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Abstract

Embedded software synthesis is an integral step in the embedded system design flow. To
validate the generated software in the context of the entire system-on-chip, instruction set sim-
ulation is a critical task. In previous work [8], an instruction set simulator (ISS) for an ARM
processor core has been integrated into the System-on-Chip Environment. Unfortunately, the
existing integration is limited to a single processor unit in the entire system.

In this work, we extend the previous implementation so that multiple ARM ISS instances
can be used concurrently within the system model. As a result, platform architectures with
multiple ARM CPUs can now be accurately simulated at ISS level. This report demonstrates
our multi-ARM ISS support by use of a case study on a JPEG encoder application.
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Abstract

Embedded software synthesis is an integral step in the embedded system design flow. To validate the
generated software in the context of the entire system-on-chip, instruction set simulation is a critical
task. In previous work [8], an instruction set simulator (ISS) for an ARM processor core has been
integrated into the System-on-Chip Environment. Unfortunately, the existing integration is limited
to a single processor unit in the entire system.

In this work, we extend the previous implementation so that multiple ARM 1SS instances can be
used concurrently within the system model. As a result, platform architectures with multiple ARM
CPUs can now be accurately simulated at 1SS level. This report demonstrates our multi-ARM ISS
support by use of a case study on a JPEG encoder application.

1 Introduction

Hardware/software co-design is a set of methodologies and techniques specifically created to
support the concurrent design of both systems, reducing the development time. Time to market is
very important in chip business. There are so many companies to try to survive in SOC industry.
The first company to release the chip to market takes most of profits. In addition to its critical
role in the development of embedded systems, many experts believe that co-design will be a core
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design methodology for Systems-on-a-Chip. Also, concurrent design, or co-design of hardware and
software is extremely important for meeting design goals, such as high performance, that are the key
to commercial competitiveness because designers can trade-off in the way hardware and software
components work together to exhibit a specified behavior.

1.1 Top-Down System Design with SCE

In this project, top-down design methodology using SpecC[5][6][7] will be dealt with. Software
should be developed in the early stage of chip design because software development time for
embedded system takes more time than hardware development time. In Figure|l, top-down design
methodology is briefly described by using SCE. It is composed of 6 steps. It starts from product
specification. The specification model is generated from product specification. This specification
model is untimed and has only the functional description of the design. Architecture refinement
transforms this specification to an architecture model. It involves partitioning the design and map-
ping the partitions onto the selected components. The architecture model thus reflects the intended
architecture for the design. The next scheduling refinement steps add RTOS to architecture model.
Dynamic scheduling like Round-robin and priority-based scheduling and static scheduling are
available for scheduling for each behavior in Spec-C model. Networking refinement is performed
by adding buses to DUT and mapping all components under DUT to slaves and masters for buses.
Communication refinement generates a timing accurate BEM. The final step is HW/SW synthesis
which produces clock cycle accurate RTL model for hardware components and instruction specific
assembly code for processors.

1.2 Multiple Instruction Set Simulator

This report contributes the support of multiple ARM instruction set simulators to the SCE de-
sign flow[2]. Previously there is a limitation in SCE to support at most one ARM instruction set
simulator due to some global variables used in SWARM][3]. Now System-on Chip using multiple
ARMT7TDMI processors can be simulated with our extension of the SWARM. The multiple ARM
simulation could be achieved by making those global variables local. The multiple ARM instruction
set simulator is being developed, based on SpecC ARM ISS[8] currently integrated in SCE. More
detailed information on this will be available later in this report.
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Figure 1: Embedded system design flow using SCE

2 Exploration of JPEG Encoder Application

To get through SCE top down design methodology, we start from JPEG encoder application[9].
Hardware synthesis is not covered at this time. Software synthesis is going to be dealt with to
achieve the performance goals for JPEG encoder. In computing, JPEG is a commonly used method
of compression for photographic images. The degree of compression can be adjusted, allowing
a selectable tradeoff between storage size and image quality. JPEG typically achieves 10:1 com-
pression with little perceptible loss in image quality.To be familiar with JPEG Encoder application,
the structure of JPEG encoder is investigated. In Figure (2, the block diagram for JPEG encoder
application[1] is shown. It consists of 8 blocks. chendctl, chendct2, quantize, zigzag
and huf fencode are the main parts of JPEG encoder. Readbmpheader, InitGlobals and
ReadBmpBlock exist to generate inputs and initialize. Above JPEG encoder C model will be
converted to Spec C model to do software synthesis. The interesting part of this JPEG application
is chendctl and chendct?2 to support multi-processing. chendct1 is covering odd block and
chendct?2 is executed on even block.

2.1 JPEG Specification

To specify jpegencoder application for system design using SCE[4], we went through many steps.
In version 0, JPEG encoder can be compiled through SpecC compiler. In version 1, chendctl,
chendct?2,quantize, zigzag and huf fencode are integrated under DUT. And other blocks



Block diagram of JPEG encoder application
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Figure 2: Block diagram of JPEG encoder application[1]

are divided into stimulus and monitor as it is seen in Figure|3. In version 1.1, printing statement
for timing is added. In version 2.0, double_handshake channels are added to SpecC model to sup-
port parallel execution. In version 2.1, typed queue channel are introduced to support pipelined
execution. This step was the most tricky part in this project. A lot of efforts are made to make it
working[4].

2.2 JPEG Exploration

JPEG Encoder is created by improving version 2.1. It has zero warnings and clean hierarchy
shown in Figure 4. There are no global variables and no global functions. They are merged into
behaviors. It shows detailed timings for each encoded block. The reference picture, test . jpg, is
moved into Monitor. For our convenience, this model is called perfect model.

More timing analysis is performed with newly created JPEG Encoder SpecC model. Computa-
tion profile for each block is shown on Figure|5. Timing for chendct1 and chendct?2 are all
same as 10.41 ms. quantize is consuming 7.84 ms of 180 block encoding time. zigzag is
spending 2.32 ms of CPU time. huf fman does use 8.88 ms. So total encoding time for 180 block
is 39.86 ms. chendctl and chendct2 are spending half of CPU time. And huffman is third.
quantize is fourth. zigzag is the last.



Jpeg encoder Test bench

ﬂ/IAIN
| monitor I
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Figure 4: Exploration model of JPEG encoder in SCE
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Figure 5: Computation profile of JPEG encoding

From the computation profile, dct1, dct2 and huf f are consuming most part of computation
time. They are possible candidates for improving performance.

2.3 JPEG Design Analysis

To do architecture refinement, timing calculated from perfect model is back annotated. Estimated
computation delays are inserted manually. Timing delays are added by using waitfor statement. The
timings from perfect model are divided by 180 which means the number of input stimulus. That
timing is added to each block.

Architecture refinements are performed and various system architecture is tested to get best ar-
chitecture. From many tests and experiments, results show that performance is increased according
to the increase of number of CPUs. But there is some saturation of performance at more than 3
CPUs. So 3 CPUs are the optimal number in terms of cost and performance. Table 1/shows some
test results depending on number of CPUs and scheduling method of RTOS. Also blocks in mod-
els are randomly allocated to each CPU. Some RTOS is doing scheduling statically, and others are
scheduling dynamically. Eventually, a graph for cost and speed trade off is drawn in Figure 6|

In reality, our JPEG encoder is still too slow to be used. It takes about 40 ms for encoding a
116X96 pixel image in black and white. 116X96 pixel is only 0.011136 mega-pixels. It needs about
1000 times performance improvements to cover 11.1 mega pixels.



Number of CPU | DCT1 | DCT2 | Quantize | Zigzag | Huffman | RTOS Scheduling | Execution time(us)

1 CPU1 | CPU1 CPU1 CPU1 CPU1 CPU1:Priority

2 CPU1 | CPU1 | CPU2 CPU2 CPU2 CPUI:No OS
CPU2:Priority

3 CPU1 | CPU1 CPU2 CPU3 CPU3 CPU1:No OS
CPU2:No OS
CPU3:Round Robin

4 CPU1 | CPU2 | CPU3 CPU4 CPU4 CPU1:No OS
CPU2:No OS
CPU3:No OS

CPU4:Round Robin

5 CPU1 | CPU2 CPU3 CPU4 CPU5 CPU1:Round Robin
CPU2:Round Robin
CPU3:Round Robin
CPU4:Round Robin
CPU5:Round Robin

Table 1: Architecture refinement from perfect model

2.4 Single CPU Implementation

To support bus functional model for CPU, platform model for JPEG encoder is created in Fig-
ure'8. Communications in jpegencoder can be refined to actual CPU bus. 10 units datain and dataout
are added to platform model to support BFM communication via CPU bus. Channels from c1 to c4
are going to be real system AMBA bus. They are using totally different protocols compared to cl
and c5 which means channels for c1 and c2 are TLM bus model and more abstract bus model than
BFM bus model. So there should be some kind of wrapper to convert channel to real hardware bus.
I0_Unitl is inserted into JPEG platform and mapped to datain to transfer the inputs from stimulus
to jpegencoder. Also IO_Unit2 is added to JPEG Platform and mapped to dataout to send output
of JPE encoder to monitor which compares the results to check if those results are matched to the
golden data of test. jpg.

Network refinement is performed to map all of PEs under JPEG Plaform to slaves and masters
of buses.Bus0O are renamed to "CPU_BUS”. Double handshake bus is added as HW Bus. Addi-
tional Port] is created for HW. Portl is eventually connected to stimulus through 10 _Unitl. H2 is
connected to CPU_Bus as slave4 through portl. Hierarchy chart of BFM is drawn in Figure 7,

Communication refinement is performed to generate timing accurate BFM model of JPEG en-
coder. Addresses are assigned to HW and 10_Unit2 for memory mapped 10. C codes for execution
for ARM7TDMI are generated from communication model.
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Figure 6: Cost/Speed trade off graph
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Figure 7: Hierarchy chart of bus functional model



Figure 8: Platform model for JPEG encoder
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To run C codes generated from communication model, instruction set simulator model is created.
System architecture consists of 4 processing elements. Those PEs are including main ARM CPU for
quantize, zigzag, and Huffman whose using a priority based scheduling using microC-OS2 RTOS,
a hardware accellarator for the DCTs, 2 I/O units for data in and output. Those PEs are connected
through AMBA-AHB bus which is the built-in CPU bus and a custom double-handshake bus. But
some problems exists when C code generator inserts unwanted TaskDelay(). Bus Functional models
get stuck after encoding for block 177. Encoding is still too slow. It takes 142 milliseconds for 177
blocks. Our goal is to achieve 0.013 ms to support 1.1 mega pixels for color photograph. The target
speed is far away from the result regardless of some limitation. The detailed steps in SCE for this
single CPU implementation are listed in Appendix A.1.
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3 Multi-ARM Instruction Set Simulation

We will now describe out work in extending the SWARM ISS in SCE to support multiple ARM
ISSs instances.

3.1 Problem definition

The reason why the original ARM instruction simulation does not support the multiple instances
is that there are nine global variables to be referenced in some local and global functions in in-
struction simulator. When JPEG simulation is run with multiple ARM ISSs, those extern variables
should not be shared and commonly used in multiple ARM ISSs. Eventually those extern variables
cause simulation to stop and prevent multiple ARM ISSs from running concurrently. To instance
the multiple ARM ISSs properly, all global functions should not touch global variables and classes.
Moreover, global variables and classes should be localized to support multiple ARM ISSs. All ex-
tern variables that need to be localized are shown in Figure 9 as an example to show what variables
are directly used in the source code of ARM ISS.

9 extern variables in ARM instrunction simulator

—

. static Uint32_t
char* pMemory ][ OPTS opts ][ PINOUT pinout ][ chmcea[PK(::_ﬁ'?‘AEE__MAX] ]

static unsigned int static unsigned int static uint32_t static unsigned long long
pcTracePos pcChangeCounter continueSwarm extBusCycles

|
I
}
[ CArmProc* pArm ]
I
|
|
|

pArm, pMemory,opts
main() cyclebycycle( ) pArm,continueSwarm

buscheck() pinout,
addrcheck( ) pinout,

writedebugdump( ) pArm
pinout

writemem( ) pMemory, pinout,

|

readmem( ) pMemory, pinout,

Figure 9: Extern variables and classes used in funtions in SWARM ISS

3.2 Approach and Solution

Also some global functions to use those external variables are described. To protect the functions
in the source code of ISS from referencing the global variables directly, they are passed to the
functions as one of the parameters. CArmProc pArm is first selected to be localized because it is
most frequently used in ARM ISS. SpecC is ANSI-C based system level description language and
does not recognize class object. So to make the extern variables localized, structure object will be
used instead of class object. All extern variables are packed into one structure called SArmProc.
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CArmProc pArm is hidden as an member of struct SArmProc to make the SpecC wrapper
of ARM ISS compiled.

struct SarmProc is declared as an empty struct in swarm_sim.h which means that it does
not have any members in it because ANSI-C compiler does not understand the class declaration and
creates compiler error. So the real struct SArmProc is defined again in swarm_sim. cpp like
below.
struct SArmProc
{
CArmProc* pArm;
}i

And then it is declared as struct SArmProc* pArm. To hide all of detailed information
related to Class, pArm will be declared as a pointer of SArmProc. So &pArm is passed to init
function like result = init(argc,argv,&pArm); And then all of objects like pArm and
pMemory necessary to run simulation will be created in init () function

Now most of function calls in SWARM source code have CArmProc* pArm as a func-
tion parameter. While modifying source code, atexit () is updated different from the way to
modify other functions. atexit( PrintISSCycles ) is executed when simulation ended.
atexit () has function pointer as a parameter which points to the function. That function should
have void pointer as a parameter. But PrintISSCycles does have pArm as a parameter due to
localization of pArm. Now PrintISSCylces () isinserted into class CArmProc as the member
function of class CArmProc.

3.3 Implementation

All extern variables are removed from the original source code for ARM instruction simulator
one by one. Finally all of extern variables are merged into structure like below.

struct SArmProc
{
CArmProc* pArm;
charx pMemory;
OPTS opts;
PINOUT pinout;
uint32_t pcTrace[PC_TRACE MAX];
unsigned int pcTracePos;
unsigned int pcChangeCounter;
uint32_t continueSwarm;
}i
To verify all updates for new ARM instruction simulator, JPEG simulation with one ARM ISS
is run and the results match the original ARM ISS.

13



3.4 Installation

Source codes for multiple SWARM instruction set simulators and SpecC wrappers for multi-
ple SWARM ISSs are imported into CVS repository under /home/lecs/cvs/multi_swarm.
They are also checked out under /home/lecs/chkout/multi_swarm. multi_swarm di-
rectory consists of two directories. One is arm7tdmiwrapper to include SpecC wrapper for
multiple SWARM ISS and the other is swarm which contains source codes for multiple SWARM
ISSs. Actually src directory under swarm contains all source codes for multiple SWARM ISSs.

14



4 Multiple CPU Implementation

We will now describe two implementations of the JPEG encoder with multiple ARM CPUs.

4.1 JPEG Architecture using 2 ARM CPUs

To run JPEG simulation with 2 CPUs, new architecture platform with 2 CPUs needs to be devised.

4.1.1 Communication via Hardware Block

HW2 is used as an intermediary processor element to connect CPU1_BUS1 and CPU2 BUS each
other because there is no bridge currently available in SCE library. chendct1 and chendct?2 are
assigned to HW1 like JPEG platform with one CPU. CPU1 handles quantize behavior. And HW2
is taking care of zigzag. CPU2 performs huffman. The detailed JPEG platform with 2 CPUs
is shown in Figure 10. The detailed steps in SCE for this implementations are listed in Appendix
A.2.

SYSTEM CHART OF JPEGENCODER WITH TWO CPUs

Platform

10_Unit2

1

I

1

:

|

|

CPU1_BUS E
A ) 4 :
CPU2_BUS !
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|

|

|

|

|

HW1 -> chendcti, chendct2
CPU1 —> quantize

HW2 -> zigzag

CPU2 —> huffman

|

stimulus
[MASTER] [ SLAVE ]

Figure 10: System architecture for JPEG encoder using 2 CPUs
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4.1.2 Communication via Bridge

If the bridge HW is available, JPEG platform will be drawn like in Figure 11. HW2 is replaced with
bridge HW and then HW2 is now the slave of CPU2 _BUS. There are some advantages in this JPEG
platform because CPU1 can access CPU2_BUS through bridge. When bridge is used to connect the
buses each other, it is safe to disallow the bidirectional access because it might cause the deadlock
and then the whole system might get stuck. The JPEG platform with bridge allows more flexibility
in the architecture of Platform than the architecture without bridge. Also it will be better to support
the multiple masters in each bus because the bridge hardware usually is the slave of one bus and
also it is the master of the other bus. Eventually there exist two masters on the bus. Also it is very
important for CPU to be able to access all of slaves on the platform due to the memory mapped
I/0 to control slaves. In Figure (11, bridge is the slave of CPU1_BUS and it is also the master of
CPUZ2_BUS.

SYSTEM CHART OF JPEGENCODER WITH TWO CPUs

Platform

10_Unit2

CPU1_BUS CPU2_BUS

HW1 —> chendcti, chendct2
CPU1 —> quantize

HW2 —> zigzag

CPU2 —> huffman

S |

stimulus
[ MASTER ] [ SLAVE ]

Figure 11: System architecture for JPEG encoder using 2 CPUs with bridge

4.2 JPEG Architecture using 3 ARM CPUs
4.2.1 Communication via Hardware Block

To run JPEG simulation with 3 CPUs, new architecture platform with 3 CPUs needs to be devised.
HW1 still needs to be used as intermediary processor elements to connect CPU_BUS1 and CPU_BUS?2

16



together because there is no bridge currently available in SCE library. HW2 is used to connect
CPU_BUS2 and CPU_BUS3. chendctl is assigned to CPU1. HW1 handles chendct?2 different
for JPEG platform with one CPU and 2 CPUs. And CPU?2 is taking care of quantize. HW2
executes zigzag. CPU3 performs huf fman. The detailed JPEG platform with 3 CPUs is shown
in Figure|12.

SYSTEM CHART OF JPEGENCODER WITH THREE CPUs

Platform

10_Unit2

HW2 -> zigzag
CPU3—> huffman

| |

| |

! |

I I

| |

! CPU2_BUS |

i 7y > Iy I

: CPU3_BUS | CPU1 -> chendcti
i ' HW1 -> chendct?
: CPU2 CPU3 :

! [ ] [ ] |

| |

! |

| |

|
|
I
|
|
|
|

CPU2 -> quantize
cpPulBUS I | Y\ o]

L

L 1 [MASTER] [ SLAVE ]

Figure 12: System architecture for JPEG encoder using 3 CPUs

4.2.2 Communication via Bridge

If the bridge HW is available, JPEG platform will be drawn like in Figure [13, HW1 is replaced
with bridge HW and then HW1 is now the slave of CPU2_BUS.
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SYSTEM CHART OF JPEGENCODER WITH THREE CPUs

Platform

CPU2_BUS

CPU1 -> chendct1
HW1 -> chendct2
CPU2 -> quantize
HW2 -> zigzag
CPU3-> huffman

————————— e

L
=)=

Figure 13: System architecture for JPEG encoder using 3 CPUs with bridge
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S Experimental Results

5.1 Platform Execution Times

JPEG encoder software synthesis is explored. It starts from JPEG encoder application. To obtain
our performance goal, many architecture variations are analyzed and revealed. If there is a bridge
available in SCE library, JPEG platform having more than 3 ISS will be able to be tested. Due to
the current limitation of SCE library, the results for simulation could be obtained up to 3 ARM ISS.
The results are shown in Table 2. This result is reasonable to take more time in 3 CPUs than 2
CPUs because DCT1 is processed in ARM ISS in 3 CPU case differently from 2 CPU case. Usually
hardware performs faster than software.

Number of CPU PE Mapping Execution time(us)

1 DCT1,DCT2 — HW 142043
Quantize,Zigzag,Huffman — CPU
2 DCTI1,DCT2 — HW1 92979
Quantize — CPU1
Zigzag — HW?2
Huffman — CPU2
3 DCT1 — CPUI1 93467
DCT2 — HW1
Quantize — CPU2
Zigzag — HW?2
Huffman — CPU3

Table 2: Execution time depending on the number of CPUs

5.2 Multi-ARM Simulation Times

Simulation times are obtained by using /usr/bin/time command. Simulation times are
shown in Table [3 according to the number of CPU. As assumed, simulation time is increasing
proportional to the number of CPU.

Simulation Time

Number of CPU | User(sec) | System(sec) | Total(User+System)
1 554.59 91.06 651.96
2 837.70 164.33 1002.33
3 1250.63 232.01 1482.62

Table 3: Simulation time depending on the number of ARM ISS
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6 Conclusions and Future Work

JPEG encoder software synthesis is explored. It starts from JPEG encoder application. SWARM
ISS library in SCE has been successfully patched such that multiple ARM ISS instances of the
simulator can run independently within the same platform model. Our JPEG example runs now fine
with 1, 2, or 3 ARM CPUs.

Now SCE does not support the multiple C code generation concurrently. So C codes for multiple
ARM ISS need to be generated separately until the next SCE is released. Regarding to HW IPs, if
the bridge HW is available, JPEG platform might be able to have better architecture than now. When
bridge is used to connect the buses each other, it is safe to disallow the bidirectional access because
it might cause the deadlock and then the whole system might get stuck. The JPEG platform with
bridge allows more flexibility in the architecture of Platform than the architecture without bridge.
Due to unavailability of bridge, JPEG ISS model having more than 3 ARM ISSs is impossible to
test. Also it will be better to support the multiple masters in each bus because the bridge hardware
usually is the slave of one bus and also it is the master of the other bus. Eventually there exist
two masters on the bus. Also it is very important for CPU to be able to access all of slaves on the
platform due to the memory mapped I/0 to control slaves.
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A Appendix

A.1 SCE Design Steps for Single-CPU Implementation

Here are some detailed instructions to run JPEG simulation with one ARM ISS.
* Specification step

— new project

— import JpegPlatform.sc

— add to project as ”PlatformSpec.sir”

— view the new hierarchy chart (entirely , incl. connectivity)

— compile and simulate

* Architecture Refinement step

— choose ”platform” as top—level

— allocate two ARM.7TDMI as ”“CPU”

— allocate two HW_Standard as "HW”

— allocate two HW_Virtual as ”"IO_Unitl” and ”10_Unit2”
— map datain to IO_Unitl

— map dataout to I0_Unit2

— map cin to IO_Unitl

— map cout to IO_Unit2

— map dctl and dct2 to HW

— map quantize ,zigzag and huffman to CPU

— perform architecture refinement (no timing back annotation)
— rename generated model as “PlatformArch”

— compile and simulate

* Scheduling Refinement
— use priority —based scheduling for CPU
(priorities 1, 2, 3 for quan, zigz, huff, respectively)
— leave I0_Units alone
— leave HW alone
— perform scheduling refinement (both static and dynamic)
— rename generated model as “PlatformSched”
— compile and simulate

* Network Refinement

— rename “Bus0” to “CPU_Bus”

— add DblHndShkBus as “HW_Bus”

— create additional ”Portl” for HW

— connect HW (Port0) to CPU_Bus as ”slave4”

— connect HW (Portl) to HW_Bus as ”Master”

— connect I0_Unit2 (Port0) to CPU_Bus as ”slave5”
— connect IO_Unitl (Port0) to HW_ Bus as ”Slave”
— perform network refinement

— rename generated model as ”PlatformNet”

— compile and simulate

* Communication Refinement

— press “CPU_Bus”tab

— select start address 0x50000000 for c_link_ CPU__IO_Unit2
— select start address 0x40000000 for c_link_-HW__CPU

— press “BusO”tab

— select start address 0x0000 for c_link_IO_Unitl__HW

— perform communication refinement (pin—accurate model)
— rename generated model as “PlatformComm”

— compile and simulate

— Simulation gets stuck after monitor receives block 177.
— press CTRL-C to stop simulation
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* Code generation for CPU

— close PlatformComm. sir

— sir_note PlatformComm ARM_7TDMI_Core-20000.0_.CPU ’_PE_HAL_MODEL="

ARM_7TDMI_HAL_20000_0_CPU”’

— re—open PlatformComm. sir

— perform code generation for CPUl (for ARM_7TDMI_OS_20000_-0_.CPUI1_NET)
(store in files ”CPU/CPU.c” and “CPU/CPU.h”)

— rename generated model as ”PlatformCommC”

— compile and simulate

— Simulation gets stuck after monitor receives block 177.

— press CTRL-C to stop simulation

% Cross—compilation for CPU
— we will cross—compile the generated C code in the CPU directory

cd CPU
— inspect the generated ANSI-C code in files ”CPU.c” and ”CPU.h”

It appears that the generated C code converts our back—annotated timing
estimates into TaskDelay statements that suspend a task for the given
period of time. Thus, the software tasks are actually put to sleep for
our back—annotated waitfor() statements!!

After the C code generation step, take a look at the file CPUIl.h.

At the top of the file, you will find the following definition:

#define WAITFOR(X) TaskDelay ((unsigned long) ((X)/1000))

Please change this to the following:

#define WAITFOR(X) // nothing!

This will make the bogus waiting disappear. This changes should be done again in CPU2.h

— to compile the generated code together with the microC—OS—II

(and some other files), we’ 1l use a prepared Makefile

— update Makefile for reference path for SWARM ISS and user source code like below.
# reference to SWARM ISS
#ISS_DIR = /opt/pkg/sw/swarm
ISS_.DIR = /home/lecs/chkout/project/ multi_swarm/swarm

# USER specific source file
USR_SRC := CPU.c
USR_HDR = CPU.h
— type “make” after modification of Makefile
— the generated ARM-executable is found in file “userCode”
Is
— copy the generated executable userCode into your SCE working directory
(so that the SCE simulation can find it)
cp userCode

* Insertion of ISS model for CPU

— select Comm. sir (in SCE Project window)

— Edit—>ImportDesign
”/home/lecs/chkout/project/ multi_swarm/arm7tdmiwrapper/arm7tdmiiss. sir”
(this will show up in the list of unused behaviors in the working window
as behavior "ARM_7TDMI_ISS”)

— locate the instance “CPU” of behavior "ARM_7TDMI_Core_20000_.0_CPU”
in the hierarchy browser

— replace this abstract model with the ISS model

(right—click "ARM_7TDMI_Core_20000_.0_.CPU”, ChangeType to "ARM_7TDMI_ISS”)

— go to Project menu —> Settings

— change Import path to ”.:/home/lecs/chkout/project/multi_swarm/arm7tdmiwrapper”

— change Library path to ”/home/lecs/chkout/project/multi_swarm/swarm”

— set Verbosity level and Warning level to 2

— save this design model (as a new model in the project)
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File —>SaveAs ”PlatformISS.sir” (in your working directory!)
— compile and simulate .
— Simulation gets stuck after monitor receives block 177.
139632: Monitor received block 174 (with 3 bytes).
139632: Encoding for block 174 took 21154 micro seconds.
140444: Monitor received block 175 (with 15 bytes).
140444: Encoding for block 175 took 21179 micro seconds.
141251: Monitor received block 176 (with 9 bytes).
141251: Encoding for block 176 took 21199 micro seconds.
142043: Monitor received block 177 (with 6 bytes).
142043: Encoding for block 177 took 21188 micro seconds.

A.2 SCE Design Steps for Two-CPU Implementation

Here are some detailed instructions to run JPEG simulation with 2 ARM ISSs which are quite

similar to the ones with one CPU.
* Specification step
— new project
— import JpegPlatform.sc
— add to project as “PlatformSpec.sir”
— view the new hierarchy chart (entirely , incl. connectivity)
— compile and simulate

* Architecture Refinement step

— choose ”platform” as top—level

— allocate two ARM.7TDMI as ”CPUI” and “"CPU2” respectively
— allocate two HW_Standard as "HWI” and “HW2”

— allocate two HW_Virtual as ”"IO_Unitl” and ”I10_Unit2”

— map datain to IO_Unitl

— map dataout to IO_Unit2

— map cin to IO_Unitl

— map cout to I0_Unit2

— map dctl and dct2 to HWI

— map quantize to CPUIL

— map zigzag to HW2

— map Huffman to CPU2

— perform architecture refinement (no timing back annotation)
— rename generated model as “PlatformArch”

— compile and simulate

* Scheduling Refinement
— use priority —based scheduling for CPUl and CPU2

(no priorities needed for CPUl and CPU2 because only one behavior assigned)

— leave I0O_Units alone

— leave HWI and HW2 alone

— perform scheduling refinement (both static and dynamic)
— rename generated model as “PlatformSched”

— compile and simulate

* Network Refinement

— rename “Bus0” to ”"CPUI1_Bus”

— rename “Busl” to "CPU2_Bus”

— add DblHndShkBus as “HW_Bus”

— create additional ”Portl” for HWI

— create additional ”Portl” for HW2

— connect HWI (Port0) to CPUI1_Bus as ”slave4”
— connect HWI (Portl) to HW_ Bus as ”Master”
— connect HW2 (Port0) to CPUI1_Bus as ”slave5”
— connect HW2 (Portl) to CPU2_Bus as “slave4”
— connect IO_Unit2 (Port0) to CPU2_Bus as ”slave5”
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— connect IO_Unitl (Port0) to HW Bus as ”Slave”
— perform network refinement

— rename generated model as ”PlatformNet”

— compile and simulate

*+ Communication Refinement

— press “"CPUIl_Bus”tab

— select start address 0x50000000 for c_link_ CPUI__HW2

— select start address 0x40000000 for c_link_.HWI1__CPUI1

— press “CPU2_Bus”tab

— select start address 0x50000000 for c_link_.CPU2__10_Unit2
— select start address 0x40000000 for c_link_ HW2__CPU2

— press “BusO”tab

— select start address 0x0000 for c_link_IO_Unitl __HW

— perform communication refinement (pin—accurate model)

— rename generated model as “PlatformComm”

— compile and simulate

— Simulation should be working fine. It does not get stuck different from one CPU case.

* Code generation for CPUl and CPU2
Now SCE does not support the multiple C Code generation on the fly.
So C Codes for both CPUl and CPU2 needs to be generated separately until the next version
of SCE is released.
— close PlatformComm. sir
— sir_note PlatformComm ARM_7TDMI_Core_20000_.0_.CPU1 ’_PE_HAL_MODEL="
ARM_7TDMI_HAL_20000_0_-CPU1”’
— sir_note PlatformComm ARM_7TDMI_Core_20000_-0.CPU2 ’_PE_HAL_MODEL="
ARM_7TDMI_HAL_20000_0_-CPU2””’
— re—open PlatformComm. sir
— perform code generation for CPUl (for ARM_7TDMI_OS_20000_-0_CPUI1_NET)
(store in files “CPUl/CPUl.c” and ”CPU1l/CPUl.h”)
— rename generated model as ”PlatformCommC1”
— compile and simulate
— perform code generation for CPU2 (for ARM_7TDMI_OS_20000_.0_.CPU2_NET)
(store in files ”CPU2/CPU2.c” and “CPU2/CPU2.h")
— rename generated model as ”PlatformCommC2”
— compile and simulate
— Simulation should be working fine. It does not get stuck different from one CPU case.

* Cross—compilation for CPUIL
Now SCE does not support the multiple ARM ISS. Only one ARM ISS simulation is allowed.
— we will cross—compile the generated C code in the CPUl directory
cd CPUI
— inspect the generated ANSI-C code in files ”CPUl.c” and “CPUIl.h”
It appears that the generated C code converts our back—annotated timing
estimates into TaskDelay statements that suspend a task for the given
period of time. Thus, the software tasks are actually put to sleep for
our back—annotated waitfor() statements!!

After the C code generation step, take a look at the file CPUIl.h.
At the top of the file, you will find the following definition:
#define WAITFOR(X) TaskDelay ((unsigned long) ((X)/1000))
Please change this to the following:
#define WAITFOR(X) // nothing!
This will make the bogus waiting disappear. This changes should be done again in CPU2.h
— to compile the generated code together with the microC—OS—II
(and some other files), we’ 1l use a prepared Makefile
— update Makefile for reference path for SWARM ISS and user source code like below.
# reference to SWARM ISS
#ISS_DIR = /opt/pkg/sw/swarm
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ISS_DIR = /home/lecs/chkout/project/multi_swarm/swarm

# USER specific source file
USR_SRC := CPUl.c
USR_HDR := CPUlL.h
— type “make” after modification of Makefile
— the generated ARM-executable is found in file “userCode”

* Cross—compilation for CPU2
Now SCE does not support the multiple ARM ISS. Only one ARM ISS simulation is allowed.

— we will cross—compile the generated C code in the CPUl directory
cd CPU2
— inspect the generated ANSI-C code in files ”CPU2.c¢” and "CPU2.h”
more CPU2.c
more CPU2.h
— to compile the generated code together with the microC—OS—II
(and some other files), we’ 1l use a prepared Makefile
— update Makefile for reference path for SWARM ISS and user source code like below.
# reference to SWARM ISS
#ISS_DIR = /opt/pkg/sw/swarm
ISS_DIR = /home/lecs/chkout/project/ multi_swarm/swarm

# USER specific source file
USR_SRC = CPU2.¢c
USR_HDR := CPU2.h

— type “make” after modification of Makefile

— the generated ARM-executable is found in file “userCode”
* Insertion of ISS model for CPUl and CPU2

— select Comm. sir (in SCE Project window)

— Edit—>ImportDesign

”/home/lecs/chkout/project/multi_swarm/arm7tdmiwrapper/arm7tdmiiss].sir”

(this will show up in the list of unused behaviors in the working window

as behavior "ARM_7TDMI_ISS1”)

— Edit—>ImportDesign
”/home/lecs/chkout/project/ multi_swarm/arm7tdmiwrapper/arm7tdmiiss2.sir”
(this will show up in the list of unused behaviors in the working window
as behavior "ARM_7TDMI_ISS2”)
— locate the instance “CPUl” of behavior "ARM_7TDMI_Core_20000_.0_CPU1”

in the hierarchy browser
— replace this abstract model with the ISS model
(right—click "ARM_7TDMI_Core_20000_.0_.CPU1”, ChangeType to “ARM_7TDMI_ISS1”)
— locate the instance “CPU2” of behavior "ARM_7TDMI_Core_20000_-0_CPU2”

in the hierarchy browser
— replace this abstract model with the ISS model
(right—click "ARM_7TDMI_Core_20000-0_.CPU2”, ChangeType to “ARM_7TDMI_ISS2")
— go to Project menu —> Settings
— change Import path to ”.:/home/lecs/chkout/project/multi_swarm/arm7tdmiwrapper”
— change Library path to “/home/lecs/chkout/project/multi_swarm/swarm”
— set Verbosity level and Warning level to 2
— save this design model (as a new model in the project)
File —>SaveAs ”PlatformISS.sir” (in your working directory!)
— compile and simulate .
— Simulation should end like below.

0: Stimulus sends block 0.

Stimulus sends block
Stimulus sends block
Stimulus sends block
Stimulus sends block
Stimulus sends block

[clololole]
(O R S
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0: Stimulus sends block 6.
0: Stimulus sends block 7.
0: Stimulus sends block 8.
0: Stimulus sends block 9.
0: Stimulus sends block 10.
UARTCTRL: Serial device Slave pts [/dev/pts/5]
Note: Uploaded the Program—Binary: ./CPUl/userCode
UARTCIRL: Serial device Slave pts [/dev/pts/6]
Note: Uploaded the Program—Binary: ./CPU2/userCode
0: Stimulus sends block 11.
2: Stimulus sends block 12.
62: Stimulus sends block 13.
123: Stimulus sends block 14.
Register IRQ Register IRQ 00 pFunc pFunc 183: Stimulus sends block 15.

0x0x5e05e0 pArg pArg 0x0x00

243: Stimulus sends block 16.
89338: Monitor received block 172 (with 4 bytes).
89338: Encoding for block 172 took 13623 micro seconds.
89834: Monitor received block 173 (with 4 bytes).
89834: Encoding for block 173 took 13607 micro seconds.
90329: Monitor received block 174 (with 3 bytes).
90329: Encoding for block 174 took 13599 micro seconds.
90863: Monitor received block 175 (with 15 bytes).
90863: Encoding for block 175 took 13629 micro seconds.
91392: Monitor received block 176 (with 9 bytes).
91392: Encoding for block 176 took 13653 micro seconds.
91904: Monitor received block 177 (with 6 bytes).
91904: Encoding for block 177 took 13640 micro seconds.
92406: Monitor received block 178 (with 6 bytes).
92406: Encoding for block 178 took 13604 micro seconds.
92979: Monitor received block 179 (with 305 bytes).
92979: Encoding for block 179 took 13686 micro seconds.
92979: Monitor exits simulation.

A.3 SCE Design Steps for Three-CPU Implementation

Here are some detailed instructions to run JPEG simulation with three ARM ISSs which are
quite similar to the ones with one CPU.

* Specification step

new project

import JpegPlatform.sc

add to project as "PlatformSpec.sir”

— view the new hierarchy chart (entirely , incl. connectivity)

— compile and simulate

* Architecture Refinement step

— choose ”platform” as top—level

— allocate three ARM.7TDMI as “CPU1” ,”CPU2” and “CPU3” respectively
— allocate two HW_Standard as "HWI” and "HW2”

— allocate two HW_Virtual as 7IO_Unitl” and ”"I10_Unit2”

datain to IO_Unitl
dataout to IO_Unit2
cin to I0_Unitl
cout to IO_Unit2

map
map
map
map
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*

map dctl to CPUIL

map dct2 to HWI

map quantize to CPU2

map zigzag to HW2

map Huffman to CPU3

perform architecture refinement (no timing back annotation)
rename generated model as “PlatformArch”

compile and simulate

Scheduling Refinement

use priority —based scheduling for CPUI,CPU2 and CPU3

(no priorities needed for CPUl, CPU2 and CPU3 because only one behavior assigned)
leave IO_Units alone

leave HW1 and HW2 alone

perform scheduling refinement (both static and dynamic)

rename generated model as “PlatformSched”

compile and simulate

Network Refinement

rename “Bus0” to “CPUI1_Bus”

rename “Busl” to ”CPU2_Bus”

rename “Bus2” to “CPU3_Bus”

create additional “Portl” for HWI

create additional ”Portl” for HW2

connect HW1 (Port0) to CPUI1_Bus as ”slave4”
connect HW1 (Portl) to CPU2_Bus as ”slave4”
connect HW2 (Port0) to CPU2_Bus as ”slave5”
connect HW2 (Portl) to CPU3_Bus as ”slave4”
connect [O_Unit2 (Port0) to CPU3_Bus as ”slave5”
connect I0O_Unitl (Port0) to CPU1_Bus as ”slave5”
perform network refinement

rename generated model as ”PlatformNet”

compile and simulate

Communication Refinement

press "CPUI_Bus”tab

select start address 0x40000000 for c_link_ CPU1__HW1
select start address 0x50000000 for c_link_-IO_Unitl__HW1
press “CPU2_Bus”tab

select start address 0x50000000 for c_link_ CPU2__HW2
select start address 0x40000000 for c_link . HW1__CPU2
press “"CPU3_Bus”tab

select start address 0x40000000 for c_link . HW2__CPU3
select start address 0x50000000 for c_link_CPU3__10_Unit2
perform communication refinement (pin—accurate model)
rename generated model as “PlatformComm”

compile and simulate

Simulation should be working fine. It does not get stuck different from one CPU case.

Code generation for CPU1,CPU2 and CPU3

Now SCE does not support the multiple C Code generation on the fly.
So C Codes for both CPUl and CPU2 needs to generated separately until the next version

SCE is released.

close PlatformComm. sir

sir_note PlatformComm ARM_7TDMI_Core_-20000_.0_.CPU1 ’_PE_HAL_MODEL="
ARM_7TDMI_HAL_20000_.0_.CPU1”"’

sir_note PlatformComm ARM_7TDMI_Core_20000_.0_.CPU2 ’_PE_HAL_MODEL="
ARM_7TDMI_HAL_20000_.0_CPU2""

re—open PlatformComm. sir
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— sir_note PlatformComm ARM_7TDMI_Core_20000_-0_.CPU3 ’_PE_HAL_MODEL="
ARM_7TDMI_HAL_20000_0_-CPU3””’

— perform code generation for CPUl (for ARM_7TDMI_OS_20000_-0_CPUI_NET)
(store in files ”CPUI/CPUl.c” and “CPU1/CPUl.h”)

— rename generated model as ”PlatformCommC1”

— compile and simulate

— perform code generation for CPU2 (for ARM_7TDMI_OS_20000_-0_.CPU2_NET)
(store in files “CPU2/CPU2.c” and ”“CPU2/CPU2.h”)

— rename generated model as ”PlatformCommC2”

— compile and simulate

— perform code generation for CPU3 (for ARM_7TDMI_OS_20000_.0_.CPU3_NET)
(store in files ”CPU3/CPU3.c” and “CPU3/CPU3.h”)

— rename generated model as “PlatformCommC3”

— compile and simulate

— Simulation should be working fine. It does not get stuck different from one CPU case.

* Cross—compilation for CPUIL
Now SCE does not support the multiple ARM ISS. Only one ARM ISS simulation is allowed.

— we will cross—compile the generated C code in the CPUl directory

cd CPU1
— inspect the generated ANSI-C code in files ”CPUl.c” and ”CPUl.h”
It appears that the generated C code converts our back—annotated timing
estimates into TaskDelay statements that suspend a task for the given
period of time. Thus, the software tasks are actually put to sleep for
our back—annotated waitfor() statements!!

After the C code generation step, take a look at the file CPUIl.h.
At the top of the file, you will find the following definition:
#define WAITFOR(X) TaskDelay ((unsigned long) ((X)/1000))
Please change this to the following:
#define WAITFOR(X) // nothing!
This will make the bogus waiting disappear.
— to compile the generated code together with the microC—OS—II
(and some other files), we’ 1l use a prepared Makefile
cp /home/doemer/EECS222C_F08/lecture8/Makefile
— update Makefile for reference path for SWARM ISS and user source code like below.
# reference to SWARM ISS
#ISS_DIR = /opt/pkg/sw/swarm
ISS_DIR = /home/lecs/chkout/project/multi_swarm/swarm

# USER specific source file
USR_SRC := CPUl.c
USR_HDR := CPUl.h
— type “make” after modification of Makefile
— the generated ARM-executable is found in file “userCode”

* Cross—compilation for CPU2
Now SCE does not support the multiple ARM ISS. Only one ARM ISS simulation
— we will cross—compile the generated C code in the CPU2 directory
cd CPU2
— inspect the generated ANSI-C code in files ”CPUl.c¢” and "CPUIl.h”
more CPU2.c
more CPU2.h
— to compile the generated code together with the microC—OS—II
(and some other files), we’ll use a prepared Makefile
cp /home/doemer/EECS222C_F08/lecture8/Makefile
— update Makefile for reference path for SWARM ISS and user source code like below.
# reference to SWARM ISS
#ISS_DIR = /opt/pkg/sw/swarm

s allowed.

—-
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ISS_DIR = /home/lecs/chkout/project/multi_swarm/swarm

# USER specific source file
USR_SRC = CPU2.¢c
USR_HDR := CPU2.h
— type “mae” after modification of Makefile
— the generated ARM-executable is found in file “userCode”
* Cross—compilation for CPU3
Now SCE does not support the multiple ARM ISS. Only one ARM ISS simulation is allowed.

— we will cross—compile the generated C code in the CPU3 directory
cd CPU3
— inspect the generated ANSI-C code in files “CPU3.c¢” and "CPU3.h”
more CPU3.c
more CPU3.h
— to compile the generated code together with the microC—OS—II
(and some other files), we’ll use a prepared Makefile
— c¢p /home/doemer/EECS222C_F08/lecture8/Makefile
— update Makefile for reference path for SWARM ISS and user source code like below.
# reference to SWARM ISS
#ISS_DIR = /opt/pkg/sw/swarm
ISS_DIR = /home/lecs/chkout/project/ multi_swarm/swarm

# USER specific source file
USR_SRC := CPU3.c
USR_HDR := CPU3.h
— type “make” after modification of Makefile
— the generated ARM-executable is found in file “userCode”

* Insertion of ISS model for CPUl, CPU2 and CPU3

— select Comm. sir (in SCE Project window)

— Edit—>ImportDesign
”/home/lecs/chkout/project/ multi_swarm/arm7tdmiwrapper/arm7tdmiissl.sir”
(this will show up in the list of unused behaviors in the working window
as behavior "ARM_7TDMI_ISS1”)

— Edit—>ImportDesign
”/home/lecs/chkout/project/multi_swarm/arm7tdmiwrapper/arm7tdmiiss2.sir”
(this will show up in the list of unused behaviors in the working window
as behavior "ARM_7TDMI_ISS2”)

— Edit—>ImportDesign
”/home/lecs/chkout/project/multi_swarm/arm7tdmiwrapper/arm7tdmiiss3.sir”
(this will show up in the list of unused behaviors in the working window
as behavior "ARM_7TDMI_ISS3”)

— locate the instance “CPUL” of behavior "ARM_7TDMI_Core_20000_.0_.CPU1”
in the hierarchy browser

— replace this abstract model with the ISS model

(right—click ”ARM_7TDMI_Core_20000_.0_CPU1”, ChangeType to “ARM_7TDMI_ISS1”)

— locate the instance “CPU2” of behavior "ARM_7TDMI_Core_20000_.0_CPU2”
in the hierarchy browser

— replace this abstract model with the ISS model

(right—click "ARM_7TDMI_Core_20000_-0_.CPU2”, ChangeType to "ARM_7TDMI_ISS2")

— locate the instance “CPU3” of behavior "ARM_7TDMI_Core_20000_-0_CPU3”
in the hierarchy browser

— replace this abstract model with the ISS model

(right—click "ARM_7TDMI_Core_20000-0_.CPU3”, ChangeType to “ARM_7TDMI_ISS3")

— go to Project menu —> Settings
— change Import path to ”.:/home/lecs/chkout/project/multi_swarm/arm7tdmiwrapper”
— change Library path to ”/home/lecs/chkout/project/multi_swarm/swarm”
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set Verbosity level and Warning level to 2
save this design model (as a new model in the project)
File —>SaveAs ”PlatformISS.sir” (in your working directory!)
compile and simulate
should be ended like below.)
0: Stimulus sends block 9.
0: Stimulus sends block 10.
UARTCTRL: Serial device Slave pts
Note: Uploaded the Program—Binary:
UARTCTRL: Serial device Slave pts
Note: Uploaded the Program—Binary:
UARTCTRL: Serial device Slave pts
Note: Uploaded the Program—Binary:
0: Stimulus sends block 11.
Register IRQ Register IRQ Register IRQ 000 pFunc
0x0x0x5e05e05e0 pArg pArg pArg 0x0x0x000

(Simulation

[/dev/pts/2]
./CPU3/userCode

[/dev/pts/3]
./CPU2/userCode

[/dev/pts/4]
./CPUl/userCode

pFunc pFunc

402: Stimulus sends block 12.

821: Stimulus sends block 13.

1197: Stimulus sends block 14.

1597: Stimulus sends block 15.

1817: Monitor received block 0 (with 337 bytes).

1817: Encoding for block 0 took 1817 micro seconds.
90817: Encoding for block 174 took 8157 micro seconds.
91350: Monitor received block 175 (with 15 bytes).
91350: Encoding for block 175 took 8189 micro seconds.
91879: Monitor received block 176 (with 9 bytes).
91879: Encoding for block 176 took 8213 micro seconds.
92391: Monitor received block 177 (with 6 bytes).
92391: Encoding for block 177 took 8196 micro seconds.
92894: Monitor received block 178 (with 6 bytes).
92894: Encoding for block 178 took 8175 micro seconds.
93467: Monitor received block 179 (with 305 byt

es)

93467: Encoding for block 179 took 8236 micro seconds.
93467: Monitor exits simulation.
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