

Process Network Modeling and TLM Generation for

H.264 Codec Design

Yongjin Ahn, Samar Abdi

Technical Report CECS-08-11
Oct. 10, 2008

Center for Embedded Computer Systems

University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-4922

http://www.cecs.uci.edu

ii

Process Network Modeling and TLM Generation for
H.264 Codec Design

Yongjin Ahn, Samar Abdi

Technical Report CECS-08-11
Oct. 10, 2008

Center for Embedded Computer Systems

University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-4922

http://www.cecs.uci.edu

Abstract

Process network model has been widely used for system specification because of its

modeling capability. It allows relatively easy modeling of a system, especially when the

system design is initially captured by a set of computation blocks connected by the flow

of data, which is common in multimedia applications. It also allows efficient

representation of concurrency of a system, and is often used as a model for mapping an

application to architecture with multiple processing elements.

In this report, we present how to create the process network model in SystemC from

the given H.264 application in C. We first present H.264 algorithm in brief and show how

we can model the process network for H.264. We have manually implemented three

iii

process network models in SystemC for H.264, that is, H.264 encoder, H.264 decoder,

and H.264 codec. Then, they have been tested in ESE (Embedded System Environment)

FrontEnd tool which has been developed for efficient design of multiprocessor

architectures on system-on-chips. We have created several platforms to test them in ESE

FrontEnd, generated TLMs (Transaction Level Models) and simulated them successfully.

The main purpose of this report is to explain how to model process networks from the

scratch and help someone who wants to start with ESE FrontEnd from process network

model.

iv

Table of Contents

List of Figures ... vi

List of Tables ... vii

Chapter 1 :Introduction .. 1

Chapter 2 :Process Network Model in SystemC ... 2

2.1 Modeling Processes ... 2

2.2 Top SystemC Code .. 4

Chapter 3 :H.264 Algorithm .. 5

Chapter 4 :Process Network Model for H.264 Encoder .. 7

Chapter 5 :Process Network Model for H.264 Decoder .. 9

Chapter 6 :Process Network Model for H.264 Codec ... 10

Chapter 7 :Platform Creation and TLM Generation in ESE FrontEnd 12

7.1 C Code Creation for ESE FrontEnd .. 12

7.2 Creating Platforms in ESE FrontEnd .. 13

7.3 TLM Generation and Simulation .. 17

Chapter 8 :Experimental Results ... 19

8.1 The Experimental Results on the Process Network Models by Hand 19

8.2 The Experimental Results on the TLMs Generated by ESE 19

8.3 Verifying the Functional Correctness .. 24

Chapter 9 :Conclusion ... 26

v

Bibliography.. 27

Appendix A: The Top SystemC Code for The Process Network Model of H.264 Codec 28

vi

List of Figures

Fig 1. The SystemC processes created from a simple application. 3

Fig 2. The top SystemC code. ... 4

Fig 3. The block diagram of H.264 encoder. ... 6

Fig 4. The block diagram of H.264 decoder. ... 6

Fig 5. The process network model graph of H.264 encoder. ... 7

Fig 6. The process network model graph of H.264 decoder. ... 9

Fig 7. The process network model of H.264 codec. .. 10

Fig 8. (a) SystemC code for ‘DCT’ (b) The manually generated C code. 13

Fig 9. The single processor platforms for H.264 encoder, decoder and codec.................. 15

Fig 10. The two processor and one bus platforms for H.264 encoder, decoder and codec.

 ... 16

Fig 11. The platforms with a transducer for H.264 encoder, decoder and codec. 17

Fig 12. The snapshots of the output for H.264 codec.. 25

vii

List of Tables

Table 1 The simulation time and codes size of the manually generated SystemC model . 19

Table 2 The simulation time of the generated TLMs .. 20

Table 3 The code size of the generated TLMs for H.264 Encoder 21

Table 4 The code size of the generated TLMs for H.264 Decoder 22

Table 5 The code size of the generated TLMs for H.264 codec .. 22

Table 6 Productivity gain by automation for H.264 encoder .. 23

Table 7 Productivity gain by automation for H.264 decoder .. 23

Table 8 Productivity gain by automation for H.264 codec .. 24

1

Chapter 1 :Introduction

Process network model originated from [1] has been widely used since it allows

relatively easy modeling of a system and efficient representation of concurrency of a

system, and is often used as a model for mapping an application to a multiprocessor

architecture. In the process network model, all processes communicate only with FIFO

(First In First Out) buffers which are theoretically unbounded. Because of the unbounded

FIFOs, there are some issues on executing the process network model such as the buffer

size and deadlock. However, in this report, we assume that the deadlock problem can be

solved by designer and the buffer size is given even though they are not optimal. (Refer to

[2] for details).

We explain how we can describe the process network model in SystemC [3] from the

given application in C. The process network model can also be implemented in C but in

this report, we use SystemC because it provides the FIFO channels so that it is easy to

create and verify the process network model. This report is organized as follows.

Chapter 2 presents how we can describe the process network model in SystemC

using a simple example. Chapter 3 explains what H.264 is and what features have been

newly improved compared to the previous standards. Chapter 4 and 5 show the process

network models in SystemC for H.264 encoder and H.264 decoder respectively. Then,

chapter 6 explains how we can create H.264 codec from them. Chapter 7 presents how to

create platforms and generate TLMs from the process network models. Chapter 8 shows

the simulation time and code size of all the process network models and the generated

TLMs by ESE FrontEnd. Finally, we conclude this report in chapter 9.

2

Chapter 2 :Process Network Model in
SystemC

In order to model a process network from a given application, designers need to

analyze the application and divide the application into several processes which may have

the possibility of concurrency. Once the application partitioning is done, we can create the

process network model in SystemC.

2.1 Modeling Processes
First of all, since we are focusing on the functional model in SystemC, we should use

only untimed SystemC features which do not include timed constructs such as clk, wait,

sensitives, and so on.

Second, all processes must communicate each other only using SystemC FIFOs.

(sc_fifo or sc_port not sc_in or sc_buffer) It means that two processes cannot share any

global variable and they must read or write the value of the variable only via a FIFO

channel. If a process comes from a function which has several arguments, then all the

arguments must be transformed to FIFO channels.

Third, SystemC is just used for wrapping processes. Therefore, it does not have to

include all codes from C. If the process calls some functions, the functions can be

described in other C files.

We use an example to explain in more detail how to create each process in SystemC

as shown in Figure 1. Let us assume that an application is given as the upper figure part

in Figure 1. And assume that from analyzing the main function in ‘main.c’, we can divide

3

the application into 3 processes. In that case, we can create each process in SystemC as

shown in the bottom figure part in Figure 1. For ‘Process A’, we need to add one FIFO

channel because ‘Func_A’ and ‘Func_B’ share a global variable. And for ‘Process B’, we

need two FIFO channels, one for a global variable from ‘Process A’ and the other for an

argument toward ‘Process C’. In case of ‘Process B’, we have integrated the codes in

‘funcB.c’ into the SystemC code. However, like ‘Process C’, other functions can still exist

in other C files.

extern int g;
void main()
{

int a=0;
int b[10];
Func_A();
for (i=0; i<10; i++) {

b[i] = Func_B();
}
Func_C(b);

}

#include <systemc.h>
SC_MODULE(A) {

sc_f ifo_out<int> G;
void process()
{

G.write(10);
}
SC_CTOR(A) {

SC_THREAD(process);
}

};

extern int g;
void Func_A()
{

g=10;

}

extern int g;
int Func_B()
{

int i;
for(i=0;i<10;i++)

g = g × i;
}

#include func.h”
int Func_C(int *b)
{

int result;
result = Func(b);

}

main.c funcA.c funcB.c funcC.c

func.c

#include <systemc.h>
SC_MODULE(B) {

sc_f ifo_in<int> G;
sc_f ifo_out<int[10]> B;
void process()
{

int g;
int a=0;
int b[10];
g = G.read();
for(i=0;i<10;i++) {

for(j=0;j<10;j++)
g = g × j;

b[i] = g;
}
B.write(b);

}
SC_CTOR(B) {

SC_THREAD(process);
}

};

#include <systemc.h>
#include func.h”
SC_MODULE(C) {

sc_f ifo_in<int[10]> B;
void process()
{

int result;
int b = B.read();
result = Func(b);

}
SC_CTOR(C) {

SC_THREAD(process);
}

};

Process A (A.h)

Process B (B.h) Process C (C.h)

int Func(int *b)
{

int i;
int sum=0;
for(i=0;i<10;i++)

sum += b[i];
}

func.c

int Func(int *b)
{

int i;
int sum=0;
for(i=0;i<10;i++)

sum += b[i];
}

Fig 1. The SystemC processes created from a simple application.

4

2.2 Top SystemC Code
Figure 2 shows the top SystemC code which describes the whole system of the

application in Figure 1. First, three processes (A, B, and C) are instantiated and then two

FIFO channels (R1 and R2) are created. Finally, the two FIFO channels connect three

processes. For example, a FIFO channel ‘R1’ connects a port ‘G’ of process ‘a’ (a G)

and a port ‘G’ of process ‘b’ (b G).

Fig 2. The top SystemC code.

#include <systemc.h>
include "A.h"
include "B.h"
include “C.h”
int sc_main(int argc, char* argv[])
{

A *a;
B *b;
C *c;
a = new A(“a”);
b = new B(“b”);
c = new C(“c”);

sc_fifo <int> R1(“R1”,1);
sc_fifo <int[10]> R2(“R2”,1);
a->G(R1);
b->G(R1);
b->B(R2);
c->B(R2);

sc_start(-1);
return 0;

};

5

Chapter 3 :H.264 Algorithm

Now, we need to analyze H.264 application in order to implement the process

network model of it. We start with the H.264 reference code written in C which is

available at http://www.itu.int. The profile used in our H.264 software is the baseline

profile which is used widely in videoconferencing and mobile applications. The details in

algorithms can be found in [4]. Figure 3 shows the block diagram of H.264 encoder and

Figure 4 shows the block diagram of H.264 decoder. H.264 consists of four main parts,

that is, motion estimation/compensation (ME/MC), transformation (DCT, Quantization,

etc.), deblocking filter, and entropy coding.

First, in the motion estimation/compensation (ME/MC) part, the current frame is

described based on the previous frame. The estimated frames are called “InterFrames”

and some frames are encoded without any prediction, which are called “IntraFrames”.

H.264 has more features than H.263 which is the previous standard. In case of the

ME/MC, it considers variable block sizes to predict current frame and can take multiple

and arbitrary reference frames.

Second is the transformation and quantization part. H.264 uses integer linear

transformation which is faster and more accurate than discrete cosine transformation used

in the previous standard.

Third, as a deblocking filter, H.264 uses the adaptive in-loop deblocking filter to

reduce the blocking phenomenon.

Finally, entropy coding is based on the statistical estimation which finds out an

optimal codeword from the frequency of a symbol. In the entropy coding part, H.264

6

adapts a new algorithm called context adaptive variable length codes.

Fig 3. The block diagram of H.264 encoder.

Fig 4. The block diagram of H.264 decoder.

7

Chapter 4 :Process Network Model for H.264
Encoder

A: EncodeControl
B: EncodeIntraC
C: EncodeIntraL
D: EncodeMode
E: EncodeDctC
F: EncodeIdctC
G: EncodeDctL
H: EncodeIdctC
I: EncodeME
J: EncodeUS
K: EncodeDB
L: EncodeWM
M: EncodeWP

44 channels

Input
data file
(.yuv)

Output
data file
(.264)

A

B

C

E

D

G H

F

KJI
M

L

Fig 5. The process network model graph of H.264 encoder.

8

Based on the block diagram shown in Figure 3, we have divided the reference code

into many processes in order to create the process network model in SystemC. Figure 5

shows the process network model graph of H.264 encoder. It also shows the relationship

between the process network model and the block diagram in Figure 3. There are 13

processes and 44 channels. All processes have been created in SystemC in the same way

as shown in Figure 1. The input of H.264 encoder is a YUV file (*.yuv) which is a raw

format and its output is a 264 file (*.264) which contains encoded data.

9

Chapter 5 :Process Network Model for H.264
Decoder

In the similar way to H.264 encoder, we have created the SystemC process network

model for H.264 decoder. Figure 6 shows the process network model graph for H.264

decoder and the relationship between the process network model and the block diagram in

Figure 4. There are 12 processes and 23 channels. The input is a 264 file and the output

file is a YUV file.

A: DecodeControl
B: DecodeED
C: DecodeChromaMC
D: DecodeIntraC
E: DecodeIdctC
F: DecodeLumaMC
G: DecodeIntraL
H: DecodeIdctL
I: DecodeCC
J: DecodeCL
K: DecodeDB
L: DecodeWP

23 channels

A B

C
E

D

G

H

F

K

I

J

L
Output
data file
(.yuv)

Input
data file
(.264)

Fig 6. The process network model graph of H.264 decoder.

10

Chapter 6 :Process Network Model for H.264
Codec

In this chapter, we explain how to create the process network model for H.264 codec.

Since we have both H.264 encoder and decoder, only what we need to do is merging them

into one process network model.

EncodeControl

EncodeME

Deblock

EncodeDctL

UpSample

EncodeIntraC

EncodeDctC EncodeIdctC

EncodeMode

EncodeIdctL

EncodeWM

EncodeIntraL

EncodeWP

DecodeControl

DecodeED

DecodeCMC

DecodeIntraC

DecodeLMC

DecodeIntraL

DecodeIdctC

DecodeIdctL

DecodeCC

DecodeCL

DecodeWP DecodeDB

Input
data file

Output
data file

Encoded
data

Fig 7. The process network model of H.264 codec.

11

Since H.264 encoder outputs an encoded file and H.264 decoder inputs the encoded

file, we need to remove those file interfaces, and we can add FIFO channels to connect

them properly. H.264 encoder writes the encoded data frame by frame to a file in the

‘EncodeWP’ process and similarly, H.264 decoder reads the data frame by frame from a

file in the ‘DecodeControl’ process. Therefore, we can insert a FIFO buffer whose size is

the maximum among the frames in order to connect encoder and decoder.

Based on this analysis, we have removed all file interfaces in the two processes,

added a FIFO channel to them and merged them together. The final process network

model for H.264 codec is shown in Figure 7. (Also see Appendix A)

12

Chapter 7 :Platform Creation and TLM
Generation in ESE FrontEnd

In this chapter, we present how to create platforms in ESE FrontEnd and how to

generate the TLMs. First of all, in order to input the process network model to ESE

FrontEnd, we need to extract the input C code from the SystemC code. Note that we can

directly create the process network model from the reference C code. If we already have

C code for each process of the process network model, we do not have to create the input

C code from the SystemC code. Or, we can directly create and verify the process network

model by using ESE FrontEnd.

With the input C code, we can create various platforms in ESE FrontEnd. Once the

platforms are created by designers, ESE FrontEnd can generate two types of TLMs in

SystemC that is, the functional TLM and the timed TLM. For the timed TLM, ESE

FrontEnd estimates the execution time of each process in the process network model and

annotates the timing delay into the original code [2]. And then, the timed TLM is

evaluated by simulation, thus the overall performance of the system is reported to the

designer.

7.1 C Code Creation for ESE FrontEnd
As mentioned above, in order to input a process network model to ESE FrontEnd, we

go through a process to generate C code for each process. We explain it using an example

process named ‘DCT’ (in JPEG encoder) in SystemC as shown in Figure 8 (a). It has two

FIFO channels, one for receiving data and the other for sending data. From the SystemC

13

code, we remove all SystemC dependant statements and exchange the FIFO read/write

functions to the functions defined in ESE FrontEnd as shown in Figure 8 (b). We need

specify the name of signal and the size of it. In this manner, we can generate all C codes

for all processes.

#include “systemc.h”

SC_MODUCE(DCT){
sc_fifo_in<int[64]> in_block;
sc_fifo_out<int[64]> out_block;

void process(){
int i_block[64];
int o_block[64];
i_block = in_block.read();
…
…
out_block.write(o_block);

}
SC_CTOR(DCT){

SC_THREAD(process);
}

}

SystemCcode for ‘DCT’

void DCT(){
int i_block[64];
int o_block[64];
recv_dct2readbmp(in_block,sizeof(int[64]);
…
…
send_dct2quantize(out_block,sizeof(int[64]);

}

C code for ‘DCT’

(a) (b)

Fig 8. (a) SystemC code for ‘DCT’ (b) The manually generated C code.

7.2 Creating Platforms in ESE FrontEnd
For testing various platforms, we have created three types of platforms for all

applications. One is the simplest platform which has only one processor where all

processes are mapped into. Another platform has two processors, one shared bus, and a

transducer (TX) [5]. Note that, in these two platforms, all the channels among processes

mapped to the same processor are implemented by using double-handshake (DH)

channels instead of the original Kahn channel which is being developed. Therefore, all

processes in the same processor communicate each other via the DH channels, thus after a

14

process writes a data, it should wait until another process reads the data. It can cause a

deadlock problem if many channels are involved. Therefore, in this report, we assume

that the input process network model to ESE FrontEnd has no deadlock problem by the

DH channels, which guarantees the correct behavior of the generated TLMs. On the other

hand, we use the TX for the communication between two processors since it supports the

features like the Kahn channel except non-blocking write. The other is the platform where

each process is mapped into one processor, all processes share a bus and they

communicate via a TX each other. Note that the platforms created in this report are not

optimal and the purpose of this chapter is to test those various platforms with various

examples in ESE FrontEnd.

ESE FrontEnd provides several processing elements such as MicroBlaze processor

and HWs and communication elements such as TX and buses. All the platforms have

been created manually using the Graphical User Interface (GUI) which is provided by

ESE FrontEnd.

Figure 9 shows the single processor platforms for H.264 encoder, decoder, and codec,

respectively. Figure 10 shows the second platform which has two processors and one

shared bus. In Figure 10, mapping the application to the platform is done manually by

user based on a simple profiling. Finally, Figure 11 shows the last platform for all the

applications. H.264 encoder has 13 processes, thus its platform in Figure 11 has 13

processors. For H.264 decoder, its platform has 12 processors. And the platform for

H.264 codec has 25 processors. In these platforms, all processors share one bus and

communicate via a TX each other.

15

CPU0

ControlMB

MotionEst

Deblock

LumaDct

UpSample

ChromaIntra ChromaDct ChromaIdct

ChooseMode

LumaIdct

WirteMB

LumaIntra

WritePic

DecodeControl

DecodeED

DecodeCMC

DecodeIntraC

DecodeLMC

DecodeIntraL

DecodeIdctC

DecodeIdctL

DecodeCC

DecodeCL

DecodeWP DecodeDB

CPU0

Encoded
data

EncodeControl

EncodeME

Deblock

EncodeDctL

UpSample

EncodeIntraC

EncodeDctC EncodeIdctC

EncodeMode

EncodeIdctL

EncodeWM

EncodeIntraL

EncodeWP

DecodeControl

DecodeED

DecodeCMC

DecodeIntraC

DecodeLMC

DecodeIntraL

DecodeIdctC

DecodeIdctL

DecodeCC

DecodeCL

DecodeWP DecodeDB

CPU0

H.264 Encoder

H.264 Decoder

H.264 CODEC

Fig 9. The single processor platforms for H.264 encoder, decoder and codec.

16

ControlMB

MotionEst

Deblock

LumaDct

UpSample

ChromaIntra ChromaDct ChromaIdct

ChooseMode

LumaIdct

WirteMB

LumaIntra

WritePic

DecodeControl

DecodeED

DecodeCMC

DecodeIntraC

DecodeLMC

DecodeIntraL

DecodeIdctC

DecodeIdctL

DecodeCC

DecodeCL

DecodeWP DecodeDB

CPU0

Encoded
data

EncodeControl

EncodeME

Deblock

EncodeDctL

UpSample

EncodeIntraC

EncodeDctC EncodeIdctC

EncodeMode

EncodeIdctL

EncodeWM

EncodeIntraL

EncodeWP

DecodeControl

DecodeED

DecodeCMC

DecodeIntraC

DecodeLMC

DecodeIntraL

DecodeIdctC

DecodeIdctL

DecodeCC

DecodeCL

DecodeWP DecodeDB

H.264 Encoder

H.264 Decoder

H.264 CODEC

CPU1

OPB

CPU0 CPU1

CPU0 CPU1

OPB

OPB

Tx0

Tx0

Tx0

Fig 10. The two processor and one bus platforms for H.264 encoder, decoder and codec.

17

H.264 Encoder

H.264 Decoder

H.264 CODEC

CPU0 CPU1

Tx0

CPU2 CPU3 CPU4 CPU5 CPU6 CPU7 CPU8 CPU9 CPU10 CPU11 CPU12

CPU13 CPU14 CPU15 CPU16 CPU17 CPU18 CPU19 CPU20 CPU21 CPU22 CPU23 CPU24

CPU0 CPU1

Tx0

CPU2 CPU3 CPU4 CPU5

CPU6 CPU7 CPU8 CPU9 CPU10 CPU11

CPU0 CPU1

Tx0

CPU2 CPU3 CPU4 CPU5 CPU6

CPU7 CPU8 CPU9 CPU10 CPU12CPU11

Fig 11. The platforms with a transducer for H.264 encoder, decoder and codec.

7.3 TLM Generation and Simulation
ESE FrontEnd can generate two types of TLMs. One is functional TLM which is for

verifying its behavior and the other is timed TLM which is for performance estimation of

the system [6]. The timed TLMs have real-time OS (RTOS) when more than two

processes exist in the same processor. ESE FrontEnd provides the fully automated tool set

to users. Therefore, we can easily generate the TLMs using ESE FrontEnd just by

clicking ‘Generate Functional TLM’ or ‘Generate Timed TLM’ menu. And then, we can

18

simulate it just by clicking ‘Simulate Functional TLM’ or ‘Simulate Timed TLM’ menu in

ESE FrontEnd.

19

Chapter 8 :Experimental Results

8.1 The Experimental Results on the Process Network

Models by Hand
To show the quality of the manually generated process network models, we have

measured their simulation times and code sizes. Table 1 shows the simulation time in

seconds and the code size in lines for H.264 encoder, H.264 decoder and H.264 codec

respectively. All of three models are encoding and decoding 15 frames whose format is

QCIF on a 2GHz Linux machine. As shown in Table 1, H.264 decoder has less code size

and faster simulation speed than H.264 encoder. This is because H.264 decoder does not

have the motion estimation.

Table 1 The simulation time and codes size of the manually generated SystemC model

Simulation time (sec.) Code size (# of lines)

H.264 encoder 2.10 20.5 K

H.264 decoder 0.59 11.3 K

H.264 codec 2.32 31.2 K

8.2 The Experimental Results on the TLMs Generated
by ESE

We have also measured the simulation time and code size of the TLMs generated by

ESE FrontEnd. Table 2 shows the simulation time of the TLMs for H.264 encoder,

decoder and codec respectively. It should be reminded that all the channels between

processes in the same processor are generated by using DH channels. It is because FIFO

20

channel in ESE RTOS model is under development and is not yet available. Therefore,

direct comparison with the manual version is not possible. However, we can still compare

the simulation time of the manual version with that of the functional TLMs for Platform 1

generated by ESE. Platform 1 has no communication between processes. The only

difference between the manually written process network models and the automatically

generated TLMs by ESE FrontEnd is that they are using different channel primitives. As

shown in Table 2, the simulation time of the functional TLMs for Platform 1 is fast

enough even comparing to that of the manually created one. It is interesting that the

simulation time keeps increasing as the platform becomes more complicated. It is because

the generated models should have more information on the system architecture, such as

bus and TX [7]. This results in more events that need to be simulated, thus the simulation

speed becomes slow. For the timed TLMs, it takes more time to complete the simulation.

It is natural because they have an overhead to run RTOS scheduling and accumulate

timing delay for each basic blocks in the application source codes.

Table 2 The simulation time of the generated TLMs

H.264 Encoder H.264 Decoder H.264 CODEC

Functional TLM Timed TLM Functional TLM Timed TLM Functional TLM Timed TLM

Platform1 3.73 32.17 1.22 10.73 4.81 49.94

Platform2 4.12 50.01 1.25 13.31 4.85 83.86

Platform3 21.83 57.01 7.29 17.72 64.37 115.45

Table 3 shows the code size of the generated TLMs for H.264 encoder. We have

measured the code size by part to clearly compare it to the code size in Table 1. For the

21

functional TLMs, the first column shows the size of the input C code, the second column

shows the size of the newly generated codes which include bus model, TX model, etc.,

and the third column shows the total code size. Platform 1 has 20.1 K lines of code,

which is similar to the manually generated process network model in Table 1. Like the

simulation time, the code size is increasing as the platform gets more complicated. It is

due to more features such as bus model, TX model and RTOS model. For the timed

TLMs, the first column shows the size of the input C code like the functional models. The

second column shows the annotated code size for the time information. The third column

shows the size of the newly generated code. The forth column shows the total code size.

The fifth column shows the code size increase in percentage comparing to the functional

TLMs and the last column shows the increase of the total size without the annotated code.

In the fifth column, the increase is mainly due to the code for annotating the timing delay

for performance statistics. However, such a code is not really used in implementing the

system at Register Transfer Level (RTL) or board level. Therefore, we have measured the

increase of the total code size except the annotated code size in the last column. The

amount of the increase is at most 10.9 % in Platform 3.

Table 3 The code size of the generated TLMs for H.264 Encoder

H.264 Encoder
Functional TLM Timed TLM

Input
C code
(lines)

Generated
code (lines)

Total
(lines)

Input
C code
(lines)

Time annotation
in C code

(lines)

Generated
code (lines)

Total
(lines)

Increase
of total

code size
(%)

Increase
except

annotated
code (%)

Platform1 19.0K 1.1K 20.1K 19.0K 6.7K 2.3K 29.0K 44.2 5.9

Platform2 19.0K 2.8K 21.8K 19.0K 6.8K 4.6K 30.4K 39.4 8.2

Platform3 19.0K 9.4K 28.4K 19.0K 6.8K 12.5K 38.3K 34.8 10.9

22

Table 4 and Table 5 show the code size of the generated TLMs for H.264 decoder

and H.264 codec respectively. Like H.264 encoder, the functional TLM for Platform 1 has

the similar code size compared to the manually written process network model. And the

increase of the total code size for the timed TLMs is similar to that of H.264 encoder

comparing to the functional TLMs. The increase of the total code size without the timing

annotation part is also similar to that of H.264 encoder. As a result, it can be concluded

that, for all the examples, the average increase is only about 9 %.

Table 4 The code size of the generated TLMs for H.264 Decoder

H.264 Decoder
Functional TLM Timed TLM

Input
Ccode
(lines)

Generated
code (lines)

Total
(lines)

Input
Ccode
(lines)

Time annotation
in C code

(lines)

Generated
code (lines)

Total
(lines)

Increase
of total

code size
(%)

Increase
except

annotated
code (%)

Platform1 10.4K 0.8K 11.2K 10.4K 4.5K 1.7K 16.6K 48.2 8.0

Platform2 10.4K 2.8K 13.2K 10.4K 4.6K 4.3K 19.3K 46.2 10.1

Platform3 10.4K 5.7K 16.1K 10.4K 4.6K 7.9K 22.9K 42.2 13.6

Table 5 The code size of the generated TLMs for H.264 codec

H.264 CODEC
Functional TLM Timed TLM

Input
Ccode
(lines)

Generated
code (lines)

Total
(lines)

Input
Ccode
(lines)

Time annotation
in C code

(lines)

Generated
code (lines)

Total
(lines)

Increase
of total

code size
(%)

Increase
except

annotated
code (%)

Platform1 29.2K 1.7K 30.9K 29.2K 11.4K 3.7K 44.3K 43.3 6.4

Platform2 29.2K 2.7K 31.9K 29.2K 11.4K 5.0K 45.6K 42.9 7.2

Platform3 29.2K 14.7K 43.9K 29.2K 11.4K 19.7K 60.5K 37.8 11.4

23

Finally, we show the code productivity gain obtained by the automation. Table 6, 7,

and 8 shows the productivity gain for H.264 encoder, decoder and codec respectively. We

have calculated the estimated manual time assuming that the man productivity per day is

30 lines. As shown in the tables, the productivity gain obtained by the automated ESE is

very high for both the function TLMs and the timed TLMs.

Table 6 Productivity gain by automation for H.264 encoder

H.264 Encoder
Functional TLM Timed TLM

Generated
Code
(lines)

Estimated
manual time

(day)

Automatic
generation
time (sec.)

Productivity
gain

Generated
Code
(lines)

Estimated
manual time

(day)

Automatic
generation
time (sec.)

Productivity
gain

Platform1 1.1K 37 0.3 4.5×105 2.3K 76 20.9 1.3×104

Platform2 2.8K 93 0.4 8.3×105 4.6K 153 22.9 2.4×104

Platform3 9.4K 313 0.8 1.4×106 12.5K 416 23.7 6.3×104

Table 7 Productivity gain by automation for H.264 decoder

H.264 Decoder
Functional TLM Timed TLM

Generated
Code
(lines)

Estimated
manual time

(day)

Automatic
generation
time (sec.)

Productivity
gain

Generated
Code
(lines)

Estimated
manual time

(day)

Automatic
generation
time (sec.)

Productivity
gain

Platform1 0.8K 27 0.2 4.8×105 1.7K 57 13.3 1.5×104

Platform2 2.8K 93 0.3 1.1×106 4.3K 143 15.3 3.4×104

Platform3 5.7K 190 0.5 1.4×106 7.9K 263 15.5 6.1×104

24

Table 8 Productivity gain by automation for H.264 codec

H.264 CODEC
Functional TLM Timed TLM

Generated
Code
(lines)

Estimated
manual time

(day)

Automatic
generation
time (sec.)

Productivity
gain

Generated
Code
(lines)

Estimated
manual time

(day)

Automatic
generation
time (sec.)

Productivity
gain

Platform1 1.7K 57 0.5 4.1×105 3.7K 123 31.5 1.4×104

Platform2 2.7K 90 0.7 4.6×105 5.0K 167 33.6 1.8×104

Platform3 14.7K 490 1.9 9.3×105 19.7K 657 35.8 6.6×104

We have successfully generated all the TLMs for all the examples, simulated them

by using ESE FrontEnd. As shown in the experimental results, we can significantly

reduce the design time by using the fully automated ESE FrontEnd and we can also know

that ESE FrontEnd is scalable enough to be used for efficient design space exploration for

industrial scale applications.

8.3 Verifying the Functional Correctness
In order to verify the correctness of the behavior of all the process network models

and TLMs, we use a software tool called ‘mplayer’ which is a free and open source media

player and available at http://www.mplayerhq.hu. It can take a 264 or a YUV file as an

input. The UNIX commands to run the 'mplayer' are as follows;

>>mplayer –fps 5 –fixed-vo –vo sdl –loop 1 encoded.264 ↵

>>mplayer –rawvideo on:w=176:h=144:fps=5:format=i420 –fixed-vo –vo gl

decoded.yuv ↵

Figure 12 shows the snapshots of the output for H.264 codec.

25

Fig 12. The snapshots of the output for H.264 codec.

26

Chapter 9 :Conclusion

In this report, we have explained how to create the process network models in

SystemC from the original H.264 algorithm in C. And we have successfully generated

and simulated TLMs using ESE FrontEnd from them. We hope this report helps someone

who wants to start with ESE FrontEnd from process network model.

27

Bibliography

[1] G. Kahn, “The semantics of a simple language for parallel programming,” in

Proceedings of the IFIP Congress, pp. 471-475, 1974.

[2] T. Basten and J. Hoogerbrugge, Efficient execution of process networks.

Communication Process Architectures, IOS Press, 2001.

[3] SystemC Intuitive. http://www. systemc.org.

[4] ITU-T, ISO/IEC JTC1, “Advanced video coding for generic audiovisual services,”

ITU-T Recommendation H.264-ISO/IEC 14496-10 AVC, 2003.

[5] H. Cho, S. Abdi, and D. Gajski, “Interface synthesis for heterogeneous multi-core

systems from transaction level models,” Language, Compiler and Tool Support for

Embedded Systems, pp. 140-142, 2007.

[6] Y. Hwang, S. Abdi, and D. Gajski, “Cycle-approximate retargetable performance

estimation at the transaction level,” Design, Automation & Test in Europe, pp. 3-8,

2008.

[7] L. Yu, S. Abdi, D. Gajski, “Transaction level platform modeling in SystemC for

multiprocessor designs”, Technical Report TR07-01, UC Irvine, 2007.

28

Appendix A: The Top SystemC Code for The

Process Network Model of H.264 Codec

//TopCodec.cpp for H.264 Codec - 2008.3 by Yongjin Ahn

#include "systemc.h"

#include "EncodeME.h"

#include "EncodeDB.h"

#include "EncodeUS.h"

#include "EncodeMode.h"

#include "EncodeDctL.h"

#include "EncodeDctC.h"

#include "EncodeIdctL.h"

#include "EncodeIdctC.h"

#include "EncodeIntraL.h"

#include "EncodeIntraC.h"

#include "EncodeWP.h"

#include "EncodeWM.h"

#include "EncodeControl.h"

#include "DecodeControl.h"

#include "DecodeED.h"

#include "DecodeIntraL.h"

#include "DecodeIntraC.h"

#include "DecodeLumaMC.h"

#include "DecodeChromaMC.h"

#include "DecodeIdctL.h"

29

#include "DecodeIdctC.h"

#include "DecodeCL.h"

#include "DecodeCC.h"

#include "DecodeDB.h"

#include "DecodeWP.h"

int sc_main(int, char **) {

 //encode blocks

 EncodeControl *encodecontrol;

 EncodeWP *encodewp;

 ……

 ……

 EncodeME *encodeme;

 EncodeDB *encodedb;

 //decode blocks

 DecodeControl *decodecontrol;

 DecodeED *decodeed;

 ……

 ……

 DecodeDB *decodedb;

 DecodeWP *decodewp;

 //encode blocks

 encodecontrol = new EncodeControl("encodecontrol");

 encodewp = new EncodeWP("encodewp");

 ……

30

 ……

 encodeme = new EncodeME("encodeme");

 encodedb = new EncodeDB("encodedb");

 //decode blocks

 Decodecontrol = new DecodeControl("decodecontrol");

 decodeed = new DecodeED("decodeed");

 ……

 ……

 decodedb = new DecodeDB("decodedb");

 decodewp = new DecodeWP("decodewp");

 //encode channels

 sc_fifo <mbimgy> R3_1("R3_1", 1);

 sc_fifo <mbimgy> R3_2("R3_2", 1);

 sc_fifo <mbimgy> R3_3("R3_3", 1);

 sc_fifo <mbimguv> R4_1("R4_1", 1);

 sc_fifo <mbimguv> R4_2("R4_2", 1);

 ……

 ……

 ……

 sc_fifo <mbimgy> R64("R64", 1);

 sc_fifo <mbrefpicnum> R65("R65", 1);

 sc_fifo <allmv> R66("R66", 1);

 sc_fifo <allmv> R67_1("R67_1", 1);

 sc_fifo <allmv> R67_2("R67_2", 1);

 sc_fifo <int> R68("R68", 1);

 sc_fifo <foury> R69("R69", 1);

 sc_fifo <refeleven> R70("R70", 1);

31

 sc_fifo <Bitstream> R71("R71", 1);

 sc_fifo <Macroblock> R72("R72", 1);

 //decode channels

 sc_fifo <dec_StorablePicture> DR4("DR4",1);

 sc_fifo <TransImage> DR5("DR5",1);

 sc_fifo <dec_seq_parameter_set_rbsp_t> DR6("DR6",1);

 sc_fifo <dec_ImageParameters> DR7("DR7",1);

 ……

 ……

 ……

 sc_fifo <mbry> DR84("DR84",1);

 sc_fifo <mbry> DR85("DR85",1);

 sc_fifo <mbimgy4> DR86("DR86",1);

 sc_fifo <mbimgy4> DR87("DR87",1);

 sc_fifo <imgydata> DR88("DR88",1);

 sc_fifo <imguv2data> DR89("DR89",1);

 sc_fifo <dec_StorablePicture> DR90("DR90",1);

 sc_fifo <imgydata> DR92("DR92",1);

 sc_fifo <imguv2data> DR94("DR94",1);

 //encode --> decode

 sc_fifo <E2D_data> ED1("ED1",1);

 sc_fifo <int> ED2("ED2",1);

 //encode interconnections

 encodecontrol->out_mb_imgY_org (R3_1);

 encodeme->in_MB_imgY_org (R3_1);

 encodecontrol->out_mb_imgY_org (R3_2);

32

 encodeintral->in_mb_imgY_org (R3_2);

 encodecontrol->out_mb_imgY_org (R3_3);

 encodedctl->in_mb_imgY_org (R3_3);

 encodecontrol->out_mb_imgUV_org (R4_1);

 encodeintrac->in_mb_imgUV_org (R4_1);

 encodecontrol->out_mb_imgUV_org (R4_2);

 encodedctc->in_mb_imgUV_org (R4_2);

 encodecontrol->out_img_number(R5_1);

 encodeme->in_number(R5_1);

 encodecontrol->out_img_number(R5_2);

 encodewm->in_img_number(R5_2);

 encodecontrol->out_img_type(R6_1);

 encodeme->in_type(R6_1);

 encodecontrol->out_img_type(R6_2);

 encodewm->in_type(R6_2);

 encodecontrol->out_img_type(R6_3);

 encodemode->out_check_skip(R19);

 encodewm->in_check_skip(R19);

 encodemode->out_mpr(R20_1);

 encodedctl->in_mpr(R20_1);

 encodemode->out_mpr(R20_2);

 encodeidctl->in_mpr(R20_2);

 encodemode->out_b8pdir(R29);

 encodewm->in_b8pdir(R29);

 encodedctc->out_cr_cbp(R30);

 encodewm->in_cr_cbp(R30);

 encodedctc->out_cr_cbp_blk(R31);

 encodedb->in_cr_cbp_blk(R31);

 encodedctc->out_M7(R32);

33

 encodeidctc->in_M7(R32);

 encodedctc->out_img_cofAC_cr(R33);

 encodewm->in_cofAC_cr(R33);

 encodedctc->out_img_cofDC_cr(R34);

 encodewm->in_cofDC_cr(R34);

 encodedctl->out_img_cofAC(R35);

 encodewm->in_cofAC(R35);

 ……

 ……

 ……

 ……

 ……

 encodemode->in_me_min_cost(R61);

 encodeme->out_me_best_mode(R62);

 encodemode->in_me_best_mode(R62);

 encodeme->out_img_all_mv(R67_1);

 encodewm->in_img_all_mv(R67_1);

 encodeme->out_img_all_mv(R67_2);

 encodemode->in_img_all_mv(R67_2);

 encodeme->out_list_size(R68);

 encodewm->in_list_size(R68);

 encodeus->out_4Y(R69);

 encodeme->in_imgY_ups(R69);

 encodeus->out_ref11(R70);

 encodeme->in_imgY_11(R70);

 encodewm->out_bitstream(R71);

 encodewp->in_bitstream(R71);

 encodecontrol->out_currMB(R72);

 encodewm->in_currMB(R72);

34

 //decode interconnections

 decodecontrol->out_con_ed_picture(DR4);

 decodedb->in_df_picture(DR4);

 decodecontrol->out_con_ed_sps(DR6);

 decodewp->in_wp_sps(DR6);

 decodecontrol->out_con_ed_image(DR7);

 decodeed->in_ed_image(DR7);

 decodecontrol->out_con_ed_const_intra(DR8);

 decodeed->in_ed_constraint_intra(DR8);

 decodecontrol->out_con_ed_lumaintrascale(DR9);

 decodeed->in_ed_luma_intra(DR9);

 decodecontrol->out_con_ed_chromaintrascale(DR10);

 decodeed->in_ed_chroma_intra(DR10);

 decodecontrol->out_con_ed_lumainterscale(DR11);

 decodeed->in_ed_luma_inter(DR11);

 decodecontrol->out_con_ed_chromainterscale(DR12);

 decodeed->in_ed_chroma_inter(DR12);

 decodeed->out_ed_df_image(DR36);

 decodedb->in_df_image(DR36);

 decodeed->out_ed_cd_mb_type(DR47);

 decodeidctc->in_cd_mb_type(DR47);

 ……

 ……

 ……

 ……

 ……

 decodeidctc->in_cd_interimguv(DR83);

 decodeidctl->out_ld_residuey(DR84);

35

 decodecl->in_clm_imgy(DR84);

 decodeidctc->out_cd_residueuv(DR85);

 decodecc->in_clm_imguv(DR85);

 decodecl->out_clm_imgy(DR86);

 decodeintral->in_lip_imgy(DR86);

 decodecc->out_clm_imguv(DR87);

 decodeintrac->in_cip_imguv(DR87);

 decodecl->out_clm_ydata(DR88);

 decodedb->in_clm_ydata(DR88);

 decodecc->out_clm_uvdata(DR89);

 decodedb->in_clm_uvdata(DR89);

 decodedb->out_df_picture(DR90);

 decodewp->in_wp_picture(DR90);

 decodewp->out_wp_listluma(DR92);

 decodelumamc->in_lm_list(DR92);

 decodewp->out_wp_listchroma(DR94);

 decodechromamc->in_cm_list(DR94);

 //encode --> decode

 encodewp->out_enc2dec(ED1);

 decodecontrol->in_enc2dec(ED1);

 encodewp->out_enc2dec_size(ED2);

 decodecontrol->in_enc2dec_size(ED2);

 sc_start(-1);

 return 0;

};

