
Center for Embedded Computer Systems
University of California, Irvine
__

TLM Generation with ESE

Kyoungwon Kim

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-2620, USA

{kyoungk1}@uci.edu

CECS Technical Report <10-07>
July 15, 2010

TLM Generation with ESE

Kyoungwon Kim
Center for Embedded Computer Systems

2010 AIRB
University of California, Irvine

Irvine, CA, 92697-2620
{kyoungk1}@uci.edu

http://www.cecs.uci.edu/

July 15, 2010

Abstract

Without a well-structured system design methodology, it is no more doable to cope with the
dramatically increasing complexity in modern embedded system designs. Platform methodol-
ogy, which often goes with hardware/software co-design with virtual prototyping, is the most
popular solution [3]. Although it has been helpful for reduction of engineering costs and the
length of design cycle due to the use of verified platform and virtual prototyping, it still has
drawbacks that must be overcome.

The drawbacks mainly result from the followings; The starting point of a design is not
behavioral specification of the system but a relatively inflexible platform instance. The refine-
ment steps and models are not clearly defined and synthesis is not taken into consideration.

ESE(Embedded System Environment) overcomes these drawbacks while keeping the advan-
tage of the current Platform methodology. A design starts with specification, which is flexible
in nature and simplifying system level complexity by hiding unnecessary details. Refinement
steps and models are firmly defined so that a design can be automatically synthesized. In the
result, the productivity gain that designers can obtain with ESE is proved to be greater than
1000.

1 Introduction

The complexity in embedded system designs has been dramatically growing over the

past decades. Moreover, designers are more burdened with stricter time-to-market

constraints, much higher non-recurring engineering costs, and so on. Since the de-

sign cycle has been becoming unbearably long and the cost of each iteration has been

rising rapidly, productivity is no more a secondary issue.

Bridging the gap between productivity and design complexity turned out to be im-

possible with traditional design approaches such as the Top-down methodology or the

Bottom-up methodology.

In the present and in reality, most of companies are likely to be armed with Platform

methodology. Although it is not so necessary that this approach includes hardware/-

software co-design with virtual prototyping, the co-design with virtual prototypes of-

ten goes with Platform methodology for large productivity gain. Although the current

Platform methodology is so helpful, it still has critical drawbacks, which is the reason

why we still need a novel and better design approach.

1

(a) The Top-down Methodology

(b) The Bottom-up Methodology

Figure 1: Two Traditional Methodologies : The Top-down and Bottom-up [3]

The novel system design methodology underlying ESE(Embedded System Environ-

ment) overcomes those drawback while keeping the best features of the previous ones.

In this section, a historical review of system design methodologies will be followed by

brief introduction to the concept of ESE. The best way to understand anything con-

temporary is to understand its history.

1.1 The Top-down and Bottom-up Methodology

The Top-down methodology is shown in the Figure 1(a). The design starts with an

abstract model of the system in concern. Then, this model is further refined until its

layout can be given. The main drawback stems from the fact that we cannot estimate

metrics accurately on an upper level in Gajski Y-chart. It means that the impact of

design decision on upper level is not predictable enough.

The Bottom-up methodology(Figure 1(b)) is another representative traditional de-

sign approach. The starting point is a set of presynthesized components. Each level

generates library for its the next upper level. Critical defects of this approach mainly

come out due to the fact that the needs or optimality on upper levels can hardly pre-

dicted on lower levels. Moreover, with this approach, system level complexity is often

quite high.

2

Figure 2: Platform Methodology [3]

1.2 Platform Methodology

Mainly due to the main drawbacks mentioned above, any of the two traditional

design approaches is not so satisfying that designers can cope with the design com-

plexity of contemporary and/or future embedded systems.

In reality, the most widely accepted design approach seems to be platform method-

ology. It is depicted in Figure 2 [3]. The reason why it is widely accepted is that design

methodologies are often product-oriented and system platforms are already accessible

for companies.

A platform is a partial design that is optimized not for a single application but for

a set of applications in a specific domain such as multimedia. Legal compositions of

elements and interconnects are limited and each of them is called a platform instance.

The design in Platform methodology starts with a platform instance on the system

level. Standard components with well-defined layouts as well as custom components

for application optimization are given.

In this approach, since the metrics of the components in the platform is often

known. The impact of any design decision on the system level can be predictable.

Moreover, when synthesizing custom components, the need on the system level can

be propagated in this methodology.

However, in addition to that platform customization is still needed, since a plat-

form is not so flexible in nature, designers cannot easily respond to future change in

requirement.

1.3 Hardware/software Co-design with Virtual Prototyping

We can see how the trend of Platform methodology has changed in Figure 3. The

future trend is actually what ESE is based on and will be explained later.

The main difference between the past trend and the present one is hardware/soft-

ware co-design with virtual prototyping.

In the past, after once a system was partitioned into hardware and software, the

software engineers had to wait until the production of the structural model of the

hardware. Moreover, the co-simulation environment for software developers was not

fast enough since too many details were included in the structural model of hardware

and its counterpart, software. These two critically lengthened design cycle.

3

Figure 3: System Design Trend [2]

Virtual prototyping is almost a natural consequence to gain higher productivity by

shortening design cycle. Virtual prototyping is to provide a co-simulation environ-

ment, into which hardware and software are integrated, before actual hardware is

ready. Usually, implementation details are hidden to raise the level of abstraction. It

reduce design cycle by enabling co-design and speeding up the simulation.

Transaction level model is one of the most well-known models that can serve as a

virtual prototype but is not the only model used for virtual prototyping.

1.4 Embedded System Environment

Platform methodology that goes with hardware/software co-design still has draw-

backs that can never be ignored. As mentioned above, the starting point is not be-

havior of a system but its netlist. Due to this, it can be applied only narrowly, which

means that it might be fine with contemporary embedded system designs but cannot

satisfy future demands.

Moreover, models used for virtual prototyping is too simulation oriented and do not

consider synthesis enough. The refinement steps and models are not defined solidly.

With those lousy and unclear models, automatic synthesis is not easy.

The system design methodology underlying ESE overcomes these drawbacks. It

leads the design to start with not a platform instance but behavioral specification of

the system, which is flexible in nature. This is the same as we can see in the Figure 4,

where the starting point is functional description on system level. In both of these

approaches, the functional description is synthesized into the structure of processor

components. However, unlike the meet-in-the-middle methodology in Figure 4(b),

where the processor components are virtual and have no layout yet, in ESE, the

layouts of those components are given only for the strength of Platform methodology

to be preserved.

4

(a) Meet-in-the-Middle Methodology

(b) ESE Design Methodology

Figure 4: The Meet-in-the-middle and ESE Methodology [3]

5

Figure 5: ESE Design Flow [3]

1.5 ESE Design Flow

ESE defines three models for system level synthesis; Specification model, TLM and

PCAM. We claim that three is the minimal number of necessary models. We need

specification model, which enables us to specify the system without considering im-

plementation, to ease system design. Moreover, without any doubt, any practical

system needs PCAM. However, specification model does not provide any information

to estimate the implemented system in terms of timing, power consumption and so

on. PCAM is not ready in early stages of a design process and the speed of simulation

of PCAM is unfairly low. We need at least one more model, TLM.

The design flow with ESE depicted in Figure 5 goes on around these three models. A

user of ESE, system designer, defines the system with ESE GUI on the top of ESE API

to produce the specification model. The specification model is drawn inside the box,

“System Definition”. An application written in C/C++ is given without considering

any implementation. The platform instance is retrieved from component library. The

specification model is obtained by mapping an application and a platform instance.

Then, TLM is generated by ESE front-end tools. The designer is allowed to estimate

the system by simulation. ESE back-end generates PCAM from the TLM.

What is intended by this report is to provide far detailed explanation about ESE

front-end by elucidating this design flow in great detail. Especially, TLM generation is

mainly focused on. The remaining part of this report is organized as follows. One sec-

tion, section 2 is assigned to discuss specification model. Three sections, section 3, 4

and 5 are written to explain TLM generation and followed by section 6, in which the

improvement in TLM generator is discussed. The last section is conclusion.

6

Figure 6: Communicating, Flattened Processes and Channels as Behavioral Specification Model
in ESE

2 System Definition in ESE

The most important things that should be taken into consideration when we think

about a system specification tool is as follows.

• Which model is used for the behavioral specification of the system?

• Which components should be included in the platform library?

• Mapping rule

A behavior of a system is currently represented as a set of flattened processes and

abstract channels connected to processes. One simple example can be found in Fig-

ure 6. Four processes, P1, P2, P3 and P4 are communicating via process-to-process

channels C1, C3 and C4 and a FIFO channel, C2.

Generally, a platform instance is decomposed of PEs, CEs and buses. A PE can be

one of a CPU, a custom HW, a HW IP or memory. In the example in Figure 7, CPU0,

HW0, IP0 and Memory0 are PE components, which are respectively a CPU, a custom

HW, an IP and a memory. These components can be connected to buses such as

Bus1 and Bus2. If two buses are not compatible in protocol, a transducer like Tx0 or

a bridge should be introduced. Note that a transducer also have a FIFO in it, which

is basically used when transferring data from a bus to another bus.

Users define their system by mapping these two, a platform instance and behavioral

specification. Therefore, firstly, users specify the behavior of the system. Secondly,

they select a platform instance from the platform library. The final step to define the

system is mapping. Processes are mapped onto PEs. Channels are usually mapped

onto routes. However, if two processes communicating via a channel are mapped onto

the same PE, a channel is mapped onto a local memory of the PE. Moreover, if more

than one processes are mapped onto the same PE, the PE must be a processor and

has an RTOS on it. All of these are exemplified in Figure 8. Process P1 and P2 are

mapped onto the same PE, CPU0, which is a processor. A RTOS should be specified

7

Figure 7: A Simple Example of a Platform Instance in ESE

Figure 8: The Result of Mapping Figure 6 onto Figure 8

in this case. Process P3 and P4 are mapped onto HW0 and IP0 respectively, where

HW0 is a custom HW and IP0 is a HW IP. Channel C1, C2 and C3 are mapped onto

the route, “P1, Bus1, P3”, “P1, Bus, Tx0, Bus2, IP0” and “P2, Bus1, Tx0, Bus2, IP0”,

respectively. However, C1 is mapped onto the local memory of CPU0 since both of P1

and P2 are mapped onto CPU0. For the same reason, CPU0 must be a processor and

a RTOS should be introduced. That is the reason why a RTOS, rt0 should be specified

for CPU0.

To represent these specification, platform and mapping, the well-defined data struc-

ture that is easy to manipulate for design space exploration is really essential. Cur-

rently, the data structure is unified and in form of an XML tree.

3 Refinement from Specification Model to Transaction Level

Model

ESE front-end covers TLM generation. With TLM, designers can estimate their

system before final implementation is ready, due to which design space exploration in

8

early design phases are allowed to them.

The goal of this section is as follows.

• Explaining how specification model is refined into TLM

• Explaining how ESE achieves this goal

Since computation is separated from communication in our TLM, we elucidate com-

putation and communication separately. In addition to that, please note that under-

standing TLM generator is no hard if and only if we understand the generated TLM.

Therefore, we have to focus on the generated TLM first and then the TLM generator

can be easily understood.

The remaining part is organized as follows. In section 4, computation refinement

will be explained. It is generation of PEs, processes and RTOS that are mainly focused

on. The main topic of section 5 is generation of communication API for various types

of channels.

4 Computation Refinement

In reality, TLM is even different from company to company. ESE defines two kinds

of TLM; Functional and timed TLM. Timed TLM is different from functional one only

in that RTOS may be introduced when multiple processes are mapped onto a single

PE and it is annotated with timing. Therefore, we explain functional TLM first and

timed TLM later.

4.1 Computation Refinement in Functional TLM

The components that serves as computational part in TLM are processes and PEs.

In this section, the modeling style of PE and processes and their generation will be

discussed.

PEs are modeled as a sc module in SystemC, which resembles “entity” in VHDL.

Processes mapped onto a PE are modeled as sub modules of the PE. Grammatically,

each of these sub modules is also an independent sc module. The PE sc module

instantiates processes in it and each of the process sc modules calls users’ function

inside it, whose name is the same as that of the process. We can see it in Listing 1.

9

Figure 9: Processes and PEs in Functional TLM in View of Process/PE Generation

1 CPU0 : public sc module {

3 Process P1, P2;

. . .

5 main ()

{
7 P1 . main () ;

P2 . main () ;

9 . . .

}
11 } ;

13 P1 : public sc module {

15 . . .

main ()

17 {
P1 () ; // ca l l users ’ funct ion

19 }
} ;

21
P2 : public sc module {

23
. . .

25 main ()

{
27 P2 () ; // ca l l users ’ funct ion

}
29 } ;

Listing 1: Hierarchy Between Processes and PEs

The remaining part of modeling PE and processes are ports. To explain it, a typical

example of PE/process modeling is introduced in Figure 9. This example is from

Figure 8.

First of all, during generation of processes, channels are not taken into considera-

tion. As we see in the figure, channels are not directly visible to processes. What is

visible to processes are process ports and their interfaces called communication API.

These ports are drawn as the small white squares in Figure 9. We need to insert these

ports but do not have to care more about channels until generation of processes is

done.

10

Figure 10: TLM Generation for PE and Processes

Secondly, during generation of PEs, the list of tasks are as follows.

• Implementing Intra PE Channels

• Inserting PE ports

• Implementing PE Ports Drivers to Implement Process Ports by Using PE Ports.

A channel is either an intra PE channel like C1 or external to the PE as C2, C3 and C4

are external to CPU0. In the first case, the channel should be implemented inside the

PE to implement the interface of process ports. The second case needs to be explained

in detail. A PE is connected to a bus via a PE port. In the figure, small gray square

attached to CPU0 is the PE port and CPU0 has one PE port. We can see that this PE

port is connected to Bus1 in Figure 8 and Bus1 implements the interface linked with

this port. By the way, process ports to PE ports mapping is many-to-one. We can find

an analogy in Linux. Linux provides processes with many logical “sockets”. However,

in fact, it usually has one or two Ethernet cards. Like Linux, in TLM, we may have

multiple process ports that need to access the same PE port. To resolve this conflict,

drivers have to be introduced inside PEs.

The generation procedures to produce processes and PEs are summarized in Fig-

ure 10.

• PEs are generated with PE ports. However, PE port drivers and intra PE channels

are not yet implemented.

• Processes are generated in the way explained above.

• PE ports are connected to the proper buses.

• PE port drivers and intra PE channels are implemented.

In the example in Figure 9, the first step is to generate CPU0 with the PE port, the

small gray square. The second step is to generate P1 and P2 with process ports, the

small white squares. The third step is to connect the PE port to the bus, Bus1. The

last step is to implement the PE port driver and the intra PE channel, C1. All of these

steps are included in a single function, “processPE”.

11

The information to do that is kept in the data structure, ESE DS, which is in the

form of an XML tree as depicted in Figure 10. For example, to insert PE ports, we need

to know the connectivity between PEs and buses and the list of these connectivity are

kept in ESE DS. To do the work described above, we need the information about PEs,

processes, channels, routes and connectives.

4.2 Computation Refinement in Timed TLM

Timed TLM is almost the same as functional one except the followings. First, timed

TLM has RTOS model. If multiple processes are mapped onto a single PE, then,

a RTOS should be introduced. Second, only timed TLM is annotated with timing

information, which is estimated based on high level estimation techniques [5], [4].

Communication delay will be discussed in section 5. Computation delays are de-

composed into two components; RTOS overhead and execution delays of applications.

Dealing computation estimation in great detail is beyond the scope of this report. It

will be briefly introduced and the relationship between estimation and TLM generation

will be addressed in section 4.2.1.

Considering delays does not change the modeling style so much. On the contrary,

introduction of RTOS models does affects the modeling style and the generation of

TLM. These will be discussed in section 4.2.2.

4.2.1 Computation Estimation

Applications are annotated with timing by the estimation engine. The concept is

roughly depicted in Figure 11. In the figure, two processes P1 and P2 mapped onto a

PE, CPU0 is shown. As we explained, a process is modeled as sc module. In the main

thread of the sc module, which is “main” in this example, users’ function is called.

The main thread of process P1, called main, is calling users’ function, P1. However,

the function that is actually called is different. In functional TLM, the function is

users’ original function shown at the top right of the figure. On the contrary, in timed

TLM, it is the newly generated, time-annotated version of the original function. This

new version of the function is found at the bottom right of the figure.

[4] shows its concept and algorithm to estimate execution delay of applications

using PUM.

Users’ function is given to the estimation engine as an input. During the estimation

phase, P1 is converted into a control data flow graph. Every basic block in the graph

is annotated with timing information by the estimation engine. The algorithm to

estimate timing is well explained in [4]. As we can see Figure 11, two basic blocks,

BB1 and BB2 are annotated with timing, BB1 delay and BB2 delay. These delays are

estimation of the execution time of those two basic blocks on CPU0. The control flow

graph cannot be executed directly under the TLM simulation environment. It needs

to be generated as executable codes such as SystemC. A delay is in the form of wait

functions.

Conceptually, the delay due to execution and that due to cache or branch prediction

may be separated. The latter is quite complicated to estimate. Currently, the expec-

tation value of the cost of load/store instructions considering cache is computed in

static time based on the statistics. For example, with ARM9, we can obtain statistics

related cache hit/miss rate. In addition to that, we can obtain the cost of a cache

miss based on data sheet and statistics. The expectation value of the cost due to

cache can be computed in static time. The delay can be inserted at the end of every

12

Figure 11: Timing Annotation To Users’ Functions

13

Figure 12: Processes/PEs Example with RTOS

basic block since the delay is computed based on statistics. The same rule is applied

to the cost of branch instructions. Currently, while assuming that branch prediction

policy is very simple one, we computes the expectation value and insert it at the end

of every basic blocks. So, the timing annotated version of P1 includes those delays as

additional wait functions.

However, note that the name of two different versions of the function is the same,

P1. When generating CPU0, P1 and P2, we need to know the type and name of P1

but not its implementation. So, in the view of generation, timing annotation does not

affect so much.

4.2.2 RTOS modeling

The modeling style changes at introduction of RTOS. It is depicted in Figure 12.

The example in Figure 8 and 9 is used again. First of all, a RTOS, rt0 is introduced.

This RTOS is modeled as a sc module, which is, at the same time, a sub module of

the PE, CPU0. Processes(P1 and P2) are no more independent sc modules. Instead,

they are threads managed by rt0. In functional TLM, since they were two sc modules,

the order of execution is dependent on the SystemC simulation kernel. Now, in timed

TLM, it depends on the RTOS model. In Figure 9, drivers are inserted to bind process

ports with PE ports. In timed TLM, communication API, the interfaces of process ports

are implemented by using RTOS services. A intra PE channel such as C1 is located

in the local memory of the PE, CPU0 and accessed by calling RTOS system calls.

The generation procedure is summarized as in Figure 13.

Above all, without RTOS, these steps are the same as those of function TLM gener-

ation. Or, they are as follows.

• PEs are generated with PE ports. RTOS models are included in the PEs

• RTOS models are retrieved from the SW library. Instead, sc modules represent-

ing processes are not generated.

• PE ports are connected to the proper buses.

The first step is almost the same. It produces the CPU0 module in Figure 12.

However, CPU0, the PE is generated so that it declares the RTOS, rt0 as its sub

module instead of processes, P1 and P2. This is unlike the functional TLM case in

Figure 9. Processes are invisible to CPU0.

14

Figure 13: Modified Generation Steps when RTOS is present

In the second step in Figure 13, the RTOS model is retrieved from the SW library.

The reason why RTOS models are not generated but retrieved will be explained later.

As depicted at the right of the figure, the kind and configuration of the RTOS for CPU0

have to be specified and stored in ESE DS. As depicted in Figure 12, intra PE channels

such as C1 are implemented as a part of RTOS services. In addition to that, RTOS rt0

takes the responsibility to map process ports onto PE ports so that communication

API is implemented on the top of RTOS services.

The step in which PE ports are connected to the buses is the same. The last step in

the functional TLM case is not necessary in the timed TLM case if a RTOS is present

on the PE.

Now, we will explain why RTOS models are retrieved rather than generated. In fact,

RTOS model does not need to be generated again and again at the every change of the

system. RTOS services are common. Most RTOS services can be parameterized. For

example, the scheduling policy may be different from system to system. However, we

can parameterize it and do not need to implement the scheduler again and again.

It is depicted in Figure 14. Conceptually, all the TLM components including PEs,

CEs or buses(the blue gray boxes) are generated after TLM component generation.

However, ideally, RTOS models(the darker gray boxes) are not. It has been already

made and stored in SW library. By retrieving the RTOS models and linking all the

other TLM components with the RTOS model, we can obtain the final timed TLM.

5 Communication Refinement

In this section, the communication part will be discussed. Communication API

generation is mainly focused on.

15

Figure 14: Linking The Generated Components with RTOS from the SW Library

Figure 15 enumerates all the kinds of channels that ESE currently supports. By

explaining each of them, we can understanding TLM generation for communication.

In the figure, we can see that channels can be divided into three groups; Process-

to-process, memory and FIFO channels. Each of these groups can be further decom-

posed into two or three groups depending on the relative location of the communicat-

ing processes or memory.

• Intra PE : Two processes(or one process and one memory) are mapped onto the

same PE.

• Local Communication : Two partners are mapped onto different PEs. However,

these two PEs are connected to the same PE and the data is directly sent via the

bus.

• Remote Communication : The route that the channel is mapped onto includes

one or more CEs in it.

In addition to that, each group of FIFO channels is still subdivided into two or three

groups according to the location of the FIFO buffers. A FIFO buffer can be either in a

transducer or in local memory of a reader/writer PE.

We will review all of them. However, all the channels are quite similar so that we

can almost explain other channels by addressing the difference from P2P channels.

5.1 Process-to-process Channels

P2p channels are viewed to users as send/recv functions. As we have seen, there

are three types of P2P channels; Intra PE, local communication and remote commu-

nication.

16

(a) Classification of Channels by the Semantics and Rel-
ative Locations of Processes/Memories

(b) Classification of FIFO Channels by the Location of
FIFO Buffer

Figure 15: Classification of Channels in ESE

17

Figure 16: The Tasks for Generating TLM to Implement P2P Channels

Channel C1 the example in Figure 8, 9 and Figure 12 is an intra PE channel. Two

processes, P1 and P2 are mapped onto the same PE. In this case, the channel is

implemented with RTOS services. Since this case is trivial, we will not go deep into

the generation of this kind of P2p channels.

The rest two will be explained in this section.

Figure 16 shows the dependency graph of the tasks for TLM generation related with

implementation of P2P channels. The first thing is to split every route into link-to-

link communication. For example, in Figure 8, a send/recv channel C3 is mapped

onto the route, “P2, Bus1, Tx0, Bus2, P4”. In the view of P2P channel users, the

communication via the channels are considered as in the network layer. However,

because the communication via UBC is in the data link layer, the route should be

split into one or more link-to-link communication. For example, the route “P2, Bus1,

Tx0, Bus2, P4” is split into two link-to-link communications; P2 sends data to Tx0 via

Bus1 and Tx0 propagates the data to P4 via Bus2. This step is not necessary in the

local communication case, where two processes are mapped onto different PEs but

the PEs are connected to the same bus.

Once a route is decomposed into one or more link-to-link communications, the

next step should be implementing every of them. As described in Figure 16, the three

main things for it are communication API generation, UBC generation and transducer

generation.

To understand it, we need to pay attention to Figure 17. Both of them show that P1

on PE1 sends data to P2 on PE2. PE1 has a RTOS while PE2 does not. In Figure 17(a),

PE1 and PE2 is connected to the same bus, BUS1. On the contrary, in Figure 17(b),

PE1 and PE2 are connected to different buses, Bus1 and Bus2 respectively. The route

onto which the channel is mapped is “P1, Bus1, Tx, Bus2, P2” in Figure 17(b).

In the first example, a link-to-link communication needs to be implemented. P1 and

P2 access the channel by calling communication API. If a PE, like PE1, has a RTOS,

the communication API is implemented depending on the RTOS services. Otherwise,

it is implemented using software drivers or hardware interfaces. In any case, software

drivers, hardware interfaces and RTOS services are on the top of UBC functions. UBC

functions are to provide bus functionality such as synchronized send/recv via the

bus. In TLM, for example, two PEs connected to the same bus call the UBC send/recv

functions, by which UBC provides synchronized data transfer. In this case, two tasks

are given to implement a link-to-link communication; Generating UBC to implement

18

(a) P2P Channels in the “Local Communication” Case

(b) P2P Channels in the “Remote Communication” Case

Figure 17: Simplified Protocol Stack in P2P Channels

UBC functions and producing communication API.

In the second example, that in Figure 17(b), one of two partners participating in a

link-to-link communication is a transducer. The rest is the same as the first exam-

ple. So, implementing transducer is added to the tasks to implement a link-to-link

communication.

From now on, communication API generation will be explained in greater detail.

UBC and transducer generation will be discussed at the end of this section, briefly.

Figure 18 shows the control flow of the generated send/recv functions. It tells us

what we have to generate as communication API for P2P channels. The first job is

setting the bus address. In the local communication case, the partner is the receiver.

In the remote communication case, the partner is a transducer. That is the reason

why setting bus address is different between two Figures, 18(a) and 18(b). If the com-

munication partner is a transducer, sending a request to the transducer by writing a

request in its request buffer is also necessary and that is the reason why a request is

sent to the transducer just after setting the bus address in Figure 18(b). After setting

the bus address, two main tasks follow; One is synchronization and the other is data

transfer. Synchronization can be either depending on interrupt or done by polling the

dedicated flag on the bus. The interrupt mechanism is provided by UBC as a UBC

function, synchWait. Once the sender and receiver are synchronized with each other,

data transfer is initiated.

Figure 19 shows the control flow of a send/recv function when RTOS model and

timing annotation are taken into account. Most things are the same. However, as

we can see the gray rounded rectangle named RTOS services, to be synchronized,

the communication API should depend RTOS services instead of direct call of UBC

19

(a) Send/Recv Function in “Local Communication”

(b) Send/Recv Function in “Remote Communication”

Figure 18: Send/Recv Functions

20

Figure 19: Send/Recv Functions with RTOS and Timing Annotation

functions. RTOS overhead is accompanied by RTOS services. For example, the over-

head due to ISR enter, interrupt service routine in the figure, contributes to the total

delay in simulation. In addition to that, every communication related function is fol-

lowed by accumulation of communication delay. How these communication delays

are estimated will be explained in section 5.4.

In summary, communication API has to be generated as Figure 18 in functional

TLM and as Figure 19 in timed TLM depending on the configuration. The control

flow of send/recv functions are definitely simple, which leads their generation to be

simple.

The generation of UBC and Tx are elucidated in [1] and [5] and will not be discussed

here. Briefly, UBC has to provide five user functions, send/recv, read/write and

memory service. In addition to that, UBC also endows its users with two types of

synchronization functions, synchWait() and readFlag(). One is for interrupt and the

other is for polling. Transducers have three main modules; I/O module, Tx request

buffer and internal FIFO. Request buffers are active actors that check request buffer

exposed externally and execute the transaction written in the buffer. I/O modules are

directly connected to buses. According to the instruction of request buffer module,

retrieve data from the bus and put it on the internal FIFO, or vice versa.

5.2 FIFO Channels

The classification of FIFO channels is shown in Figure 15(b). To be synthesized,

FIFO channels cannot be intra PE channels. Two communicating processes must be

mapped onto different PEs. A FIFO channel can be divided into two groups based on

the location of processes. One is so called “local communication” case, while the other

21

is “remote communication”. In the former, two PEs having the processes respectively

are connected to the same bus. In the latter, two PEs are connected to the different

buses and need one or more CEs to communicate with each other. In addition to that,

each of two groups is subdivided into three groups depending on the location of the

FIFO buffer. A FIFO buffer is needed to implement a FIFO channel. This buffer can

reside either in a transducer or in the local memory of the reader/writer PE. The last

two cases are almost the same in the view of implementation.

If the FIFO buffer is mapped onto a transducer, the FIFO channel is refined almost

in the same way as a P2P channel. It is due to the fact that a transducer does have

a FIFO buffer inside it. We can regard send/recv communication, where two PEs are

connected to different buses, as FIFO write/read with the size of the FIFO is 1. We

will show it with an example in Figure 20. In these examples, P1 sends data to P2 via

Tx.

In Figure 20(a), the communication API, send, puts a request on the bus to write it

on the request buffer of Tx, Request buffer1. Then, it tries to be synchronized with Tx.

After synchronized, data transfer, after which the send function returns, is initiated.

The communication API, recv, is called by P2. It puts a request on the bus to deliver

it to the request buffer2 of Tx, which is on the P2’s side. Then, the recv function tries

synchronization with Tx. Data transfer follows this synchronization. In view of P1

side of Tx, as soon as it checks the send request, begins trying to be synchronized

with P1. After synchronization, it pulls the data from the bus and puts it onto the

internal FIFO, Tx FIFO. The P2 side of Tx waits until the internal FIFO is not empty

and initiates synchronization with P2. As we see, the communication is done through

a FIFO. Rather, it is not necessary for the sender to check whether the FIFO is full or

not. It is guaranteed not to be full in this case. In addition to that, the receiver does

not check whether the FIFO is available or not and return when it is not available.

Instead, the recv function assumes that the FIFO is available and waits until it is

available.

Figure 20(b) shows communication through a FIFO channel. P1 writes data while

P2 reads data. We omit checking the status of the FIFO. For a while, assume that

the FIFO is not empty and available on reading it. The communication API, write is

almost the same as send. It sends request, tries to be synchronized and sends data

to Tx after synchronization. At the same time, the communication API, read, looks

like recv. It sends a request, tries to be synchronized and gets the item from Tx.

Transducer acts as it does in Figure 20(a). The P1 side checks requests from P1.

If it finds a request, it tries to be synchronized with P1. Data transfer follows data

synchronization. This data is moved into the internal FIFO, Tx FIFO, to feed P2. The

P2 side, after getting the request from P2, waits until the FIFO is available. Once it

is available, it is synchronized with P2 and sends the data in FIFO to P2. These are

almost the same as send/recv in Figure 20(a).

The difference between those two are as follows. In Figure 20(b), after the first

write, it can return and does return. Writing FIFO can be non-blocking and if it is

the case, it can return just after writing data to the FIFO without considering the

status of the reader. In addition to that, the communication API checks the number

of rooms in the FIFO even though it is omitted in the Figure. If there are not enough

rooms, it can return false before sending a write request to Tx. The same thing is

applied to the read function. The communication API, read, has to check if the FIFO

has enough items although the step is not depicted in the figure. This checking is

done just before sending recv request. If the read is non-blocking, it can return false

22

(a) Send/Recv Function Scenario

(b) FIFO Write/Read Function Scenario, FIFO Buffer in Tx

Figure 20: Comparison between Send/Recv and FIFO Channel whose buffer is in Tx

23

Figure 21: Control Flow of Write Function If PEs Are Not Connected to the Same Bus

immediately without waiting the FIFO by sending a read request.

The control flow of write function in this case is almost the same as send function.

That of read function is also almost the same as recv function. As an example, the

control flow of write function is described in Figure 21. The first step is to check if the

FIFO has enough space or not. After this step, the rest is the same as send function.

The simplified protocol stack for this kind of FIFO channels are depicted in Fig-

ure 22. We can easily notice that it resembles the one in Figure 17(b). The only

difference it that the former includes free/used checking to make it sure that the

FIFO has enough spaces or items. Transducers are almost the same. However, it

needs to expose the number of items or spaces available.

Now, we will explain the other cases of FIFO channels. In this case, the FIFO buffer

is in the local memory of a PE instead of a transducer. We could not find these

channels among the examples we have. Some codes for them are included in ese-2.0,

however, it does not seem to work.

In this case, two PEs may or may not be on the same bus. If a process is not on

the PE having the FIFO buffer, it is not easy for the process to know the status of

the FIFO. The solution is introduction of a FIFO manager. Instead, at the expense of

introduction of another process, this PE should be a processor with a RTOS.

The concept of FIFO managers is depicted in Figure 23. In this example, P1 on PE1

writes data while P2 on PE2 reads. Between these two, a logical FIFO channel is laid.

However, in implementation level, between these two processes, a FIFO manager is

introduced as depicted in Figure 23(a). It serves to P1 as the reader and to P2 as a

24

Figure 22: Protocol Stack Example for FIFO Channels

writer. For the time being, we will explain these two communications separately.

The communication P1 and the manager is simple. A FIFO is laid on the local

memory of PE1 and managed by the RTOS. P1 writes data via the RTOS system call.

The FIFO manager pops data from the FIFO with the help of RTOS. We can see it in

Figure 23(b), where the simplified protocol stack is depicted. In the figure, between

P1 and the manager, a FIFO is while being managed by RTOS.

In communication between P2 and the FIFO manager, actual data transfer is the

same as send/recv. They will try to be synchronized with their communication part-

ners respectively and data transfer will follow it. We can also see that the protocol

stacks is not so different from each other in Figure 23(b). As P2P channels, the

manager calls communication API, which is on the top of the RTOS and P2 calls

communication API to transfer data from the FIFO manager.

However, as the previous case of FIFO channels, where the FIFO buffer is in a

transducer, P2 needs to check the status of the FIFO before these steps. To do that,

P2 sends a request and waits for the response. This step is marked as a gray box,

labeled “Check response” on P2’s side. At the same time, the FIFO manager should

check the send request from P2 and report the status of its FIFO.

Figure 24 shows the control flow of FIFO managers. Figure 24(a) is explaining

FIFO managers on the writer side, while Figure 24(a) that on the reader side. As

mentioned above, the manager should check requests from the remote partner. In

current implementation, the checking is a kind of blocking wait. If the manager has

a request from the remote partner, for example, the manage on the writer side gets a

request from the reader, it waits until its FIFO buffer has enough items to be served to

the reader and sends data to the reader by the same mechanism as “send” function..

Figure 25 exemplifies how the FIFO manager works. The situation is the same as

in Figure 23. For simplicity in explanation, we assume that the write is non-blocking

and the read is blocking. The first thing that the FIFO manager is doing is to check

the read request from P2, as we explained in Figure 24. For the first read request is

checked, P1 commands to write 22 bytes(4 + 18) to the buffer, whose size is 15. So,

P1 is blocked on calling the second write function at this point. After checking the

read request, the FIFO manager is synchronized with P2 and initiates data transfer.

After 6 bytes being sent, the buffer does not yet have enough room to complete the

second write function call of P1. The manager does nothing for P1 just after the first

read request is served. The second transaction between P2 and the manager, which

25

(a) Concept of FIFO Manager

(b) Protocol Stack Including FIFO Manager

Figure 23:

26

(a) The Job of A FIFO Manager on the writer PE side

(b) The Job of A FIFO Manager on the reader PE side

Figure 24: Control Flow of a FIFO Manager

27

Figure 25: A FIFO with Its Size 15, Data Transaction Scenario [5]

is in the same way, makes enough room for P1. Due to the fact, at the end of second

iteration of the FIFO manager, P1 is awakened.

The tasks to generate TLM related to this kind of FIFO channels are as shown in

Figure 26. We can expect it is quite similar with the one to implement P2P channels.

The main difference is that we have to generate a FIFO manager as well as communi-

cation API. Generation of communication API used by the FIFO manager and remote

partner is the same as P2P channels or FIFO channels implemented with transduc-

ers. On the other hand, generating API for the local partner of the FIFO manager is

almost the same as intra PE communication.

5.3 Memory Channels

Memory channels are grouped into two. First, the memory and the process access-

ing it are on the same PE. Second, these two are not on the same PE, but the PEs

are connected to the same bus. Memory channels are not allowed if the process is

remote from the memory. Communication API for memory channels is the simplest. If

the memory and the process is on the same PE, API is generated with RTOS services

followed by RTOS overheads. Or, if they are not on the same PE, API is implemented

28

Figure 26: The Tasks for Generating TLM to Implement FIFO Channels with “READ-
ER/WRITER PE” implementation

on the top of UBC functions, followed by communication delays. RTOS model is not

engaged in this case.

5.4 Communication Estimation

Delays due to communication delay are inserted in the form of wait function. For

example, send/recv functions for P2P channels access bus to assert the bus address.

The access is done by the UBC write function and followed by wait(communication

delay).

In this section, estimation of communication delay (not annotation) will be ex-

plained.

A transaction delay for any communication between two processes or between a

process and a memory is obtained depending on Equation 1, where

• Tarb is arbitration delay

• Tsync is synchronization delay

• Tdt is data transfer delay

Ttotal = Tarb + Tsync + Tdt (1)

A very simple example of Tarb is found in Figure 27. In Figure 27(a), the arbitration

policy is FCFS, while it is “Fixed Priority” in Figure 27(b). PE1 and PE2 as well as some

other invisible PEs are connected the bus. P2 on PE2 comes slightly earlier than P1

on PE1 but has lower priority. So, in the first figure, P2 is served first while in the

second figure P1 is granted first. The delay from sending request to being granted is

different. This kind of delay is Tarb and mainly depends on the order of getting the

bus. UBC modules in Timed TLM is generated to implement the specified arbitration

policy. In addition to that, arbitration itself has its own overhead, which is also taken

into consideration.

An example of Tsync is shown in Figure 25. At the beginning, P2 requests read but

needs to wait until the “sync” point. This delay is Tsync. It should be computed during

simulation.

29

(a) First Come First Serve

(b) Fixed Priority

Figure 27: Arbitration Delay According to The Arbitration Policy

30

Tdt is data transfer delay. It is added just after returning from UBC send/recv/read-

/write functions. It is estimated as follows.

Tdt = CA · S + ⌈
S · 8

Bwidth

⌉ ·Dbus (2)

Tdt = CA+ ⌈
S · 8

Bwidth

⌉ ·Dbus (3)

where,

• CA is Control/Address phase length in cycles

• S is size of the transaction in bytes

• Bwidth is bus width of the bus in bits

• Dbus is bus transaction delay in cycles

If the bus is specified to support burst mode, then, control and address do not need

to be sent again and again. Therefore the equation 3 is applied. Otherwise, control

and address have to be sent whenever the unit data is transferred.

This formula is hard-coded in the wait function that comes just after UBC send/recv/read-

/write functions. For example, as we can see 21, at the end of read/write commu-

nication API, data is transferred by using UBC functions. After returning the UBC

functions, a wait function representing the formulas is inserted.

Static information such as CA, Bwidth and Dbus is provided by ESE DS or the plat-

form database. For example, if we use an OPB bus, whose CA, Bwidth and Dbus} are

2, 16 and 1, without burst mode, the read function looks like Listing 2.

1 #define OPB CA 2

#define OPB B width 16

3 #define OPB D bus 1

. . .

5
extern ‘ ‘C ’ ’ read (int S) // read size

7 {
. . .

9 ubc −> read (S) ;

wait (OBP CA ∗ OPB S +

11 OPB S ∗ 8 / OPB B width ∗ OPB D bus) ;

. . .

13 }

Listing 2: Read Function with Communication Delay

6 Improvement

We cannot claim the the design practices found in the TLM generator are good

enough. TLM generation is decomposed into communication API generation/Process

and PE generation/UBC generation and Tx generation. The way TLM components are

grouped looks reasonable.

However, a single function that is 4K generates the entire processes, PEs and com-

munication API. The second longest function, which is up to 2K, generates the entire

UBC for itself and so on.

31

In addition to the size, lots of codes are duplicated. For example, as explained,

write/read functions for FIFO channels are very similar with send/recv functions for

P2P channels if the FIFO buffers are mapped onto transducers. However, the current

TLM generator looks like Listing 3.

The list shows generation of communication API as an example. API for P2p chan-

nels are generated first in the first block. The block sends b, c, d and e to the file.

These are mainly tons of c++ version of fprintf. After the generation is done, FIFO

channels implemented with transducers are generated. In this case, a, b1, c, d and

e have to be sent to the same file. Lots of generated codes are common. c, d and e

are present in both cases. However, in the generator code, all of them are duplicated

again and again. The entire generation process goes with the same story.

1 // generate PE, process and comm. API

generator : : processPE ()

3 {
. . .

5 /∗ star t comm API Gen ∗/
{

7 // gen . p2p channels

// tons of C++ version of f p r i n t f

9 fout << ‘ ‘ b ’ ’ ;

fout << ‘ ‘ c ’ ’ ;

11 fout << ‘ ‘ d ’ ’ ;

fout << ‘ ‘ e ’ ’ ;

13 . . .

}
15

{
17 // gen . FIFO channels , the FIFO buffer is in a Tx

// many duplicat ion

19 fout << ‘ ‘ a ’ ’ ; // add

fout << ‘ ‘ b1 ’ ’ ; // s l i gh t l y d i f f e ren t

21 fout << ‘ ‘ c ’ ’ ;

fout << ‘ ‘ d ’ ’ ;

23 fout << ‘ ‘ e ’ ’ ;

25 . . .

}
27

}

Listing 3: Communication API Generation in processPE()

Finally, the current ESE DS is not so reasonable. Everything is messed up in it.

We do not have any separated data structures for behavior specification such as in

Figure 6, platform as exemplified in Figure 7 and their mapping. Instead, the data

structure is unified as we see in Figure 28, which makes design space exploration

harder. For example, when a user wants to delete CPU0(the gray box) and map pro-

cess P1, P2 onto another PE, even though the user does not want to remove the

processes, with the current unified data structure, he or she cannot avoid deleting

them along with CPU0. So, at least, the data structure should be split into three

parts; specification, platform and mapping.

In conclusion, It looks to us that modularization of the generator class and gener-

ate function is necessary. Common codes should not be duplicated but shared by

function calls. The ESE DS needs to be improved by being split into at least three

32

Figure 28: Deleting a PE, CPU0

entities, specification, platform and mapping. In addition to that, in the long run, the

specification model, which does not fit the design philosophy of ESE, needs to be im-

proved. It has been claimed that we can flattening any MoC to a set of communicating

processes, but it is not a small deal.

7 Conclusions

ESE promises large productivity gain due to its solid concept. In Platform method-

ology, the design starts with a platform instance. Although it has drawbacks, it still

reduces engineering cost and design cycle because components are already well ver-

ified. Moreover, if hardware/software co-design with virtual prototyping goes with

Platform methodology, it clearly shortens design cycle and simplifies complexity fur-

ther. However, the models are simulation oriented, automatic synthesis is not easy

and a platform instance is usually less flexible.

Since the design methodology underlying ESE also utilizes platform and TLM, it

shares the strong points of Platform methodology. Moreover, it overcomes the draw-

backs of Platform methodology. Since the starting point of a design is specification,

which is flexible in nature, ESE can be thought as an application oriented EDA.

With well-define models, rules, transformations and refinements, the users of ESE

can benefit from automatic synthesis, which shortens design cycle and makes design

management easier.

However, still, ESE needs improvement. The generator is not manageable due to

the lack of modularization and bad data structure. Data structures for specification,

platform and mapping, which is now messed up in a single XML tree, should be

clearly separated to be manipulated more easily. In the long run, The specification

model does not seem to match the design philosophy of ESE and should be refined.

Moores law has been being proved to be true. Hundreds of cores can be integrated

into a single chip. User demand is dramatically rising while time-to-market constrains

is becoming stricter and engineering costs is not so low.

33

Acknowledgements

The work in this report would not have been possible without the help of professor

Daniel. D. Gajski, who offered invaluable assistance, support and guidance. The

author would also like to convey thanks to Y. Hwang, without whose knowledge and

help, the work would not have been sucessful.

References

[1] S. Abdi and D. Gajski. A universal bus channel for transaction level modeling.

2006.

[2] D. D. Gajski. Icccas presentation. 2009.

[3] D. D. Gajski, S. Abdi, A. Gerstlauer, and G. Schirner. Embedded System Design:

Modeling, Synthesis, Verification. Springer, 2009.

[4] Y. Hwang, S. Abdi, and D. D. Gajski. Cycle-approximate retargetable performance

estimation at the transaction level. DATE, 2008.

[5] L. Yu. Automatic generation and verification of transaction level modeling. 2009.

34

