aggressive voltage-frequency scaling. In Proceedings of the Conf. on Design, Automation and Test in
Europe. DATE ’09.

SHALAN, M. AND MOONEY, V. J. 2000. A dynamic memory management unit for embedded real-time
system-on-a-chip. In Proceedings of the 2000 Int. Conf. on Compilers, architecture, and synthesis for
embedded systems. CASES ’00.

SUHENDRA, V., RAGHAVAN, C., AND MITRA, T. 2006. Integrated scratchpad memory optimization and task
scheduling for mpsoc architectures. In Proceedings of the 2006 Int. Conf. on Compilers, architecture and
synthesis for embedded systems. CASES ’06. 401–410.

SUHENDRA, V., ROYCHOUDHURY, A., AND MITRA, T. 2008. Scratchpad allocation for concurrent embedded
software. In Proceedings of the 6th IEEE/ACM/IFIP Int. Conf. on Hardware/Software codesign and
system synthesis. CODES+ISSS ’08. 37–42.

TAKASE, H., TOMIYAMA, H., AND TAKADA, H. 2010. Partitioning and allocation of scratch-pad memory for
priority-based preemptive multi-task systems. In Proceedings of the Conf. on Design, Automation and
Test in Europe. DATE ’10.

THOZIYOOR, S., MURALIMANOHAR, N., AHN, J. H., AND JOUPPI, N. P. 2004. Hp labs cacti v5.3. CACTI
5.1, TR, http://www.hpl.hp.com/ techreports/2008/ HPL-2008-20.html.

TILERA. 2010. Tile gx family. Tilera, http://www.tilera.com/ products/processors/TILE-Gx Family.
VERGOS, H. T. AND NIKOLOS, D. 1995. Efficient fault tolerant cache memory design. Microprocess. Micro-

program. 41, 153–169.
VERMA, M., STEINKE, S., AND MARWEDEL, P. 2003. Data partitioning for maximal scratchpad usage. In

Proceedings of the 2003 Asia and South Pacific Design Automation Conf. ASP-DAC ’03. 77–83.
ZHANG, W. 2004. Enhancing data cache reliability by the addition of a small fully-associative replication

cache. In Proceedings of the 18th annual Int. Conf. on Supercomputing. ICS ’04.
ZHANG, W., GURUMURTHI, S., KANDEMIR, M., AND SIVASUBRAMANIAM, A. 2003. Icr: in-cache replication

for enhancing data cache reliability. In Dependable Systems and Networks, 2003. Proceedings. 2003 Int.
Conf. on.

Received July 2010; revised November 2010; accepted March 2011

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

	cecs-cover
	TR-10-12

