
Center for Embedded Computer Systems 
University of California, Irvine 
____________________________________________________ 
 

 
 
 
 
 
 
 

Compiler Assisted Out-Of-Order Instruction Commit 
 
 

Nam Duong and Alex Veidenbaum 
 
 

Center for Embedded Computer Systems 
University of California, Irvine 
Irvine, CA 92697-2620, USA 

 
 

{nlduong, alexv}@ics.uci.edu 
 
 

CECS Technical Report 10-11 
November 18, 2010 

 
 



Compiler Assisted Out-Of-Order Instruction Commit

Nam Duong and Alex Veidenbaum

Department of Computer Science
University of California, Irvine

{nlduong,alexv}@ics.uci.edu

Abstract

This paper proposes an out-of-order instruction commit mechanism using a novel compiler/architecture

interface. The compiler provides information about instruction “blocks” and the processor uses the block

information to decide which instructions can be committed out of order and when. Some blocks are guar-

anteed to be data independent blocks which allows instructions from different such blocks be committed

simultaneously and out of order. Other blocks have data or control dependencies and require in-order ex-

ecution and in-order commit. Micro-architectural support required for the new commit mode is made on

top of the standard, ROB-based commit and includes out-of-order instruction commit, early register release,

support for committing loads and stores out of order, and exception handling. All of these are driven by

the block information which simplifies the hardware. Results for a 4-wide processor model based on the

Alpha 21264 and a set of 6 SPEC2000 and 2006 benchmarks show that, on average, 52% instructions are

committed out of order resulting in 10% to 26% speedups over in-order commit with minimal hardware

overhead.

1 Introduction

Over the last two decades there has been a tremendous increase in processor performance due to increas-

ing clock speeds and advanced architectural techniques, such as wide issue, out-of-order (OOO) execution

and various forms of speculative execution. However, recently the growth in clock speed has slowed down

and performance increases due to processor architecture improvements have reduced significantly leading

to saturation of single thread performance on single core processors.

Single-core OOO processor performance growth is mainly limited by the long latency of cache misses,
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especially in L2 or L3 caches. Under a long-latency miss the single core resources, such as Register File

(RF), Load Store Queue (LSQ), Instruction Queue (IQ) and Reorder Buffer (ROB) entries, are exhausted

leading to stalls and limiting the performance. Increasing the size of the instruction window and thus of the

above resources and early resource release can help [15, 5, 1, 22] but has proven difficult to implement.

Alternatively, an out-of-order commit [2] can prevent long latency misses from stalling commit and re-

source release and improve processor performance. While the performance improvement achieved was

smaller than that of large-window processors, it largely preserved the OOO processor architecture. One of

the necessary conditions for OOO commit required delaying commit until all older instructions are excep-

tion free. This is a significant restriction under long-latency loads which stall the execution of dependent

instructions. Such instructions have unknown exception status and therefore prevent all younger instruc-

tions from committing. In this work, we propose a different approach to OOO commit which relaxes this

and other commit ordering conditions.

OOO commit can further improve performance and manage resources better in single-core, single-thread

processors1 if assisted by compilers. This paper proposes a compiler/architecture interface to achieve this by

allowing information about data independence to be communicated from software to hardware at the granu-

larity of “blocks”. The main contributions of this work are that a) it augments the “standard” OOO proces-

sor architecture with a compiler initiated out-of-order commit mode; b) allows a simple software “marking”

mechanism to identify data independent blocks from which instructions can be committed simultaneously

and out of order, as well as blocks with dependencies that are executed in order and with in-order commit;

and c) defines microarchitectural support necessary to achieve this, including OOO commit and register

release, exception handling, and memory disambiguation.

The OOO micro-architecture is augmented with block management which enables the early release of

ROB entries, LSQ entries, and registers. The knowledge of block independence is also used to deal with

exceptions differently than prior proposals. In particular, in the architecture proposed here the OOO commit

will proceed even if it is not known that all earlier instructions are exception free. The rest of the processor

remains largely unchanged and, when the proposed OOO commit mode is not used, behaves as a standard

OOO processor.

There are many naturally occurring code blocks in program loops in which there are no cross-iteration

data dependencies, either through register and memory accesses. Such code blocks can be committed out of
1Non-speculative multi-threading is orthogonal to this work while thread-level speculation is largely redundant [12, 11].
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add R0, 1 -> R0
cmple R0, RN -> R6
beq R6, NEXT

LOOP:
# (B1a) addresses
add Ra, 8 -> Ra
add Rb, 8 -> Rb
add Rc, 8 -> Rc
add Rd, 8 -> Rd
# (B1b) computation
ld [Rb] -> R1
ld [Rc] -> R2
ld [Rd] -> R3
mult R2, R3 -> R4
add R1, R4 -> R5
st R5 -> [Ra]
# (B2) loop index
add R0, 1 -> R0
cmple R0, RN -> R6
bne R6, LOOP

NEXT:

(b)

for (i = 0; i < N; i++) {
A[i] = B[i] + C[i]*D[i];

}

(a)

B1

B2

(c)

Control

Data

B1a

B1b

B1

(d)

... B1a

B1b

B2 B1a

B1b

B2 ...B1a

B1b

B2

(e)

Figure 1. A loop example: (a) source code, (b) its assembly equivalent, (c) the control flow, (d) partitioned
B1 consisting of B1a with cross-iteration dependencies and B1b without such dependencies, and (e) the
dynamic instances of blocks in 3 iterations.

order and their resources released early, subject to exception handling and memory ordering. Furthermore,

a compiler may be able to expose more such blocks through transformations and optimizations.

Example 1. Consider a loop shown in Figure 1(a). Its assembly equivalent (b) and its flow graph (c) are

also shown. The latter consist of blocks B1 and B2. For our purposes, B1 is further partitioned into blocks

B1a and B1b, such that B1a has cross iteration dependencies, e.g. a memory address calculation, and B1b

has no such dependencies. A compiler for the proposed architecture can easily perform such partitioning

as well as delineate block boundaries and types for the processor. Blocks are tracked in execution to en-

force block dependencies as shown in (e), find independent instructions to commit, determine when block

resources can be released, etc. One can think of this block management mechanism as somewhat similar

to instruction group management in the IBM Power processors [23], but with group formation performed

by compiler and thus allowing larger groups. Except that in our case “groups” are used only in the OOO

commit mode and in combination with a standard ROB.

Figure 2 shows the proposed architecture with a block table and the ROB with two iterations of the above

loop. The block table maintains all the information about blocks. It contains logic to track ready instructions
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Figure 2. The Block Table (BT) and the Reorder Buffer (ROB) with two iterations of the loop in Figure 1.

(B1) i = i + 1;
Calc addrs of A[i-2], A[i];
Calc addrs of B[i], C[i];

(B2) T = B[i]/C[i];
(B3) A[i] = A[i-2] + T;

(a)

B1

B2

B3

B1

B2

B3

B1

B2

B3

Independent 

blocks

(b)

Figure 3. Example of a loop with different types of dependencies.

from different blocks and, using block types/properties, may flag one or more instructions from a block for

commit. The ROB commit logic takes over from here.

Instructions in blocks of type B1a and B2 are committed in order with respect to each other and may

be committed OOO with respect to instructions in blocks of type B1b. This is because B1a and B2 con-

tain instructions which are dependent of each other in different iterations, but they are not dependent on

instructions in B1b. Thus the execution of the sequential and control dependent part(s) of the loop basically

uses in-order commit. The processor may perform OOO commit of instructions from different blocks of

type B1b, but only after the preceding block B1a (from the same iteration as the B1b) has committed. This

restriction on the OOO commit allows it to be non-speculative and helps with resource release.

The above OOO commit mechanism can handle a block/loop code in which there are other cross-iteration

data dependencies. Such dependencies or even dependence cycles may be tolerated as long as there is

an iteration-independent component. The compiler just needs to place the instruction(s) causing a cross-

iteration dependence into blocks which are committed in order. This is illustrated in the example below.

Example 2. Let us replace the body of the loop in Figure 1(a) with the following statement: A[i] =

A[i-2] + B[i] / C[i], as seen in Figure 3(a) (we use the source code level and omit the loop controls in

this example for simplicity). Block B1, which contains the index and address calculation as well as loop

control instructions, corresponds to two blocks B1a and B2, and block B2 corresponds to the block B1b in
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the Example 1. In this example, the store to A[i] goes into block B3, and will be serialized together as in

Figure 3(b). It is thus guaranteed that block B3 in iteration i-2 has committed before a load of A[i-2] is

executed in block B3 of iteration i. Block B2 of different iterations, meanwhile, are independent of each

other, hence they can be committed out of order. This moves enforcement of dependencies to the block

level. The compiler can also apply this mechanism to nested loops which may further increase performance.

The approach proposed here requires modifications to a standard OOO core for OOO commit and early

resource release. The main modifications are the addition of the block table and associated control logic,

tracking block information for registers and instructions for early release, and removing ROB/LSQ entries

not from the top. The in-order commit mechanism is fully preserved and is the default execution mode

allowing backward compatibility. Another change required is the exception handling in OOO commit mode.

Memory disambiguation is also helped by the knowledge of data independence between blocks as it

implies absence of cross-iteration dependencies between stores or between stores and loads in different

iterations. Combined with the serialization of data-dependent block execution this guarantees that store-

to-load replays are not possible across blocks. Other memory ordering issues are not considered here, but

relaxed consistency models are preferred as they lead to higher OOO commit performance when stores can

be committed out of order.

Similarly, the use of physical registers is also tracked at the block level and allows a register to be released

after all the blocks that use it have committed. This identifies a range of blocks in which a physical register

mapping is alive. No additional checkpointing of register maps is required given renaming based on physical

to logical maps. Thus even with OOO handling of replays and exceptions, e.g. when an earlier block has

an issue after younger blocks have committed OOO, the architecture guarantees that all required physical

registers for an earlier block have not been released.

The proposed OOO commit mechanism has been implemented in the M5 simulator [3] and evaluated

using a subset of six SPEC2000 and 2006 benchmarks. Optimized assembly code generated by a compiler

was manually modified for a small number of loops in each program. The modifications consisted largely of

inserting the appropriate block markers and moving instructions with dependencies into sequential blocks.

Such manual modifications were necessary since we did not have a compiler and were quite time consuming.

Thus we could only “compile” a small number of benchmarks and loops in each benchmark, selecting

loops with a significant fraction of total execution time (compilation is planned for future work). The code

remains a correct sequential code if these added marker instructions are ignored. The results show that, on
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average, 52% instructions were committed out of order while in OOO commit mode. The percentage will be

further increased by compiling and executing all loops in a benchmark in the OOO mode. The performance

improvement from adding OOO commit to a reasonably standard 4-wide processor ranged from 10% to

26%. The hardware overhead required for the OOO commit is very small.

The rest of the paper is organized as follows. Section 2 discusses compiler support required. Section 3

describes the microarchitecture changes and OOO commit operations. Methodology is presented in Sec-

tion 4 and experimental results are presented in Section 5. Related work is discussed in Section 6 and finally

Section 7 presents conclusions.

2 Compilation

This section describes the compilation process envisioned for OOO commit. The goal is for a compiler

to identify or create via program transformations independent blocks to which the OOO commit can be

applied. The approach targets program loops since they typically take the bulk of execution time. But it

can also be applied in other contexts, e.g. multiple independent blocks in one iteration. Recall also that

within a given block standard in-order commit mechanism is used and all control and data dependencies are

thus satisfied. Thus the compiler only needs to identify and pass to hardware the dependence information

between blocks. Lastly, it is the dynamic instances of various blocks and their dependence relationship that

is important for the OOO commit.

The simple loop example in Figure 1 represents one loop type that can be (automatically) compiled for

OOO commit. Many other loop types can also be compiled, including “while” loops, reduction loops, nested

loops, loops with reductions plus other code, etc. For instance, a complex nested loop from equake is shown

in this section. It is a nested loop in which the inner loop is a while loop, and there are dependencies from

the inner loop to the outer loop. It also uses pointers. Such loops may require user assertions to assist the

compiler, similar in spirit to the parallel loop or section directives in OpenMP. Note also that, in general,

independent blocks can be exposed without loops, i.e. the OOO commit mode can be entered with just a

sequence of blocks that are independent, i.e. in loops whose iterations are too large to fit in the ROB.

Finally, note that traditional compiler optimization techniques such as loop unrolling or modulo schedul-

ing would not be applicable in many of these types of loops. Thus such loops cannot obtain performance

gains comparable to the OOO commit from traditional optimizations.
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Figure 4. Examples of block types and their dependencies

Let us start by defining more precisely the various block types the compiler needs to identify to enable

the OOO commit processing by the architecture.

2.1 Instruction Blocks

Recall that for the purpose of OOO commit a loop is divided into blocks of different type with specific

dependence relations between the blocks. The commit behavior of an instruction is determined by the type

of block it is in. Based on the dependence and compilation properties of blocks, three block types are

defined: prologs, bodies and epilogs, as illustrated in Figure 4.

A prolog is a block dependent on previous prologs only. Prologs are used to resolve dependencies between

two iterations, and all the blocks after a prolog can not be committed before it has been committed. Also,

prologs are committed in order with respect to each other. They often contain instructions which compute

loop index and memory addresses or branch instructions which determine loop termination (i.e. prologs are

control dependent on each other).

A body is dependent on previous prolog(s) only. Any two bodies are independent of each other. Bodies

can commit as soon as all previous prologs have been committed. A typical body often has one or more long

latency load instructions followed by computation instructions which consume load results.

An epilog is dependent on previous epilogs and bodies. Similar to a prolog, an epilog is used to resolve

dependencies between two iterations, but the difference is that no blocks other than future epilogs are depen-

dent on the current epilog. Epilogs are also committed in order with respect to each other. Due to the fact

an epilog can only be committed after all previous blocks have been committed, epilogs are committed only

after they reach the top of the ROB. An epilog usually contains instructions with a loop-carried dependence.

Using the above definitions, blocks of the loop in Figure 1 are classified as following: B1a and B2 are

prologs, B1b is a body (there is no epilog in this example); and blocks of the loop in Figure 3 can be

classified as following: B1 is a prolog, B3 is an epilog, and B2 is a body.
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Memory dependencies may not be known until execution time when the addresses are computed. Two

potentially dependent memory instructions must be placed in the same body block (where in-order commit

is used) or in blocks of the same type - a prolog or an epilog (which are committed in order). This guarantees

that such instructions are committed in order with respect to each other. Note that if the above cannot be

accomplished then the compiler does not generate OOO commit code for the loop.

2.2 Optimization

The block types defined above and their implied dependence relationships can be used to further optimize

programs for the OOO commit mode. First, they may be used to compile nested loops, i.e. the OOO commit

mode will start upon entering the outer of the nested loops. This reduces the overhead of switching between

in-order and OOO commit modes that would occur if the OOO commit applied only to the innermost loop.

This allows inner loops with very small bounds but nested to take advantage of OOO commit.

A loop iteration often contains multiple independent load instructions. Such loads and their dependen-

cies have to be committed sequentially within the same body even in the OOO commit mode. A way to

optimize this (by user or compiler) is to partition a body into sub-bodies to increase the chances of finding

independent, ready instructions to commit. Thus a loop can be compiled to consist of a prolog, multiple

bodies and an (optional) epilog. This is very effective in loops which contain multiple arrays. Each array in

such a loop has its own memory hierarchy behavior. Loads which hit in caches are committed fast and their

dependent (sub) block instructions can start committing while other blocks may still be waiting for data to

arrive. When (sub) bodies have instructions which introduce dependencies between them, such instructions

are moved to epilogs.

An example showing a complex nested loop and its blocks using the “full power” of the block types

defined in this section is shown below.

2.3 Example: equake

Figure 5 is a simplified loop from equake that starts at line 1195 of quake.c. This is a shortened version of

the loop in which the original three-dimensional vectors are represented as one-dimensional ones and only

one sub-block is shown in the inner loop. Also, the loads and computations are replaced by “functions” F1

and F2 to simplify the figure.
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for (i = 0; i < nodes; i++) {
Anext = Aindex[i];
Alast = Aindex[i + 1];
sum = F1(A[next], v[i]);

Anext++;
while (Anext < Alast) {

col = Acol[Anext];
sum += F1(A[next], v[col]);
w[col] += F2(A[next], v[i]);

Anext++;
}
w[i] += sum;

}

(a)

(P) for (i = 0; i < nodes; i++) {
Anext = Aindex[i];
Alast = Aindex[i + 1];

(B) T1 = F1(A[next], v[i]);
(E) sum = T1;
(P) Anext++;

while (Anext < Alast) {
(B) col = Acol[Anext];

T2 = F1(A[next], v[col]);
T3 = F2(A[next], v[i]);

(E) sum += T2;
w[col] += T3;

(P) Anext++;
}

(E) w[i] += sum;
}

(b)

Figure 5. A (shortened) loop nest from equake (a) and its block types (b).

The loop is a nested loop, with a “while” inner loop. Its termination condition is computed in the body

of the outer loop. The inner and outer loops contain reductions. There are also dependencies from the outer

loop to the inner loop. Functions F1 and F2 are independent in terms of outputs and can be put into the

bodies, as seen in Figure 5(b). The computation of loop indices and termination conditions (i, Anext,

Alast) are serialized by putting them in the prologs. Note that col is the vector index, and it is a temporary

variable, hence it is located in the body. The outputs of F1 and F2, which are written into T1, T2 and T3, are

independent in different iterations, hence they are located in the body. The reduction computation of sum

has the dependencies from the outer loop to the inner loops, therefore it is put in the epilogs. The stores of

outputs to the vector w may introduce memory dependencies between different iterations of the inner loop

and the outer loop. Hence they must be in the epilogs as well.

2.4 Relaxing Some Dependency Conditions

By the time instructions reach the commit stage some dependencies are already resolved during the

execution. For example, if the results of two instructions A and B, which belong to different bodies, are

consumed by instruction C. Due to this dependency, C can not be in the same body with A or B, but can

only be in an epilog. This enforces that C can commit only after it reaches the top of the ROB. However,

one can observe that the dependencies of C to A and B are resolved during instruction scheduling: C can

only be issued after A and B are executed as it needs results from A and B. Thus it is safe to commit C after
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it is executed, regardless the status of A or B in other iterations (C is still committed after A and B of the

same iteration). This means that, it is safe to move C to the same body with A or B.

The above relaxation will help in different iterations. Let us consider two iterations i and i+1, and denote

Ai as instruction A of iteration i. In the above example, if C is in the epilog, Ci+1 must be committed after

Ci and Ai and Bi. However, if C is moved to a body, Ci+1 is allowed to commit before Ai, Bi and Ci.

The code in Figure 5 uses sum which is a scalar and is stored in a register. The assignment of T1 to sum

is computed before the accumulation of T2 into that variable. Therefore, these two statements can be safely

moved to the bodies.

By allowing more instructions to be moved into the bodies, size of the epilog can be minimized. This is

very useful as instructions in the epilogs occupy the ROB and other resources longest, until they reach the

top of the ROB. Another application is to break a body into sub-bodies. In both cases, the technique allows

more instructions to be committed out of order.

However, this optimization may reduce the chance of committing instructions early due to the in-order

commit of instructions in a block. For example, instruction I1 at the top of block A is dependent of in-

struction I2 at the end of block B will prevent later instructions in block A to commit until instruction I2

and instruction I1 are executed, and instruction I1 has been committed. This can be avoided by moving the

instruction I1 down to the bottom of block A.

2.5 Creating Instruction Blocks

Compilation starts by analyzing dependencies between iterations. Instructions which have inter-iteration

dependencies are placed into either a prolog or an epilog. The remaining instructions, which are indepen-

dent, belong to bodies. An instruction producing inputs for instructions in the body is placed in the prolog,

an instruction consuming results produced in bodies is placed in the epilog. The body is divided into sub-

bodies by analyzing the load instructions. A body often starts with one or more load instructions which have

the similar memory behavior (i.e., accessing to the same cache line), followed by dependent instructions.

During this process, the techniques described in Section 2.2 and Section 2.4 may be applied. After type of

each instruction is recognized, the instructions are rearranged into blocks, and the compiler inserts markers

at the beginning of each block.

A set of additional instructions is assumed available for “marking” block boundaries. These “marker”

instructions (or markers) are inserted into the binary. The markers do not need to consume registers during
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renaming, require functional units during execution, or raise exceptions. One type of markers is used to

indicate the start and the end of the OOO commit mode. There are two such markers called loop markers

because they are typically associated with a loop, a BLoop marker and an ELoop marker. Loop markers

are entered in the ROB and the OOO commit mode starts after the BLoop is committed and ends after the

ELoop is committed.

The second type of markers are used to identify blocks and are called block markers. These markers are

inserted into the binary before the first instruction of a block to indicate the start of the block and the type of

the block. Unlike loop markers, block markers are discarded after the decode stage so that they do not use

the bandwidth of later stages. When a block marker is seen in decode it causes the creation of a BT entry

and all instructions until the next block marker are considered part of the same block.

The markers are additional instructions in the OOO commit binaries that are not present in the baseline

version. They are overhead required by this architecture. However, our results show that this overhead is

small and that performance improvement is achieved even in the presence of this overhead.

3 Architectural Support

This section describes the necessary architectural support to enable OOO commit while completely pre-

serving the in-order commit capabilities. In fact, the changes described are additions to the in-order units.

Most of the modifications required for OOO commit are in the commit stages of the pipeline. One change

required in the front end is decoding/identifying the commit mode change and block marker instructions.

Another change enables recording for each physical register the block number of the instruction that cur-

rently maps it and (eventually) the next block that remaps the same logical register. The ROB and the LSQ

are also modified to support the OOO removal of instructions. Overall, the amount of additional hardware

required is minimal.

3.1 The Block Table

A new structure, the Block Table (BT), shown in Figure 6 is added to store dynamic information about

blocks and is used in conjunction with the ROB for OOO commit. Each BT entry corresponds to a block

of consecutive instructions starting with a block marker. Similar to the ROB, which is used to manage the

commit of instructions, the BT controls the commit of instruction blocks. Entries are inserted into the BT at
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Figure 6. The Block Table.

the same time as the insertion of instructions into the ROB.

The BT is similar to the Group Completion Table (GCT) in the POWER4 processor [23] in that the

GCT also holds information about a group of instructions and it controls the commit of instruction groups.

However, our OOO commit architecture does not require the extra logic to detect instruction blocks, this is

done by the compiler using the inserted markers. This reduces significant hardware overhead required to

form the blocks from the instructions, and allows larger blocks to be processed.

A BT entry describes one instruction block and has the following fields:

• Block ID (BID), a unique ID used in releasing registers and entries from the LSQ;

• Block Type (T), e.g. a prolog, a body, or an epilog;

• Position (P), the location in the ROB of the first instruction of the block; and

• Begin Loop (BL) flag which is set to 1 if the entry is the first one of a loop. This flag is used to support
more than one in-flight loops.

Instructions may be committed out of order in the backend if they are in different blocks. Instructions

within a block are committed in order and an instruction at the top of the block, which is pointed by its BT

entry, is checked for readiness. If the instruction satisfies the ready-to-commit conditions, it is committed

regardless its age. The ROB and the BT are then updated at the end of the cycle. An entry in the BT is

ready to be committed after all instructions in its block have been committed (subject to some additional

conditions).
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3.2 The BT Operation

Inserting entries into the BT. In the decode stage, when a block marker or a BLoop is decoded, a new

BT entry is created (the ELoop marker is used by commit stage only) along with T and BL. A BLoop is

passed to later pipeline stages while a block marker is discarded. A BT entry is inserted into the BT in

parallel with the insertion of instructions into the ROB. P is set to position of the first instruction in the

ROB.

The BID is assigned using a block counter with a range much larger than the BT size so that the BID

is a unique block identifier. The processor is stalled when the BT becomes full, similarly to when other

structures (e.g., ROB, IQ) are full. The front end resumes the insertion of instructions into the ROB and

blocks into the BT when there are free slots in the BT. Our results show that such stalls are an infrequent

event, even with a small BT, because the number of entries in the BT is much smaller than the number of

instructions in the ROB.

OOO Commit. The processor starts program execution in the conventional in-order commit mode (or

sequential mode – S-mode). Instructions in the ROB are committed in the S-mode until the BLoop marker

is committed from the top of the ROB. The commit mode then changes to OOO mode (O-mode) allowing

instructions from different blocks to be committed. Only an instruction pointed to by the P field of a BT

entry can be committed from this block after which the pointer is updated to point to the next instruction.

A small number of BT entries within a Checking Window of size W at the top of the BT are checked for

ready to commit instructions. The BL flag is used during this process. W must be small to keep the BT

logic simple and implementable and our results show that 96% of the ready instructions are covered with

W = 8.

An instruction pointed to by the P field of a BT entry within the checking window can be committed

OOO if and only if

1. The instruction has executed;

2. It is a memory access instruction and disambiguation has been performed (see Section 3.3 for details);
and

3. The BT entry type is prolog or body and there is no older block in the BT of type prolog; or it is an
epilog which is at the top of the ROB.

The logic required to check the above is not very complex and can be viewed as the part of the first
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Figure 7. A linked-list ROB: (a) original state, (b) after insertion, (c) after commit, and (d) after squashing.

commit stage. Once “committable” instructions are thus identified via the BT checking window they are

passed on to the ROB/LSQ for commit and resource release, subject to commit bandwidth. The P field is

updated to point to the next instruction in the block. A block entry may need to be removed from the BT as a

result of instruction commit. The BT and the ROB are “compressed” after the OOO removal of instructions

and BT entries (as described below). The process continues until the ELoop is committed. The last entry is

removed from the BT and the commit mode returns to S-mode. The above process can be easily pipelined.

Compressing the ROB and the BT. Instruction commit from the ROB and entry removal from the BT

may leave empty slots in these structures. A mechanism to deal with this was described in [2] in which

the ROB is collapsed by shifting instructions to fill the gaps. However, the compression requires complex

hardware to move the ROB entries. Also, it prevents one from using the ROB position to identify an

instruction. The OOO commit architecture proposed here uses a linked-list ROB, with two linked lists - a

used list and a free list. Each ROB entry is augmented with a pointer and head/tail of each list are maintained.

Figure 7 shows a linked-list ROB with 6 entries. An ROB (the top structure of each figure) used list links

in-flight instructions in the order of time. UH and UT are head and tail pointers of the used list, while FH and

FT point to the head and tail of the free list. The initial state of the ROB is shown in Figure 7(a) and three

different cases of list management are shown: insertion a new instruction to entry 1 in Figure (b), the OOO

commit of an instruction in entry 2 in Figure (c), and the squashing due to mis-speculations, mispredictions

or exceptions from entry 2 in Figure (d). In each case, the updates to the pointers are shown by the bold

lines.

Insertion of a new instruction (Figure (b)) or removal of a committed instruction (Figure (c)) requires
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only simple head and tail pointer manipulation of the free and used lists plus the update of one ROB entry

pointer. BT entry update may also be required.

Squashing of an instruction removes all younger instructions till the tail of the used list. In this case the

canceled instruction and all younger instructions in flight are added to the free list. Figure (d) shows this.

The actions required for maintaining the linked list ROB are also not on the the critical path and should

not affect processor clock. This is because insertion in the window and commit are already taking several

cycles.

A similar mechanism can be applied to the BT where entries are also removed from the middle of the

structure. However, fragmentation can only happen in the first Wmax entries of the BT and an alternative

design which exploits a collapsing mechanism can be used. In the latter case the collapsing only happens at

the “top” of the BT while the later entries are organized as a FIFO (see Figure 6).

Squashing instructions and instruction blocks. When a misprediction or a misspeculation occurs,

instructions are squashed from the ROB and blocks are squashed from the BT starting from the problem

instruction and squashing younger instructions and younger blocks, as described above. The block counter

is reset to the BID of the block which has the problem instruction. Register file update is described in

Section 3.4.

3.3 OOO Memory Instruction Commit

There are three issues to consider when committing memory instructions out of order: store-to-load-

forwarding, load ordering and store ordering. All of these are present in a standard LSQ of in-order commit

processors, thus we only discuss the necessary changes. A replay mechanism is assumed for dealing with

ordering violations.

For store-to-load forwarding the proposed architecture allows the queue tag search to be narrowed using

the block information. A store and a load with a potential dependence which cannot be eliminated at compile

time are placed by the compiler either in the same block or in prologs/epilogs where they are committed in

order with respect to each other.

Each entry of the LQ and SQ is extended by two fields to describe its block ID BID and block type T (see

Figure 8). They are set to the values in the BT when a load or a store instruction is inserted into the LSQ .

Load disambiguation is performed such that a) for a load in a body, only older stores with the same BID are

checked or b) for a load in a prolog or an epilog, only older stores in the same block type are checked.
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Figure 8. Support in the LSQ. Extensions to the queue are shown in the dark area.

In the figure, when entry 4 of the LQ (which is in a body) is checked for readiness, only addresses of the

SQ entries 1, 2 and 3 need to be compared as they are in the same body, but not that of entry 0 as it belongs

to another block (prolog in this case). By using this information from the additional fields as provided by

the compiler, the CAM search can be faster for entries that cannot match.

The store and load ordering constrains depend on the memory consistency model. We do not model

multiple processors in this work but assume a weak consistency model and support for memory barriers.

3.4 OOO Register Release

During in-order commit when an instruction that writes a logical register commits, the previous physical

register that mapped the same logical register is released. Under in-order commit this guarantees that a)

a new value is created for the logical register and b) the previous value in this logical register has been

read by all dependent instructions. This technique does not work with OOO commit and/or early register

release. However, register release may not have to wait until a logical register which maps a physical

register is renamed to another physical register (assuming it is not the current renaming) if one uses block

type information. Two problems need to be solved first. One is tracking the physical register uses and the

other one is restoring register state on mis-speculation or exceptions which occur out of order.

Tracking register use by dependent instructions via reference counters [1] or a dependency matrix [9] has

been proposed, each with its own issues. The architecture proposed here uses block commit information to

drive the register release.

The main problem is that a physical register P may be released out of order and before it was read by all

dependents. P can then be mapped to a new logical register and a new value written into the register. For this

reason early release of physical registers was not allowed in [2]. Again, using the block properties, registers

can be released after they are no longer used.
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The architecture proposed here associates two block ID’s with each physical register. The first one is the

BID of a block which maps the physical register, and the second one contains the BID of a block which

re-maps the same logical register. The register is written and may be used by all the blocks between these

two blocks. The register is safe to release only after all these blocks have been committed. One should also

note that block types are not taken into account when releasing the registers.

However, blocks may be committed and removed from the BT out of order requiring a mechanism to

determine whether all the consumer blocks have been committed. This is accomplished here by using a

block reference count via a mechanism similar to [7]. Each physical register uses a counter which counts

the blocks between the allocating block and deallocating block. In the above example, the initial value of

the counter to the register P3 is set to 0 when it is mapped to the logical register R2 at the instruction I2.

The counter is incremented when a new block is inserted after that, which are block C and D (assume that

no instructions in block B consume this register, the other counter is incremented as well). The counting

stops when R2 is renamed again at instruction I4. When block C or block D are committed, the counter is

decremented. When the counter reaches 0 again, the mappings R2 to P3 can be released.

Misspeculation or exception handling is different for OOO commit only if it occurs in an older block A

and after younger blocks have been committed. Restarting execution in block A requires that the register

map be restored to its state at that time and that none of the registers alive then have been released. The latter

is guaranteed by the block reference count because block A has not committed. As for restoring the register

map, let us assume that a physical to logical register map is maintained, such as the CAM-based renamer

in [4]. OOO (or in-order) register release in this case simply removes its mapping. This does not affect

any older live mappings. A reference counter for each register is updated as per [1] as canceled instructions

are removed from the ROB. Note that blocks that commit out of order both increment and decrement the

reference counters and thus do not affect the mechanism.

3.5 Exceptions

Standard OOO processors commit instructions in program order. This is required to maintain sequential

program semantics and, in particular, maintain precise exceptions with relative simplicity. Specifically, in-

order commit allows all instructions after an exception to be canceled and later re-executed starting at the

exception PC. OOO commit makes maintaining precise exceptions more difficult.

Consider a case when an exception occurs in an older iteration i while (part of) a younger iteration i+1 has
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already been committed and its (ROB, LSQ, RF) resources released. A restartable exception should cause

cancelation of all instructions in the iteration i+1 and their re-execution later on. But results of iteration i+1

were already committed and thus re-execution may lead to an error. For instance, the following code cannot

be re-executed as it will result in an incorrect value in memory:

ld R4, 4(R8)

add R4, R4, R2

st 4(R8), R4

However, the loop and block properties again help solve the problem. Recall that our execution model

allows the OOO commit in the “data independent” blocks of an iteration but commits instructions in the

sequential part of all iterations in sequential order. This means that exceptions in the sequential part of all

iterations remain precise. Furthermore, the register state is also precise in a sense that all registers needed

by an instruction in iteration i have not been released.

Exceptions in the data independent blocks are made precise by the architecture and compiler. The ap-

proach proposed here for achieving this is to handle the exception and then restart execution. This will

involve potentially re-executing all instructions from data independent blocks committed out of order. Such

blocks are dependent only on prologue blocks and thus can be re-executed and produce the same results

subject to solving the problem of re-execution described above. The source registers used in such blocks

either come from outside of a loop (e.g. globals) or from prologs. None of these registers could have been

released.

This approach results in “partially precise” exceptions, i.e. the values in all registers and memory loca-

tions produced by all instructions in a loop prior to an exception are precise. But other memory locations

may have been updated by later instructions. However, this is sufficient to allow software or hardware ex-

ception handlers to deal with the exception and guarantees that the state will become completely precise

again. For instance, the virtual memory or f.p. exceptions can be handled this way. A software trap would

be decoded before later iterations and force in-order commit. A trap from a keyboard interrupt generated for

debug can be delayed until in-order commit mode is entered.

The problem of re-executing memory operations boils down to stores with a WAR dependence to any load

within the same iteration, e.g. A[i] = A[i] + 4. Such dependencies can not exist between data-independent

blocks. The approach proposed here is to simplify the hardware and rely on the compiler to detect such

stores (anti-dependencies within an iteration) and move them to the epilog of an iteration.
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Parameter Configuration
IQ (Total FP and INT units) 96

ROB 128
LQ/SQ 32/32

Registers (Int/Float) 160/160
BTB entries 4K

Frontend/Execution/Backend widths 4/6/4
DCache 64KB, Assoc 8, Line Size 128, 2 cycles
ICache 32KB, Assoc 8, Line Size 128, 2 cycles

L2Cache 4MB, Assoc 16, Line Size 128, 20 cycles
Memory latency 300 cycles

Table 1. Processor configuration.

Precise exceptions can be enforced on stores with compiler assistance (using a compiler flag). This would

require bodies of type B1b to not contain stores, instead all the stores would be moved to blocks of type

B2 (epilogs). This will enforce their sequential execution across iterations. Finally, stores may be forced to

commit in order by hardware. This may not even affect the performance much, as some programs (such as

mgrid) have very few stores. But other programs may see lower performance.

4 Methodology

We used the M5 simulator [3] to study the OOO commit technique. M5 is a detailed execution-driven

simulator for system-level architecture and processor microarchitecture. The simulator was configured to

target Alpha 21264 architecture [13, 18]. Selected parameter settings are listed in Table 1.

A set of six benchmarks from SPEC2000 and 2006 benchmark suites was used in our study. As mentioned

above, the choice was dictated by our ability to hand-compile a small number of loops in each application

such that the speedup from OOO commit in these loops would noticeably reduce the application’s execution

time. This researched focused on the OOO commit architecture and its potential, compilation for OOO

commit architecture is left for future work. A compiler will enable us to compile all benchmarks in the suite

and also every profitable loop in a benchmark, leading to even higher performance gains.

Benchmark description is given in Table 2. Profiling was used to identify the loops with significant

percentage of overall execution time and these are shown in the last column of the table.

A baseline and an OOO code versions were created for each benchmark. Both the baseline and modified

benchmarks used software prefetching in all loops executed in the OOO commit mode. All benchmarks were
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Benchmark Suite Type Language Loops (line number)
art SPEC2K Floating point C 584 in scanner.c

equake SPEC2K Floating point C 1195 in quake.c
mgrid SPEC2K Floating point Fortran 149, 189, 230, 270, 291 in mgrid.f
swim SPEC2K Floating point Fortran 261, 315, 397 in swim.f

libquantum SPEC2K6 Integer C 89 in gates.c
bwaves SPEC2K6 Floating point Fortran 168 in block solver.f

Table 2. Benchmark information.

compiled using GNU Alpha compilers with optimization flag -O3. A selected source loop was identified in

the assembly and loop and block “markers” were manually added to it. Instructions were re-ordered in some

cases to satisfy OOO constraints, e.g. to move dependent instructions into epilogs. The modified assembly

was then assembled for use by the simulator.

In each experiment, the caches were warmed up for 500M instructions after skipping initialization. After

that each benchmark was run for at least 500M instructions. To make a fair comparison between the two

code versions, the benchmarks were run until they reached the same point (i.e. after a number of iterations)

instead of until they committed the same instructions as the number of instructions is different for the OOO

version.

5 Results and Analysis

This section presents simulation results for the OOO commit architecture. The following statistics are

presented and discussed: the percentage of instructions committed in the S-mode, instructions committed

from prologs, bodies and epilogs, registers released early inthe O-mode and statistics on BT operations.

Finally, speedups over the baseline OOO processor are presented.

Figure 9 shows the percentage of committed instructions in the standard commit mode (the S-mode) and

from prologs, bodies or epilogs in the O-mode. On average, 29% of instructions are committed in S-mode.

The number is larger for three benchmarks, art (39%), equake (68%) and libquantum (35%). Note that this

very dependent on the number of loops processed for the OOO commit.

The average number of instructions committed in the O-mode in prologs, bodies and epilogs are 20%,

48% and 3%, respectively. The OOO commit is successful because it commits instructions from prologs

and bodies out of order and releases their resources (LQ, SQ, RF and ROB entries). Note that the number

of epilogs is small compared to prologs and bodies because epilogs only contain instructions which might
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Figure 10. From left: instructions, loads, and
stores committed and registers released in the
O-mode.

have inter-cross dependencies. In some benchmarks, e.g. mgrid and libquantum, there are no epilogs as

loop iterations are completely independent.

Statistics about instructions committed in O-mode are shown in Figure 10, the leftmost bar for each

benchmark. Such instructions may release the resources faster and result in program speedup. On average,

the percentage of instructions committed out of order is 73% while in O-mode. The remaining 27% are

committed from the top of the ROB (“Head”). Overall, 52% of all committed instructions (accounting for

the S-mode commit) are committed out of order.

The second and third bar for each benchmark in Figure 10 show the percentage of loads and stores

committed out of order vs from the top of the ROB (“Head”). The percentage of store instructions committed

out of order is small for several reasons. First, stores in the epilogs are committed in order. Second, store

instructions are often the last instruction of a body block and the last instruction is often committed from

the top of the ROB. This happens when a block becomes ready to commit after waiting for data on a cache

miss and reaching the top of ROB.

The last bar of the figure shows the percentage of registers released out of order. Overall, the number

released out of order is smaller than for other categories. OOO commit increases register pressure and OOO

release would be very helpful. Of the registers released out of order, many are renamed multiple times

within a block (around 65% of OOO released registers). Registers used across multiple blocks take longer

to release, for instance registers in prologs. Short loops may require more registers.

Figure 11 shows BT statistics. The leftmost bar (occupancy) is the average number of entries in the BT

while in the O-mode. This indicates that the BT can be rather small. The next bar (search size) shows the

average position in the BT past which there are no blocks with instructions that can be committed out of
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Figure 12. Speedup.

order. This indicates that the size of the BT search window can be small. The last bar (found size) shows

the BT position where the first block with an instruction ready to commit is found and such instruction is

committed. This confirms that most of the OOO commit happens in the top BT entries.

The benchmark mgrid has a large BT occupancy because its loop body was broken into sub-blocks.

Multiple blocks of type B1b expose more instructions ready to commit while in a single block instructions

commit is in order.

Figure 12 shows the speedup from the OOO commit over the baseline architecture or, more precisely, over

the unmodified benchmarks. One should keep in mind that, due to manual insertion of marker instructions

into the assembly code, the modified loop code in the benchmarks is no longer highly optimized. Results

show that the minimum speedup is 10% and the maximum is 26%. The speedup clearly depends on the

number of instructions committed in the OOO commit mode. The lowest speedup is in equake which

commits only 32% of instructions in O-mode (see Figure 9). mgrid has the highest speedup as the percentage

of instructions in the O-mode is high Also, mgrid does not have epilogs, which are committed in order and

thus occupy the ROB and other structures for longer than prologs and bodies.

In summary, the proposed OOO commit mechanism benefits from (1) the number of instructions com-

mitted in the O-mode (and the number of loops compiled for OOO commit), (2) the number of outstanding

commit pointers, and (3) different behavior of memory instructions belonging to different instruction blocks,

e.g. hits vs misses.

6 Related Work

OOO commit has been studied [2]. It examined constraints under which instructions can be committed

regardless their age and proposed a mechanism to commit instructions early. The constraints limit the
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number of instructions which can be committed out-of-order. Extra hardware was proposed to detect WAR

dependencies in order to release registers early. Second, load instructions can become committable only

after all previous stores have resolved addresses. Third, the constraints in exception handling in their work

reduces the number of instructions committed out of order significantly. Our work employs block properties

to relax these constraints and reduce the hardware overhead needed to support OOO commit.

Other studies have been proposed to early release of resources [17, 5, 21]. Cherry [17] decouples instruc-

tion commit and resource recycling. Resources are released and put back in use when they are no longer

needed. The work distinguished the reversible instructions and irreversible instruction using Point of No

Return (PNR). The PNR points to the youngest instructions which are no younger than the oldest instruc-

tions which might cause misprediction or misspeculation. Reversible instructions, which are no older than

the PNR, are handled as in conventional mechanism. Irreversible instructions can release resources early. If

exceptions happen, the whole processor rolls back to a dedicated checkpoint. The LSQ and the RF are also

redesigned to support the scheme. The work in [5] employs checkpointing mechanism. Register release and

store retirement, which would change the processor state, are not done until checkpoints are committed. If

exceptions occur, the processor state rolls back to a previous checkpoint and restarts execution from that

point. Validation Buffer (VB) was proposed in [21] as a replacement for the ROB. Instructions are inserted

into the VB in program order and leave when they are no longer speculative. To support this, a program is

divided into epochs and each has an epoch initiator, which contains instructions which might cause prob-

lem. Instructions in an epoch are allowed to leave the VB only after instructions in the epoch initiator are

completed. The concept of epoch initiators is somewhat similar to prologs in our work. A major difference

between the above prior work and ours is that, it used hardware to support their techniques, while in our

work compiler support is employed. Also, our approach does not require checkpointing.

Mechanisms to release registers early have also been studied [19, 7, 10] for in-order commit processors.

In these architectures a register is released as soon as the last consumer has read data from it. In [19], a

register is attached to the last instruction which reads it in the program order. The register can be released

when this instruction is committed. However, it is not easy to know which instruction is the last consumer

of a register due to possible mispredictions or misspeculations. The work in [7] used a counter to keep track

of the number of instructions which read a register. A new consumer is recognized in rename incrementing

the counter and a consumer commit decrements it. The register can be released when it has the value of

0. Misprediction/mispeculation make maintaining such reference counters difficult. In [10], the authors
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observed that many registers are read only once after being written. Using the compiler to identify these

registers, the pipeline is modified to support the their early release after they are read.

There has been a large body of work on exploiting loop properties. Loop processor architecture [8]

detects and captures the loops in front-end stages, and keeps them in the loop window after the first iteration,

allowing loop instructions to be fetched, decoded and renamed once. Later iterations are fetched from the

loop window, hence saving bandwidths of frontend stages. This work is orthogonal to our work, as we

aim to improve the commit stage. In the compilation domain, the work in [24] explored parallelism in

DOALL loops using optimizations during the compilation process. The optimizations include loop fission,

prematerialization, and isolation of infrequent dependencies. While the focus of this work is multicore

domain, some of these techniques can be applied in the compilation process for our proposed architecture.

Long-latency misses are one of the critical issues which have been studied for a long time [15, 14, 20, 6].

To overcome this problem, the load instruction and its dependencies can be removed from the main pipeline

to a buffer [15] or speculatively retired [14], allowing other instructions to proceed. In [15], the load and

its dependencies are moved to an aside buffer and are moved back to the main pipeline once the load has

its data. In speculative retirement [14], value prediction [16] is employed to predict the result of the load

early. If the prediction is recognized to be wrong later, the pipeline is rolled back to a dedicated checkpoint.

Another proposal [20] aims to warm the caches while the whole pipeline is blocked by long-latency misses

by entering runahead execution mode. Instructions are then executed, but their results are not committed.

The approach in [6] enlarges effective sizes of critical structures, increasing the number in-flight instructions

in order to hide the miss latency. Our work is orthogonal to these proposals as well, as they emphasized

execution stage, while we focused on commit stage.

7 Conclusions

The in-order commit mechanism is overly conservative as instructions are committed only when they

reach the top of the ROB. After a long-latency miss instruction reaches the top of the ROB the processor

stalls and performance is significantly reduced. This paper proposed an out-of-order commit mechanism

using compiler support. The work is based on the observation that loops are very common in programs

and they can be used to support out-of-order commit mechanism by tracking loop code blocks. The paper

defined three types of blocks that allow iteration-independent code to be separated as well as to be able to
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process complex multiply-nested loops. These blocks are ”marked” by the compiler and imply certain types

of dependencies that hardware can infer. Blocks are tracked in the processor to determine relaxed commit

conditions. In-order commit is completely preserved and can be used for all or part of a program. The

compiler also assists in exception processing by guaranteeing certain conditions are met.

The architectural extensions include block-based early register release, independent multiple commit

points in different blocks, OOO commit of memory instructions, and compiler-assisted exception process-

ing. The results show that on average 52% of instructions can be committed out of order and the resulting

speedup ranges from 10% to 26%. The additional hardware requirements are minimal.
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