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Abstract 

Process network model has been widely used for system specification because of its 

modeling capability. It allows relatively easy modeling of a system, especially when the 

system design is initially captured by a set of computation blocks connected by the flow 

of data, which is common in multimedia applications. It also allows efficient 

representation of concurrency of a system, and is often used as a model for mapping an 

application to architecture with multiple processing elements. 

In this report, we present how to create the process network model in SystemC from 

the given H.264 application in C. We first present H.264 algorithm in brief and show how 

we can model the process network for H.264. We have manually implemented three 
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process network models in SystemC for H.264, that is, H.264 encoder, H.264 decoder, 

and H.264 codec. Then, they have been tested in ESE (Embedded System Environment) 

FrontEnd tool which has been developed for efficient design of multiprocessor 

architectures on system-on-chips. We have created several platforms to test them in ESE 

FrontEnd, generated TLMs (Transaction Level Models) and simulated them successfully. 

The main purpose of this report is to explain how to model process networks from the 

scratch and help someone who wants to start with ESE FrontEnd from process network 

model. 
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Chapter 1 :Introduction 
 

Process network model originated from [1] has been widely used since it allows 

relatively easy modeling of a system and efficient representation of concurrency of a 

system, and is often used as a model for mapping an application to a multiprocessor 

architecture. In the process network model, all processes communicate only with FIFO 

(First In First Out) buffers which are theoretically unbounded. Because of the unbounded 

FIFOs, there are some issues on executing the process network model such as the buffer 

size and deadlock. However, in this report, we assume that the deadlock problem can be 

solved by designer and the buffer size is given even though they are not optimal. (Refer to 

[2] for details). 

We explain how we can describe the process network model in SystemC [3] from the 

given application in C. The process network model can also be implemented in C but in 

this report, we use SystemC because it provides the FIFO channels so that it is easy to 

create and verify the process network model. This report is organized as follows. 

Chapter 2 presents how we can describe the process network model in SystemC 

using a simple example. Chapter 3 explains what H.264 is and what features have been 

newly improved compared to the previous standards. Chapter 4 and 5 show the process 

network models in SystemC for H.264 encoder and H.264 decoder respectively. Then, 

chapter 6 explains how we can create H.264 codec from them. Chapter 7 presents how to 

create platforms and generate TLMs from the process network models. Chapter 8 shows 

the simulation time and code size of all the process network models and the generated 

TLMs by ESE FrontEnd. Finally, we conclude this report in chapter 9. 
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Chapter 2 :Process Network Model in 
SystemC 

 

In order to model a process network from a given application, designers need to 

analyze the application and divide the application into several processes which may have 

the possibility of concurrency. Once the application partitioning is done, we can create the 

process network model in SystemC. 

 

2.1 Modeling Processes 
First of all, since we are focusing on the functional model in SystemC, we should use 

only untimed SystemC features which do not include timed constructs such as clk, wait, 

sensitives, and so on.  

Second, all processes must communicate each other only using SystemC FIFOs. 

(sc_fifo or sc_port not sc_in or sc_buffer) It means that two processes cannot share any 

global variable and they must read or write the value of the variable only via a FIFO 

channel. If a process comes from a function which has several arguments, then all the 

arguments must be transformed to FIFO channels. 

Third, SystemC is just used for wrapping processes. Therefore, it does not have to 

include all codes from C. If the process calls some functions, the functions can be 

described in other C files. 

We use an example to explain in more detail how to create each process in SystemC 

as shown in Figure 1. Let us assume that an application is given as the upper figure part 

in Figure 1. And assume that from analyzing the main function in ‘main.c’, we can divide 
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the application into 3 processes. In that case, we can create each process in SystemC as 

shown in the bottom figure part in Figure 1. For ‘Process A’, we need to add one FIFO 

channel because ‘Func_A’ and ‘Func_B’ share a global variable. And for ‘Process B’, we 

need two FIFO channels, one for a global variable from ‘Process A’ and the other for an 

argument toward ‘Process C’. In case of ‘Process B’, we have integrated the codes in 

‘funcB.c’ into the SystemC code. However, like ‘Process C’, other functions can still exist 

in other C files. 

 

extern int g;  
void main()
{

int a=0;
int b[10];
Func_A( );
for (i=0; i<10; i++) {

b[i] = Func_B( );
}
Func_C(b);

}

#include <systemc.h>
SC_MODULE(A) {

sc_f ifo_out<int> G; 
void process()
{

G.write(10);
}
SC_CTOR(A) {

SC_THREAD(process); 
}

};

extern int g;  
void Func_A()
{

g=10;

}

extern int g;  
int Func_B()
{

int i;
for(i=0;i<10;i++)

g = g × i;
}

#include func.h”
int Func_C(int *b)
{

int result;
result = Func(b);

}

main.c funcA.c funcB.c funcC.c

func.c

#include <systemc.h>
SC_MODULE(B) {

sc_f ifo_in<int> G;
sc_f ifo_out<int[10]> B; 
void process()
{

int g;
int a=0;
int b[10];
g = G.read();
for(i=0;i<10;i++) {

for(j=0;j<10;j++)
g = g × j;

b[i] = g;
}
B.write(b);

}
SC_CTOR(B) {

SC_THREAD(process); 
}

};

#include <systemc.h>
#include func.h”
SC_MODULE(C) {

sc_f ifo_in<int[10]> B; 
void process()
{

int result;
int b = B.read();
result = Func(b);

}
SC_CTOR(C) {

SC_THREAD(process); 
}

};

Process A (A.h)

Process B (B.h) Process C (C.h)

int Func(int *b)
{

int i;
int sum=0;
for(i=0;i<10;i++)

sum += b[i];
}

func.c

int Func(int *b)
{

int i;
int sum=0;
for(i=0;i<10;i++)

sum += b[i];
}  

Fig 1. The SystemC processes created from a simple application. 
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2.2 Top SystemC Code 
Figure 2 shows the top SystemC code which describes the whole system of the 

application in Figure 1. First, three processes (A, B, and C) are instantiated and then two 

FIFO channels (R1 and R2) are created. Finally, the two FIFO channels connect three 

processes. For example, a FIFO channel ‘R1’ connects a port ‘G’ of process ‘a’ (a G) 

and a port ‘G’ of process ‘b’ (b G). 

 

 

Fig 2. The top SystemC code. 

 

 

#include <systemc.h>
# include "A.h"
# include "B.h"
# include “C.h”
int sc_main(int argc, char* argv[])
{

A *a;
B *b;
C *c;
a = new A(“a”);
b = new B(“b”);
c = new C(“c”);

sc_fifo <int> R1(“R1”,1);
sc_fifo <int[10]> R2(“R2”,1 );
a->G(R1);
b->G(R1);
b->B(R2);
c->B(R2);

sc_start(-1);
return 0;

};
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Chapter 3 :H.264 Algorithm 

 

Now, we need to analyze H.264 application in order to implement the process 

network model of it. We start with the H.264 reference code written in C which is 

available at http://www.itu.int. The profile used in our H.264 software is the baseline 

profile which is used widely in videoconferencing and mobile applications. The details in 

algorithms can be found in [4]. Figure 3 shows the block diagram of H.264 encoder and 

Figure 4 shows the block diagram of H.264 decoder. H.264 consists of four main parts, 

that is, motion estimation/compensation (ME/MC), transformation (DCT, Quantization, 

etc.), deblocking filter, and entropy coding. 

First, in the motion estimation/compensation (ME/MC) part, the current frame is 

described based on the previous frame. The estimated frames are called “InterFrames” 

and some frames are encoded without any prediction, which are called “IntraFrames”. 

H.264 has more features than H.263 which is the previous standard. In case of the 

ME/MC, it considers variable block sizes to predict current frame and can take multiple 

and arbitrary reference frames. 

Second is the transformation and quantization part. H.264 uses integer linear 

transformation which is faster and more accurate than discrete cosine transformation used 

in the previous standard. 

Third, as a deblocking filter, H.264 uses the adaptive in-loop deblocking filter to 

reduce the blocking phenomenon. 

Finally, entropy coding is based on the statistical estimation which finds out an 

optimal codeword from the frequency of a symbol. In the entropy coding part, H.264 
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adapts a new algorithm called context adaptive variable length codes. 

 

 

Fig 3. The block diagram of H.264 encoder. 

 

 

 

Fig 4. The block diagram of H.264 decoder. 
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Chapter 4 :Process Network Model for H.264 
Encoder 

 

A: EncodeControl
B: EncodeIntraC
C: EncodeIntraL
D: EncodeMode
E: EncodeDctC
F: EncodeIdctC
G: EncodeDctL
H: EncodeIdctC
I: EncodeME
J: EncodeUS
K: EncodeDB
L: EncodeWM
M: EncodeWP

44 channels

Input 
data file
(.yuv)

Output 
data file
(.264)

A

B

C

E

D

G H

F

KJI
M

L

 
 

Fig 5. The process network model graph of H.264 encoder. 
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Based on the block diagram shown in Figure 3, we have divided the reference code 

into many processes in order to create the process network model in SystemC. Figure 5 

shows the process network model graph of H.264 encoder. It also shows the relationship 

between the process network model and the block diagram in Figure 3. There are 13 

processes and 44 channels. All processes have been created in SystemC in the same way 

as shown in Figure 1. The input of H.264 encoder is a YUV file (*.yuv) which is a raw 

format and its output is a 264 file (*.264) which contains encoded data. 
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Chapter 5 :Process Network Model for H.264 
Decoder 

 

In the similar way to H.264 encoder, we have created the SystemC process network 

model for H.264 decoder. Figure 6 shows the process network model graph for H.264 

decoder and the relationship between the process network model and the block diagram in 

Figure 4. There are 12 processes and 23 channels. The input is a 264 file and the output 

file is a YUV file. 

 

A: DecodeControl
B: DecodeED
C: DecodeChromaMC
D: DecodeIntraC
E: DecodeIdctC
F: DecodeLumaMC
G: DecodeIntraL
H: DecodeIdctL
I: DecodeCC
J: DecodeCL
K: DecodeDB
L: DecodeWP

23 channels

A B

C
E

D

G

H

F

K

I

J

L
Output 
data file
(.yuv)

Input 
data file
(.264)

 
Fig 6. The process network model graph of H.264 decoder. 
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Chapter 6 :Process Network Model for H.264 
Codec 

 

In this chapter, we explain how to create the process network model for H.264 codec. 

Since we have both H.264 encoder and decoder, only what we need to do is merging them 

into one process network model.  

 

EncodeControl

EncodeME

Deblock

EncodeDctL

UpSample

EncodeIntraC

EncodeDctC EncodeIdctC

EncodeMode

EncodeIdctL

EncodeWM

EncodeIntraL

EncodeWP

DecodeControl

DecodeED

DecodeCMC

DecodeIntraC

DecodeLMC

DecodeIntraL

DecodeIdctC

DecodeIdctL

DecodeCC

DecodeCL

DecodeWP DecodeDB

Input
data file

Output
data file

Encoded 
data

 

Fig 7. The process network model of H.264 codec. 
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Since H.264 encoder outputs an encoded file and H.264 decoder inputs the encoded 

file, we need to remove those file interfaces, and we can add FIFO channels to connect 

them properly. H.264 encoder writes the encoded data frame by frame to a file in the 

‘EncodeWP’ process and similarly, H.264 decoder reads the data frame by frame from a 

file in the ‘DecodeControl’ process. Therefore, we can insert a FIFO buffer whose size is 

the maximum among the frames in order to connect encoder and decoder. 

Based on this analysis, we have removed all file interfaces in the two processes, 

added a FIFO channel to them and merged them together. The final process network 

model for H.264 codec is shown in Figure 7. (Also see Appendix A) 
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Chapter 7 :Platform Creation and TLM 
Generation in ESE FrontEnd 

 

In this chapter, we present how to create platforms in ESE FrontEnd and how to 

generate the TLMs. First of all, in order to input the process network model to ESE 

FrontEnd, we need to extract the input C code from the SystemC code. Note that we can 

directly create the process network model from the reference C code. If we already have 

C code for each process of the process network model, we do not have to create the input 

C code from the SystemC code. Or, we can directly create and verify the process network 

model by using ESE FrontEnd. 

With the input C code, we can create various platforms in ESE FrontEnd. Once the 

platforms are created by designers, ESE FrontEnd can generate two types of TLMs in 

SystemC that is, the functional TLM and the timed TLM. For the timed TLM, ESE 

FrontEnd estimates the execution time of each process in the process network model and 

annotates the timing delay into the original code [2]. And then, the timed TLM is 

evaluated by simulation, thus the overall performance of the system is reported to the 

designer. 

 

7.1 C Code Creation for ESE FrontEnd 
As mentioned above, in order to input a process network model to ESE FrontEnd, we 

go through a process to generate C code for each process. We explain it using an example 

process named ‘DCT’ (in JPEG encoder) in SystemC as shown in Figure 8 (a). It has two 

FIFO channels, one for receiving data and the other for sending data. From the SystemC 
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code, we remove all SystemC dependant statements and exchange the FIFO read/write 

functions to the functions defined in ESE FrontEnd as shown in Figure 8 (b). We need 

specify the name of signal and the size of it. In this manner, we can generate all C codes 

for all processes. 

 

#include “systemc.h”

SC_MODUCE(DCT){
sc_fifo_in<int[64]>  in_block;
sc_fifo_out<int[64]> out_block;

void process(){
int i_block[64];
int o_block[64];
i_block = in_block.read();
…
…
out_block.write(o_block);

}
SC_CTOR(DCT){

SC_THREAD(process);
}

}

SystemCcode for ‘DCT’

void DCT(){
int i_block[64];
int o_block[64];
recv_dct2readbmp(in_block,sizeof(int[64]);
…
…
send_dct2quantize(out_block,sizeof(int[64]);

}

C code for ‘DCT’

 
(a)                                    (b) 

Fig 8. (a) SystemC code for ‘DCT’ (b) The manually generated C code. 

 

7.2 Creating Platforms in ESE FrontEnd 
For testing various platforms, we have created three types of platforms for all 

applications. One is the simplest platform which has only one processor where all 

processes are mapped into. Another platform has two processors, one shared bus, and a 

transducer (TX) [5]. Note that, in these two platforms, all the channels among processes 

mapped to the same processor are implemented by using double-handshake (DH) 

channels instead of the original Kahn channel which is being developed. Therefore, all 

processes in the same processor communicate each other via the DH channels, thus after a 
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process writes a data, it should wait until another process reads the data. It can cause a 

deadlock problem if many channels are involved. Therefore, in this report, we assume 

that the input process network model to ESE FrontEnd has no deadlock problem by the 

DH channels, which guarantees the correct behavior of the generated TLMs. On the other 

hand, we use the TX for the communication between two processors since it supports the 

features like the Kahn channel except non-blocking write. The other is the platform where 

each process is mapped into one processor, all processes share a bus and they 

communicate via a TX each other. Note that the platforms created in this report are not 

optimal and the purpose of this chapter is to test those various platforms with various 

examples in ESE FrontEnd. 

ESE FrontEnd provides several processing elements such as MicroBlaze processor 

and HWs and communication elements such as TX and buses. All the platforms have 

been created manually using the Graphical User Interface (GUI) which is provided by 

ESE FrontEnd. 

Figure 9 shows the single processor platforms for H.264 encoder, decoder, and codec, 

respectively. Figure 10 shows the second platform which has two processors and one 

shared bus. In Figure 10, mapping the application to the platform is done manually by 

user based on a simple profiling. Finally, Figure 11 shows the last platform for all the 

applications. H.264 encoder has 13 processes, thus its platform in Figure 11 has 13 

processors. For H.264 decoder, its platform has 12 processors. And the platform for 

H.264 codec has 25 processors. In these platforms, all processors share one bus and 

communicate via a TX each other. 
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Fig 9. The single processor platforms for H.264 encoder, decoder and codec. 
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Fig 10. The two processor and one bus platforms for H.264 encoder, decoder and codec. 

 



17 
 

H.264 Encoder

H.264 Decoder

H.264 CODEC

CPU0 CPU1

Tx0

CPU2 CPU3 CPU4 CPU5 CPU6 CPU7 CPU8 CPU9 CPU10 CPU11 CPU12

CPU13 CPU14 CPU15 CPU16 CPU17 CPU18 CPU19 CPU20 CPU21 CPU22 CPU23 CPU24

CPU0 CPU1
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CPU6 CPU7 CPU8 CPU9 CPU10 CPU11

CPU0 CPU1
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CPU7 CPU8 CPU9 CPU10 CPU12CPU11

 

Fig 11. The platforms with a transducer for H.264 encoder, decoder and codec. 

 

7.3 TLM Generation and Simulation 
ESE FrontEnd can generate two types of TLMs. One is functional TLM which is for 

verifying its behavior and the other is timed TLM which is for performance estimation of 

the system [6]. The timed TLMs have real-time OS (RTOS) when more than two 

processes exist in the same processor. ESE FrontEnd provides the fully automated tool set 

to users. Therefore, we can easily generate the TLMs using ESE FrontEnd just by 

clicking ‘Generate Functional TLM’ or ‘Generate Timed TLM’ menu. And then, we can 
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simulate it just by clicking ‘Simulate Functional TLM’ or ‘Simulate Timed TLM’ menu in 

ESE FrontEnd.  
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Chapter 8 :Experimental Results 

 
8.1 The Experimental Results on the Process Network 

Models by Hand 
To show the quality of the manually generated process network models, we have 

measured their simulation times and code sizes. Table 1 shows the simulation time in 

seconds and the code size in lines for H.264 encoder, H.264 decoder and H.264 codec 

respectively. All of three models are encoding and decoding 15 frames whose format is 

QCIF on a 2GHz Linux machine. As shown in Table 1, H.264 decoder has less code size 

and faster simulation speed than H.264 encoder. This is because H.264 decoder does not 

have the motion estimation. 

 

Table 1 The simulation time and codes size of the manually generated SystemC model 

Simulation time (sec.) Code size (# of lines)

H.264 encoder 2.10 20.5 K

H.264 decoder 0.59 11.3 K

H.264 codec 2.32 31.2 K
 

 

8.2 The Experimental Results on the TLMs Generated 
by ESE 

We have also measured the simulation time and code size of the TLMs generated by 

ESE FrontEnd. Table 2 shows the simulation time of the TLMs for H.264 encoder, 

decoder and codec respectively. It should be reminded that all the channels between 

processes in the same processor are generated by using DH channels. It is because FIFO 
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channel in ESE RTOS model is under development and is not yet available. Therefore, 

direct comparison with the manual version is not possible. However, we can still compare 

the simulation time of the manual version with that of the functional TLMs for Platform 1 

generated by ESE. Platform 1 has no communication between processes. The only 

difference between the manually written process network models and the automatically 

generated TLMs by ESE FrontEnd is that they are using different channel primitives. As 

shown in Table 2, the simulation time of the functional TLMs for Platform 1 is fast 

enough even comparing to that of the manually created one. It is interesting that the 

simulation time keeps increasing as the platform becomes more complicated. It is because 

the generated models should have more information on the system architecture, such as 

bus and TX [7]. This results in more events that need to be simulated, thus the simulation 

speed becomes slow. For the timed TLMs, it takes more time to complete the simulation. 

It is natural because they have an overhead to run RTOS scheduling and accumulate 

timing delay for each basic blocks in the application source codes.  

 

Table 2 The simulation time of the generated TLMs 

H.264 Encoder H.264 Decoder H.264 CODEC

Functional TLM Timed TLM Functional TLM Timed TLM Functional TLM Timed TLM

Platform1 3.73 32.17 1.22 10.73 4.81 49.94

Platform2 4.12 50.01 1.25 13.31 4.85 83.86

Platform3 21.83 57.01 7.29 17.72 64.37 115.45

 

Table 3 shows the code size of the generated TLMs for H.264 encoder. We have 

measured the code size by part to clearly compare it to the code size in Table 1. For the 
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functional TLMs, the first column shows the size of the input C code, the second column 

shows the size of the newly generated codes which include bus model, TX model, etc., 

and the third column shows the total code size. Platform 1 has 20.1 K lines of code, 

which is similar to the manually generated process network model in Table 1. Like the 

simulation time, the code size is increasing as the platform gets more complicated. It is 

due to more features such as bus model, TX model and RTOS model. For the timed 

TLMs, the first column shows the size of the input C code like the functional models. The 

second column shows the annotated code size for the time information. The third column 

shows the size of the newly generated code. The forth column shows the total code size. 

The fifth column shows the code size increase in percentage comparing to the functional 

TLMs and the last column shows the increase of the total size without the annotated code. 

In the fifth column, the increase is mainly due to the code for annotating the timing delay 

for performance statistics. However, such a code is not really used in implementing the 

system at Register Transfer Level (RTL) or board level. Therefore, we have measured the 

increase of the total code size except the annotated code size in the last column. The 

amount of the increase is at most 10.9 % in Platform 3. 

 

Table 3 The code size of the generated TLMs for H.264 Encoder 

H.264 Encoder
Functional TLM Timed TLM

Input
C code
(lines)

Generated 
code (lines)

Total
(lines)

Input
C code
(lines)

Time annotation 
in C code

(lines)

Generated 
code (lines)

Total
(lines)

Increase 
of total 

code size
(%)

Increase
except 

annotated 
code (%)

Platform1 19.0K 1.1K 20.1K 19.0K 6.7K 2.3K 29.0K 44.2 5.9

Platform2 19.0K 2.8K 21.8K 19.0K 6.8K 4.6K 30.4K 39.4 8.2

Platform3 19.0K 9.4K 28.4K 19.0K 6.8K 12.5K 38.3K 34.8 10.9
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Table 4 and Table 5 show the code size of the generated TLMs for H.264 decoder 

and H.264 codec respectively. Like H.264 encoder, the functional TLM for Platform 1 has 

the similar code size compared to the manually written process network model. And the 

increase of the total code size for the timed TLMs is similar to that of H.264 encoder 

comparing to the functional TLMs. The increase of the total code size without the timing 

annotation part is also similar to that of H.264 encoder. As a result, it can be concluded 

that, for all the examples, the average increase is only about 9 %. 

 

Table 4 The code size of the generated TLMs for H.264 Decoder 

H.264 Decoder
Functional TLM Timed TLM

Input
Ccode
(lines)

Generated 
code (lines)

Total
(lines)

Input
Ccode
(lines)

Time annotation 
in C code

(lines)

Generated 
code (lines)

Total
(lines)

Increase 
of total 

code size
(%)

Increase
except 

annotated 
code (%)

Platform1 10.4K 0.8K 11.2K 10.4K 4.5K 1.7K 16.6K 48.2 8.0

Platform2 10.4K 2.8K 13.2K 10.4K 4.6K 4.3K 19.3K 46.2 10.1

Platform3 10.4K 5.7K 16.1K 10.4K 4.6K 7.9K 22.9K 42.2 13.6
 

 

Table 5 The code size of the generated TLMs for H.264 codec 

H.264 CODEC
Functional TLM Timed TLM

Input
Ccode
(lines)

Generated 
code (lines)

Total
(lines)

Input
Ccode
(lines)

Time annotation 
in C code

(lines)

Generated 
code (lines)

Total
(lines)

Increase 
of total 

code size
(%)

Increase
except 

annotated 
code (%)

Platform1 29.2K 1.7K 30.9K 29.2K 11.4K 3.7K 44.3K 43.3 6.4

Platform2 29.2K 2.7K 31.9K 29.2K 11.4K 5.0K 45.6K 42.9 7.2

Platform3 29.2K 14.7K 43.9K 29.2K 11.4K 19.7K 60.5K 37.8 11.4
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Finally, we show the code productivity gain obtained by the automation. Table 6, 7, 

and 8 shows the productivity gain for H.264 encoder, decoder and codec respectively. We 

have calculated the estimated manual time assuming that the man productivity per day is 

30 lines. As shown in the tables, the productivity gain obtained by the automated ESE is 

very high for both the function TLMs and the timed TLMs. 

 

Table 6 Productivity gain by automation for H.264 encoder 

H.264 Encoder
Functional TLM Timed TLM

Generated 
Code
(lines)

Estimated
manual time

(day)

Automatic 
generation 
time (sec.)

Productivity 
gain

Generated 
Code
(lines)

Estimated
manual time

(day)

Automatic 
generation 
time (sec.)

Productivity 
gain

Platform1 1.1K 37 0.3 4.5×105 2.3K 76 20.9 1.3×104

Platform2 2.8K 93 0.4 8.3×105 4.6K 153 22.9 2.4×104

Platform3 9.4K 313 0.8 1.4×106 12.5K 416 23.7 6.3×104

 

 

Table 7 Productivity gain by automation for H.264 decoder 

H.264 Decoder
Functional TLM Timed TLM

Generated 
Code
(lines)

Estimated
manual time

(day)

Automatic 
generation 
time (sec.)

Productivity 
gain

Generated 
Code
(lines)

Estimated
manual time

(day)

Automatic 
generation 
time (sec.)

Productivity 
gain

Platform1 0.8K 27 0.2 4.8×105 1.7K 57 13.3 1.5×104

Platform2 2.8K 93 0.3 1.1×106 4.3K 143 15.3 3.4×104

Platform3 5.7K 190 0.5 1.4×106 7.9K 263 15.5 6.1×104
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Table 8 Productivity gain by automation for H.264 codec 

H.264 CODEC
Functional TLM Timed TLM

Generated 
Code
(lines)

Estimated
manual time

(day)

Automatic 
generation 
time (sec.)

Productivity 
gain

Generated 
Code
(lines)

Estimated
manual time

(day)

Automatic 
generation 
time (sec.)

Productivity 
gain

Platform1 1.7K 57 0.5 4.1×105 3.7K 123 31.5 1.4×104

Platform2 2.7K 90 0.7 4.6×105 5.0K 167 33.6 1.8×104

Platform3 14.7K 490 1.9 9.3×105 19.7K 657 35.8 6.6×104

 

 

We have successfully generated all the TLMs for all the examples, simulated them 

by using ESE FrontEnd. As shown in the experimental results, we can significantly 

reduce the design time by using the fully automated ESE FrontEnd and we can also know 

that ESE FrontEnd is scalable enough to be used for efficient design space exploration for 

industrial scale applications. 

 

8.3 Verifying the Functional Correctness 
In order to verify the correctness of the behavior of all the process network models 

and TLMs, we use a software tool called ‘mplayer’ which is a free and open source media 

player and available at http://www.mplayerhq.hu. It can take a 264 or a YUV file as an 

input. The UNIX commands to run the 'mplayer' are as follows; 

>>mplayer –fps 5 –fixed-vo –vo sdl –loop 1 encoded.264 ↵ 

>>mplayer –rawvideo on:w=176:h=144:fps=5:format=i420 –fixed-vo –vo gl 

decoded.yuv ↵ 

Figure 12 shows the snapshots of the output for H.264 codec. 
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Fig 12. The snapshots of the output for H.264 codec. 
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Chapter 9 :Conclusion 

In this report, we have explained how to create the process network models in 

SystemC from the original H.264 algorithm in C. And we have successfully generated 

and simulated TLMs using ESE FrontEnd from them. We hope this report helps someone 

who wants to start with ESE FrontEnd from process network model.  
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Appendix A: The Top SystemC Code for The 

Process Network Model of H.264 Codec 
 

//TopCodec.cpp for H.264 Codec - 2008.3   by Yongjin Ahn 

 

#include "systemc.h" 

#include "EncodeME.h" 

#include "EncodeDB.h" 

#include "EncodeUS.h" 

#include "EncodeMode.h" 

#include "EncodeDctL.h" 

#include "EncodeDctC.h" 

#include "EncodeIdctL.h" 

#include "EncodeIdctC.h" 

#include "EncodeIntraL.h" 

#include "EncodeIntraC.h" 

#include "EncodeWP.h" 

#include "EncodeWM.h" 

#include "EncodeControl.h" 

#include "DecodeControl.h" 

#include "DecodeED.h" 

#include "DecodeIntraL.h" 

#include "DecodeIntraC.h" 

#include "DecodeLumaMC.h" 

#include "DecodeChromaMC.h" 

#include "DecodeIdctL.h" 
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#include "DecodeIdctC.h" 

#include "DecodeCL.h" 

#include "DecodeCC.h" 

#include "DecodeDB.h" 

#include "DecodeWP.h" 

 

int sc_main(int, char **) { 

 

 //encode blocks 

 EncodeControl *encodecontrol; 

 EncodeWP *encodewp; 

 …… 

 …… 

  

 EncodeME *encodeme; 

 EncodeDB *encodedb; 

 

 //decode blocks 

 DecodeControl  *decodecontrol; 

 DecodeED  *decodeed; 

 …… 

 …… 

 DecodeDB  *decodedb; 

 DecodeWP *decodewp; 

 

 //encode blocks 

 encodecontrol = new EncodeControl("encodecontrol"); 

 encodewp = new EncodeWP("encodewp"); 

 …… 
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 …… 

 encodeme = new EncodeME("encodeme"); 

 encodedb = new EncodeDB("encodedb"); 

 

 //decode blocks 

 Decodecontrol = new DecodeControl("decodecontrol"); 

 decodeed = new DecodeED("decodeed"); 

 …… 

 …… 

 decodedb = new DecodeDB("decodedb"); 

 decodewp  = new DecodeWP("decodewp"); 

 

 //encode channels 

 sc_fifo <mbimgy> R3_1("R3_1", 1); 

 sc_fifo <mbimgy> R3_2("R3_2", 1); 

 sc_fifo <mbimgy> R3_3("R3_3", 1); 

 sc_fifo <mbimguv> R4_1("R4_1", 1); 

 sc_fifo <mbimguv> R4_2("R4_2", 1); 

 …… 

 …… 

 …… 

 sc_fifo <mbimgy> R64("R64", 1); 

 sc_fifo <mbrefpicnum> R65("R65", 1); 

 sc_fifo <allmv> R66("R66", 1); 

 sc_fifo <allmv> R67_1("R67_1", 1); 

 sc_fifo <allmv> R67_2("R67_2", 1); 

 sc_fifo <int> R68("R68", 1); 

 sc_fifo <foury> R69("R69", 1); 

 sc_fifo <refeleven> R70("R70", 1); 
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 sc_fifo <Bitstream> R71("R71", 1); 

 sc_fifo <Macroblock> R72("R72", 1); 

 

 //decode channels 

 sc_fifo <dec_StorablePicture>  DR4("DR4",1);  

 sc_fifo <TransImage>  DR5("DR5",1);    

 sc_fifo <dec_seq_parameter_set_rbsp_t>  DR6("DR6",1);  

 sc_fifo <dec_ImageParameters>  DR7("DR7",1);    

 …… 

 …… 

 …… 

 sc_fifo <mbry>  DR84("DR84",1);  

 sc_fifo <mbry>  DR85("DR85",1);  

 sc_fifo <mbimgy4>  DR86("DR86",1); 

 sc_fifo <mbimgy4>   DR87("DR87",1); 

 sc_fifo <imgydata>  DR88("DR88",1);  

 sc_fifo <imguv2data>  DR89("DR89",1);  

 sc_fifo <dec_StorablePicture>  DR90("DR90",1); 

 sc_fifo <imgydata>  DR92("DR92",1); 

 sc_fifo <imguv2data>  DR94("DR94",1); 

  

 //encode --> decode 

 sc_fifo <E2D_data>  ED1("ED1",1); 

 sc_fifo <int>  ED2("ED2",1); 

 

 //encode interconnections 

 encodecontrol->out_mb_imgY_org (R3_1); 

 encodeme->in_MB_imgY_org (R3_1); 

 encodecontrol->out_mb_imgY_org (R3_2); 
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 encodeintral->in_mb_imgY_org (R3_2); 

 encodecontrol->out_mb_imgY_org (R3_3); 

 encodedctl->in_mb_imgY_org (R3_3); 

 encodecontrol->out_mb_imgUV_org (R4_1); 

 encodeintrac->in_mb_imgUV_org (R4_1); 

 encodecontrol->out_mb_imgUV_org (R4_2); 

 encodedctc->in_mb_imgUV_org (R4_2); 

 encodecontrol->out_img_number(R5_1); 

 encodeme->in_number(R5_1); 

 encodecontrol->out_img_number(R5_2); 

 encodewm->in_img_number(R5_2); 

 encodecontrol->out_img_type(R6_1); 

 encodeme->in_type(R6_1); 

 encodecontrol->out_img_type(R6_2); 

 encodewm->in_type(R6_2); 

 encodecontrol->out_img_type(R6_3); 

 encodemode->out_check_skip(R19); 

 encodewm->in_check_skip(R19); 

 encodemode->out_mpr(R20_1); 

 encodedctl->in_mpr(R20_1); 

 encodemode->out_mpr(R20_2); 

 encodeidctl->in_mpr(R20_2); 

 encodemode->out_b8pdir(R29); 

 encodewm->in_b8pdir(R29);  

 encodedctc->out_cr_cbp(R30); 

 encodewm->in_cr_cbp(R30); 

 encodedctc->out_cr_cbp_blk(R31); 

 encodedb->in_cr_cbp_blk(R31); 

 encodedctc->out_M7(R32); 



33 
 

 encodeidctc->in_M7(R32); 

 encodedctc->out_img_cofAC_cr(R33); 

 encodewm->in_cofAC_cr(R33); 

 encodedctc->out_img_cofDC_cr(R34); 

 encodewm->in_cofDC_cr(R34); 

 encodedctl->out_img_cofAC(R35); 

 encodewm->in_cofAC(R35); 

 …… 

 …… 

 …… 

 …… 

 …… 

 encodemode->in_me_min_cost(R61); 

 encodeme->out_me_best_mode(R62); 

 encodemode->in_me_best_mode(R62); 

 encodeme->out_img_all_mv(R67_1); 

 encodewm->in_img_all_mv(R67_1); 

 encodeme->out_img_all_mv(R67_2); 

 encodemode->in_img_all_mv(R67_2); 

 encodeme->out_list_size(R68); 

 encodewm->in_list_size(R68); 

 encodeus->out_4Y(R69); 

 encodeme->in_imgY_ups(R69); 

 encodeus->out_ref11(R70); 

 encodeme->in_imgY_11(R70); 

 encodewm->out_bitstream(R71); 

 encodewp->in_bitstream(R71); 

 encodecontrol->out_currMB(R72); 

 encodewm->in_currMB(R72); 
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 //decode interconnections 

 decodecontrol->out_con_ed_picture(DR4); 

 decodedb->in_df_picture(DR4); 

 decodecontrol->out_con_ed_sps(DR6); 

 decodewp->in_wp_sps(DR6);  

 decodecontrol->out_con_ed_image(DR7); 

 decodeed->in_ed_image(DR7); 

 decodecontrol->out_con_ed_const_intra(DR8); 

 decodeed->in_ed_constraint_intra(DR8); 

 decodecontrol->out_con_ed_lumaintrascale(DR9); 

 decodeed->in_ed_luma_intra(DR9); 

 decodecontrol->out_con_ed_chromaintrascale(DR10); 

 decodeed->in_ed_chroma_intra(DR10); 

 decodecontrol->out_con_ed_lumainterscale(DR11); 

 decodeed->in_ed_luma_inter(DR11); 

 decodecontrol->out_con_ed_chromainterscale(DR12); 

 decodeed->in_ed_chroma_inter(DR12); 

 decodeed->out_ed_df_image(DR36); 

 decodedb->in_df_image(DR36); 

 decodeed->out_ed_cd_mb_type(DR47); 

 decodeidctc->in_cd_mb_type(DR47); 

 …… 

 …… 

 …… 

 …… 

 …… 

 decodeidctc->in_cd_interimguv(DR83); 

 decodeidctl->out_ld_residuey(DR84); 
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 decodecl->in_clm_imgy(DR84); 

 decodeidctc->out_cd_residueuv(DR85); 

 decodecc->in_clm_imguv(DR85); 

 decodecl->out_clm_imgy(DR86); 

 decodeintral->in_lip_imgy(DR86); 

 decodecc->out_clm_imguv(DR87); 

 decodeintrac->in_cip_imguv(DR87); 

 decodecl->out_clm_ydata(DR88); 

 decodedb->in_clm_ydata(DR88); 

 decodecc->out_clm_uvdata(DR89); 

 decodedb->in_clm_uvdata(DR89); 

 decodedb->out_df_picture(DR90); 

 decodewp->in_wp_picture(DR90); 

 decodewp->out_wp_listluma(DR92); 

 decodelumamc->in_lm_list(DR92); 

 decodewp->out_wp_listchroma(DR94); 

 decodechromamc->in_cm_list(DR94); 

 

 //encode --> decode 

 encodewp->out_enc2dec(ED1); 

 decodecontrol->in_enc2dec(ED1); 

 encodewp->out_enc2dec_size(ED2); 

 decodecontrol->in_enc2dec_size(ED2); 

  

 sc_start(-1); 

 return 0; 

}; 

 


