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Abstract

Performance evaluation and analysis are used to understand and improve computer system
performance. One common approach is to measure performance indicators of interest during
execution of a set of benchmark programs on a given system. Processor architecture, compiler,
operating system, etc. and their interaction are often not predictable and can introduce random
variability in such measurements. For instance, complex out-of-order processors with specu-
lation may have a different memory utilization, instructions per cycle, pipeline stalls, branch
prediction results, for each execution of a program. This raises the question of accuracy in
collecting execution-based measurements.
Modern microprocessors contain hardware performance counters to make such measurements
and to collect dynamic information on the state of a processor [13], [15]. A common prac-
tice is to collect multiple measurements per counter and to report the average value and the
standard deviation. However, only a limited number of hardware counters can be collect in
one execution of a program. Therefore, the number of times a benchmark suite needs to be
executed to collect all the counters of interest may be quite large. The question then is, what is
the minimum number of samples required required to measure all parameters with a required
accuracy? Another question is if measurements performed in separate benchmark executions
can be combined. Finally, there is an issue of how to deal with measurement errors in systems
that can collect only a small number of counters per run. The are the issues addressed in this
work.
We propose a methodology for hardware counter based measurements that answers the above
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questions. We observe that metrology and the performance evaluation of computer systems deal
with similar issues and use a metrological approach. In particular, the methodology introduces
a criteria to identify whether multiple executions of a given benchmark are performed under
”the same conditions”. The proposed methodology is verified in a case study using SPEC CPU
2006 [7, 28] benchmarks executed on the Intel Core 2 Duo processor [15]. The methodology is
shown to produce accurate and reproducible measurements.
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Abstract

Performance evaluation and analysis are used to understand and improve computer system perfor-
mance. One common approach is to measure performance indicators of interest during execution
of a set of benchmark programs on a given system. Processor architecture, compiler, operating
system, etc. and their interaction are often not predictable and can introduce random variability
in such measurements. For instance, complex out-of-order processors with speculation may have
a different memory utilization, instructions per cycle, pipeline stalls, branch prediction results, for
each execution of a program. This raises the question of accuracy in collecting execution-based
measurements.
Modern microprocessors contain hardware performance counters to make such measurements and
to collect dynamic information on the state of a processor [13], [15]. A common practice is to col-
lect multiple measurements per counter and to report the average value and the standard deviation.
However, only a limited number of hardware counters can be collect in one execution of a program.
Therefore, the number of times a benchmark suite needs to be executed to collect all the counters of
interest may be quite large. The question then is, what is the minimum number of samples required
required to measure all parameters with a required accuracy? Another question is if measurements
performed in separate benchmark executions can be combined. Finally, there is an issue of how to
deal with measurement errors in systems that can collect only a small number of counters per run.
The are the issues addressed in this work.
We propose a methodology for hardware counter based measurements that answers the above ques-
tions. We observe that metrology and the performance evaluation of computer systems deal with
similar issues and use a metrological approach. In particular, the methodology introduces a crite-
ria to identify whether multiple executions of a given benchmark are performed under ”the same
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conditions”. The proposed methodology is verified in a case study using SPEC CPU 2006 [7, 28]
benchmarks executed on the Intel Core 2 Duo processor [15]. The methodology is shown to produce
accurate and reproducible measurements.

1 Introduction

Multi-core or Chip Multiprocessor (CMP) architectures have become ubiquitous. Their architecture
and that of a single core are quite complex and are not easy to program. Understanding the program
behavior on a given core architecture is important for a number of reasons, such as improving
performance and/or reducing power consumption, and/or improving system utilization. In this
context, performance analysis can play a critical role by suggesting either how to better utilize the
resources available in a chip multi-processor or in a multi-core systems, or to improve existing
programming models and techniques, or to introduce new compiler optimizations. This work
deals with the accuracy of measurements for execution-based performance evaluation of computer
systems. This is a challenging task [2], [5], [9], [8].
Modern microprocessors are equipped with a special monitoring hardware, including hardware
event counters, to collect dynamic information on the state of the processor. However the number of
counters that can be used concurrently is limited, and the exact number on depends on a particular
architecture and its performance monitoring unit1.
The use of performance counters is attractive since it is the only performance evaluation method-
ology that gives information on the execution of the entire system, including an operating
systems, user level libraries, and an application. Given the limit on the number of simultaneously
useable counters, it is necessary to execute a program multiple times to collect all required
counter data. However the combined effect of imprecise sampling, microarchitecture features like
speculative execution, and multiprogramming environment results in different counter values for
each execution of a given benchmark. This requires collecting multiple samples for each event
counter in order to give a quantitative evaluation of the performance parameters, according to a
standard metrology-based approach [12]. Classic metrology addresses issues like reproducibility of
measurements and compatibility among measurements. We adapt and use metrology to define our
measurement methodology.
Since multiple executions of a given benchmark are necessary to complete a given set of mea-
surements, and the state of the system can vary dynamically, the understanding of whether
measurements are executed under the same conditions is one of the main problems addressed by
our methodology.

1For instance, in the case of Intel Core 2 Duo processor the maximum number of counters that can be read concurrently
is four.
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2 Terminology

Given a physical quantity of interest (a measurand), metrology standardizes [19] the expression
of each measurement from a collection of samples in terms of a sample mean and of absolute
or relative uncertainty. It also provides the rules to propagate the uncertainty across elementary
operations. A measurement process associates quantitative information to a measurand(s). The
measure is expressed by assigning a value to the measured quantity and a related uncertainty. The
uncertainty itself provides quantitative information on the dispersion of the values that could be
reasonably attributed to the measurand.
Although counters are not related to any physical quantity recognized in metrology, in this technical
report we consider a value of a counter as the quantity that we want to measure for a given
workload. With this meaning the value of a counter relative to the execution of a workload is our
measurand.
We call the measure of a counter a direct measure since measurement tools are able to access
counters directly. All other measures obtained by performing elementary operations on counters
are called indirect measures.
The uncertainty is usually expressed in terms of a confidence interval, that is a range of values
where the measurand value is most likely to fall. The probability that the measurand value falls
inside the confidence interval is called a confidence level. The confidence level indicates the
probability that a measure is contained inside a certain interval obtained from the sample mean, the
sample standard deviation and a slip factor.
The reading of each counter is modeled as a stochastic variable X assuming a positive integer
value2 with certain expected mean µ and variance σ.
According to the Guide to the expression of Uncertainty in Measurements (GUM) [19], standard
uncertainty, that is uncertainty expressed as a standard deviation, can be evaluated either statisti-
cally, as an estimate of the standard deviation of the mean of a set of independent observations.
R executions (or runs) of a workload will produce R values of a given counter, x1,x2, . . . ,xR

3. For
each counter, the average value and the standard deviation are computed from the samples. Let
{x1,x2, . . . ,xR} being R samples of a counter, we use the following unbiased estimators of the mean
and of the variance [19]:

µR = ∑
R
1 xr

R
(1)

σ
2
R = ∑

R
1 (xr−µR)2

R−1
(2)

µR is called the sample mean and σR is called the sample variance. According to [19], the expression

2We assume that overflow of counters doesn’t happen or that is correctly managed by the tool that reads the values.
3We assume the samples are collected by independent runs, which solves the problem of whether two or more runs of

a given application can be considered independent.
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of the sample uncertainty is given by the following formula:

uR =
σR√

R
(3)

Given a slip (or confidence) factor k = 1,2,3 the measure of the counter is expressed as follows:

X = µR± k×uR (4)

[19] also indicates how the uncertainty propagates among indirect measures. An indirect measure is
specified by a deterministic function called measurement equation, 5, that associates the measurand
Y to the measured quantities Xr.

f : X1,X2, . . . ,XR → Y (5)

An estimation of Y , denoted by y, is achieved from the measurement equation using input estimates
xr, of the R input quantities, as shown in 6.

Measurement equation Indirect measures
Y = aX y = ax±aux

Y = X1 +X2 y = (x1 + x2)±
√

(u2
1 +u2

1)

Y = X1
X2

Y =
(

x1
x2

)
± 1

x2

√
(u2

1 +
(

x1
x2

)2
u2

2)

Table 1: Examples of indirect measurements

y = f (x1,x2, . . . ,xR) (6)

Let ur be the uncertainty of the estimate xr, and assume R independent observations over Xr. Ac-
cording to [10] and [19], the uncertainty of y can be obtained from the law of propagation of the
uncertainty, as shown in 7.

uy =

√
R

∑
1

fXr(xr)×u2
r (7)

where fXr(xr) = ∂ f
∂Xr

(xr). Composite uncertainty for simple expressions of f are reported in Table 1.
All the definitions above introduced are dependent from the number of samples considered.
At the same time, the number of samples considered influences the time necessary to obtain any
single measure.
In [12] the following algorithm is presented to estimate the number of samples needed to obtain
a single measure, based on reasonable constraints. Given the sequence of results from the
experiments xr , with r ∈ {1,2, . . . ,R} , and assuming a desired value σre f of uncertainty in our
measurements, we repeat independent experiments, collect data and compute the sample mean
and the sample variance for each new sample that is added. We continue adding samples until the
sample variance over the square root of the number of sample is less than σre f , i.e. until uR ≤ σre f .
Once the process is finished, R is the number of samples that must be considered, the sample mean
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is considered as a good measure of the value of parameter we are looking for, with the accuracy
given by the initial constraint.
The sample uncertainty related to the measure is estimated from the ratio between the sample
variance and the square root of the number of samples.
Finally the measure is expressed by combining the sample mean with the sample uncertainty, for a
given slip factor k = 1,2,3, as shown in 4. The slip factor indicates the probability or the confidence
that a sample will fall into the interval (µR− k×uR,µR + k×uR)4.
Measures obtained under the same conditions and expressed with the same confidence have
confidence intervals overlapping. This last statement allow us to test whether the conditions of the
system vary during the collection of the samples. In fact, variation in the state of the system during
the execution time is most likely to occur due to a different distribution of the samples. Potentially,
performance evaluation where samples are not distributed in the same way, will lead to an incorrect
analysis.

3 The methodology

Most modern high-performance microprocessors use out-of-order and speculative execution. In the
former case, instructions are executed in a different order than they appear in the original. In the
latter case, a processor issues more instructions than the program needs to complete. For these
microprocessors the Instructions ”Retired” indicates the number of instructions that are executed to
completetion. The count does not include partially processed instructions executed, for instance due
to branch mispredictions.
For a given workload we collect multiple samples of instructions retired plus additional counters
that can be read concurrently with the instructions retired. The observed variation in the number of
Instructions Retired must be bounded if different executions of the workload are performed under
the same conditions.
This approach reduces the number of samples that need to be collected, and by testing compatibility
among different measures of the Instructions Retired allows us to identify if the measures are per-
formed under the same conditions of the system or not.
The ideas discussed so far lead us to define the following methodology to collect performance hard-
ware counters.
Let B = {b1,b2, . . . ,bN} be the set of workloads, and let the counter Xn representing Instructions
Retired event for the benchmark bn. Let C = {c1,c2, . . . ,cM} being the set of the other counters
which are different from Xn. We iterate the following procedure for each benchmark, that is for
n = 1,2, . . . ,N.

1. Given a value for uncertainty σre f we compute the number R of iterations needed to measure
the Instructions Retired Xn.

2. We consider a partition of C containing L subsets of events that can be collected concurrently

4k=1,2,3 indicates a confidence of 68.26%, 95.45%, 99.99% respectively.
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with Xn. Let us call this set P = {p1, p2, . . . , pL}. Here L ≤M and must be choosen to be a
multiple of R 5.

3. We collect the counters reported in the set 8, by performing L independent executions of the
benchmark bn

6.

En,L = {Xn}×P = {(Xn, p1),(Xn, p2), . . . ,(Xn, pL)} (8)

4. Given the L samples of the Instructions Retired for the benchmark bn we group the measure-
ments in h = L

R subsets, and obtain h measures of the Instructions Retired.

5. If the h measures of the Instructions Retired are not compatible, the executions of the work-
load have not been done under the same conditions.

6. If they are compatible we assume that the execution have been done under the same condi-
tions and the value of the counters obtained so far are considered as characterizing the nth

workload7, and the counters can be used to analyze8.

4 The experiments

The methodology described above is applied to an experimantal setup illustrated in table 4. The
advanced power management of the reference architecture were disabled, both from the BIOS and
from the operating system. This avoids possible false measurements due to the adaptation of the
system to different (Voltage, Frequency) operating points.
The counters have been collected using Intel VTune Performance Analyzer for Linux SMP 64-bit
[17], [18], [19], [20], [21], [22]. Intel VTune has been configured to use Event Base Sampling, and
the sample after value has been selected automatically by running the benchmark suite one time
with the auto-calibration option enabled. The resulting configuration of Intel VTune is reporter in
table 2. The Sample after value is evaluated in order to produce 1000 of samples per second. The
observation window, that is the temporal window inside which Intel Vtune collects the counters has
been selected in order to be larger than the longest executing benchmark. The values in table 3 are
used during the experiments, and the auto-calibration is disabled.
We used Linux kernel v2.6 [32] configured in text mode, however multiprogramming features were
enabled. The system was isolated from any potential asynchronous sources of interference by dis-
abling the network subsystem.
SPEC CPU 2006 [28] was used as the benchmark suite, with GNU compiler suite v4.2 [31] to build
the benchmarks.

5The partitioning of the set of counters is totally architecture dependent.
6En,L indicates the Execution of the nth benchmark L times
7For events related to retired instructions, a methodology to estimate the uncertainty among ratios of counters over

instructions retired is proposed in [1].
8E.g. starting from providing indirect measures like the Instruction Per Cycle, instruction breakdown, branch mispre-

diction rate, cache misses rate, etc.
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System Name core4.ics.uci.edu
Processor Intel(R) Core(TM)2 Duo CPU E7200, 2.53 GHz
Architecture 45 nm
Front side bus 1066 MHz
Intel VT No
Main memory 2 GB
L1 I-Cache 32 KB, 64 B, 8-way
L1 D-Cache 32 KB, 64 B, 8-way
L2 I-Cache 3 MB, 64 B, 8-way
Compilers flags -O2
OS Linux Ubuntu server (kernel 2.6.22)

Table 2: Description of the system under test

Intel VTune parameter name Intel VTune parameter value
Sample After Value 2526000
Observation Window 100000 [sec]

Table 3: Intel VTune sampling settings

4.1 Performance evaluation

We selected a subset of performance hardware counters, to capture the branch and cache miss be-
havior, to give a breakdown of the pipeline stalls and to report the Instruction Per Cycle (IPC).
The application of the methodology described in the previous section tells us that R = 3 samples of
the Instructions Retired of each benchmark are required to estimate the Instructions Retired with an
uncertainty that is less than σre f ≤ 1%.
A partitioning of the set of counters used is shown in 4.1.

p1 (CPU CLK UNHALT ED.CORE)
p2 (BR INST RET IRED.MISPRED,BR INST RET IRED.ANY )
p3 (MEM LOAD RET IRED.L1D MISS)
p4 (MEM LOAD RET IRED.L2 MISS)
p5 (RESOURCE STALLS.BR MISS CLEAR,RESOURCE STALLS.LD ST )
p6 (RESOURCE STALLS.ROB FULL,RESOURCE STALLS.RS FULL)

Table 4: A feasible partition of the set of counters, N=28, M=9, R=3, L=6, H=2, k=3

An explanation of the meaning of the counters is reported in [16], [17], [18], [19]. For each bench-
mark we considered the direct measures of En,l = (INST RET IRED.ANYn, pl), with N = 28, the
number of benchmark considered, and L = 6, the number of partition of C considered.
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Since R = 3, we obtained h = L
R = 2 groups among which to control the compatibility of the mea-

surements over the Instructions Retired for each benchmark. We choose to express the measure-
ments with a coverage factor k = 3, that is for a confidence level of 99%. We found the measures
compatible over all the set of measurements, therefore there was no need to repeat any set of mea-
surements.
The maximum uncertainty evaluated on the Instructions Retired, among the benchmarks was less
than 1%, as expected. The maximum uncertainty we observed on the measurands related to L1D
and L2 events, and stall events, was less than 8%, whether the maximum uncertainty we found
among the branch events was less than 7%.
These observations provided an estimation of the CPU CLK UNHALT ED.CORE with maximum
uncertainty among the benchmarks that is less 5%.
This additional set of measurements provided a measure of the Instructions Retired that was com-
patible with the previous two. Thus we computed the IPC and expressed it accordingly with 4.
We observed that the uncertainty obtained for the counters INST RET IRED.ANYn and
CPU CLK UNHALT ED.CORE was relatively small, but their ratio that represents the IPC was
computed with a resultant uncertainty that was somehow larger than 8%.
The proposed methodology allowed us to performe 28× 6 executions instead of performing
c× 28× 3× 9 executions9 and we obtain accurate description of the architectural behavior for the
system used.

4.2 Performance analysis

From the counters we derive the following performance metrics or the actual measurand:

• IPC = INST RET IRED.ANY
CPU CLK UNHALT ED.REF

• Branch misprediction = BR INST RET IRED.MISPRED
BR INST RET IRED.ANY

• L1D cache misses = MEM LOAD RET IRED.L1D MISS
INST RET IRED.ANY

• L2 cache misses = MEM LOAD RET IRED.L2 MISS
INST RET IRED.ANY

• Load/Store stalls = RESOURCE STALLS.LD ST
INST RET IRED.ANY

• ReOrder Buffer stalls = RESOURCE STALLS.ROB FULL
INST RET IRED.ANY

• Reservation Station stalls = RESOURCE STALLS.RS FULL
INST RET IRED.ANY

The performance, in terms of IPC, is somewhat low - the average IPC is below 1.5 and it is less
than 1 in many cases.
The larger contribution to the stalls inside the pipeline comes from reservation station stalls. This
contribution accounts for the 23% of stall time, on average, among the benchmarks. It is followed
by the load/store stall contribution, that accounts as the 17.2% in the average, either when the

9The constant c accounts the number of samples necessary to measure counters different from the Instructions Retired
with a certain precision.
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pipeline has exceeded load or store queue limits or when it is waiting to commit all stores. The
reorder buffer stalls account for 11.8%. Branch misprediction, that results in a flush of the pipeline,
accounts for only 4.8%, on average. This is in agreement with the low rate of branches mispredicted
over branches retired, which is 8%, on average.
The memory behavior and the caches miss penalty have a major impact on performance in terms of
IPC.

5 Conclusion

This technical report described a methodology to address the problem of how to deal with
measurement errors in computer systems that can collect only a very small number of performance
counters per run.
The methodology has been successfully applied to a modern out-of-order and speculative micro-
processor.
The methodology was developed by approaching the problem of hardware counter data collection
from a metrological perspective.
The main contributions of this methodology are 1) that it limits the number of counter samples that
need to be collected to produce accurate measurements, and 2) the application of the concept of
compatibility between measurements to test whether the measurements are performed under the
same conditions. The latter helps us to determine whether a variation in the system setup occurred
and impacted the measures.
The importance of having measures performed under the same conditions resides in the necessity
to execute an application multiple times to collect all the counters necessary to analyze the program
behavior. Thus the counters may be combined together to produce the measurands and the analysis
is conducted as if all the counters were collected in a single execution.
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