
Generation of Custom Co-processor Structure from C-Code

Jelena Trajkovic and Daniel Gajski

Technical Report CECS-08-05
June 27, 2008

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

�
jelenat,gajski � @cecs.uci.edu

Abstract

Designers of modern embedded systems may use two approaches for implementing an application: they can select an
existing processor and map the application to it using a compiler, or they can design a custom processor for the code. While
the secong approach provides optimality, the first one is cheaper and faster. To gain in terms of performance, cost and design
time, we propose a method for extraction of application specific processor cores from its C code. Our approach consists of
three phases. We start by quantifying the properties of the C code in terms of operation types, available parallelism and other
metrics. We then create an initial data path to exploit the available parallelism. We then apply designer guided constraints
to an interactive data path refinement algorithm that attempts to reduce the number of the most expensive components while
meeting the constraints. Our experimental results show that our technique scales very well with the size of the C code. We
demonstrate the efficiency of our technique on wide range of applications, from standard academic benchmarks to industrial
size examples like the MP3 decoder. Each processor core was constructed and refined in under a minute, allowing the
designer to explore several different configurations in much less time than needed for a manual design. We compared our
selection algorithm to the manual selection in terms of cost/performance and showed that our optimization technique achieves
better cost/performance trade-off. We also synthesized our designs with programmable controller and, on average, the refined
core have only 23% latency overhead, twice as many block RAMs and 64% fewer slices compared to the respective manual
designs.

1

Contents

1 Introduction 1

2 Related Work 3

3 Initial Data path Extraction 5

4 Data path Optimization 6
4.1 Resource Constraint Specification . 6
4.2 Critical Code Extraction . 7
4.3 Histogram Creation . 8
4.4 Timing Overhead Computation . 8
4.5 Balancing Instances of Unrestricted Components . 10
4.6 Component Allocation and Net-list Creation . 11

5 Results 11
5.1 Interactive Design Exploration . 12
5.2 Selection Algorithm Quality . 18
5.3 Design Refinement Quality . 20

6 Conclusions and Future Work 21

7 Acknowledgments 22

i

List of Figures

1 Comparison of design techniques . 2
2 The data path is created first. It may be iterativly or manually improved. The controller is generated afterwords 3
3 Data path extraction technique . 3
4 dc computation for given resources constraints . 7
5 ‘Spill’ Algorithm: computing the number of instances of multiplier for a given Timing Overhead 8
6 An Example of Extracted Data path Model. 10
7 Relative number of execution cycles on data paths generated for different architecture 13
8 Relative cycle time on data paths generated for different architecture . 14
9 Relative execution time on data paths generated for different architecture . 15
10 Total execution time on generated data paths . 16
11 bdist2: Number of slices, number of RAMs and number of cycles for manually selected and automatically

generated data paths . 17
12 Sort: Number of slices, number of RAMs and number of cycles for manually selected and automatically

generated data paths . 18
13 dct32: Number of slices, number of RAMs and number of cycles for manually selected and automatically

generated data paths . 19
14 Mp3: Number of slices, number of RAMs and number of cycles for manually selected and automatically

generated data paths . 20
15 inv/forw 4x4: Number of slices, number of RAMs and number of cycles for manually selected and automat-

ically generated data paths . 21
16 Performance and area comparison for dct32 . 21

ii

Generation of Custom Co-processor Structure from C-Code

Jelena Trajkovic and Daniel Gajski
Center for Embedded Computer Systems

University of California, Irvine

Abstract

Designers of modern embedded systems may use two approaches for implementing an application: they can select an
existing processor and map the application to it using a compiler, or they can design a custom processor for the code. While
the secong approach provides optimality, the first one is cheaper and faster. To gain in terms of performance, cost and design
time, we propose a method for extraction of application specific processor cores from its C code. Our approach consists of
three phases. We start by quantifying the properties of the C code in terms of operation types, available parallelism and other
metrics. We then create an initial data path to exploit the available parallelism. We then apply designer guided constraints
to an interactive data path refinement algorithm that attempts to reduce the number of the most expensive components while
meeting the constraints. Our experimental results show that our technique scales very well with the size of the C code. We
demonstrate the efficiency of our technique on wide range of applications, from standard academic benchmarks to industrial
size examples like the MP3 decoder. Each processor core was constructed and refined in under a minute, allowing the
designer to explore several different configurations in much less time than needed for a manual design. We compared our
selection algorithm to the manual selection in terms of cost/performance and showed that our optimization technique achieves
better cost/performance trade-off. We also synthesized our designs with programmable controller and, on average, the refined
core have only 23% latency overhead, twice as many block RAMs and 64% fewer slices compared to the respective manual
designs.

1 Introduction

In modern embedded system, a designer may map an application to a selected embedded processor or create a custom
processor for the application. Using an existing processor saves time and money, but the mapping may be non-optimal.
The existing processor may lack resources for efficient application execution, but have extra ones that remain unused (while
consuming area and static power). On the other hand, custom, application specific pocessors include beneficial components
and structures. Therfore, application specific processor cores are being increasingly used in modern embedded systems
that demand high performance and low area/energy cost. In general, a processor core is defined by hardware components,
structures and an instruction set, i.e. in hardware terms a data path and a controller. A design of such cores is non-trivial
task. In most traditional C-to-RTL approaches (Fig. 1(a)), the decisions regarding components, structures and the instruction
set are made at the same time. A problem of having many interdependent variables those tools solve by creating a structure
and designing an instruction set as they ‘go through’ the code. Hence, optimizing the design is often very dificult. The
problem is further exacerbated by the size and complexity of the application. Therefore, it is required that a design process is
scalable. We overcome this problem by applying a design strategy where the data path and controller are designed separately.
Our design technique is shown in Figure 1(b). The architecture is derived by analyzing the C code and designer specified
constraints. The C code is then compiled into either control words for programmable cores or FSM for hardwired cores.
Therefore, problem size reduction allows us to handle any size of C code.

Also, traditional C-to-RTL solutions have some numebr of constraints that may be used in order to guide the designe
generation, but it is often hard or imposible either to pre-select a set of components or to change a part of design. As it may
happen that the selected components, structures and instruction set need to be modified in order to satisfy design requirements,
controlability is another crutial requirenment for the design process. In the proposed approach, designer specifies a set of
resource constraints allowing him or her controlability over the component selection. In addition, after the data path has been

1

C

C-to-RTL

Controller
+ DP

Constraints

Designer

(a) Traditional C-to-RTL

Data path
Generator

DP

Designer

C

Constraints

Controller
Generator

Controller

(b) Proposed separate creation of data path
and controller

Figure 1. Comparison of design techniques

automatically generated, the data path may be further fine tuned manually. Only when the data path has be finalized, the
controller is generated.

Designers, typically, start with a C reference model of the application that needs to be implemented. The set of compo-
nents, structures and connections is the most important factor that impacts design performance. They must be designed such
that it can optimally execute the C reference. Thus, designers usually implement several alternatives (often in RTL-level)
and evaluate them to fully explore the design possibilities. This is a tedious, error-prone process, that requires high level
of expertise. We overcome this problem by using C as a starting point and iterativly optimizing the set of components and
structure (Figure 1(b)). The designer can use our tool to try out several design alternatives in a short time. Our automatic
architecture generation tool allows the designer to specify partial resource constraints. The remaining components of the
architecture, their configuration and connection are derived automatically from the C code. For example, the designer may
constrain the architecture to have two ALUs. Other architectural parameters, such as the size of register file and number of
input/output ports, would be automatically derived. This is very helpful during the design process, because the designer does
not need to think about multiple optimization variables, but can focus on the most important architectural parameters. The
automation speeds up the generation and evaluation of different architectures.

Once the data path has been finalized, the C code and the generated data path are used to create a controller. The presented
technique is flexible since it allows use of an arbitrary controller type with the generated data path. The controller may be
fixed or programmable, may have instruction set and a decoder or a micro code, may run statically or dynamically scheduled
operations and may be automatically or manually generated. This is a huge advantage of our approach over traditional
C-to-RTL techniques that are limited by the number of states in the design.

Our target processor core template is shown in Figure 2. First, we construct the data path on the right by selecting,
configuring and connecting various functional and storage units. For the constructed data path we develop the microcoded
or hardwired controller. During core construction, the data path is automatically refined to meet the given performance
and resource constraints. By separating data path and controller design, we allow simplified optimization of the controller
by removing the data path optimization parameters from the equation. However, design of the data path architecture and
controller that match an application C code are two problems. This paper deals with data path design only. The issues that
arise from both control and data flow of the application were incorporated into our design technique as it will be described in
Sections 4.3 and 4.4.

Figure 3 shows the steps of proposed extraction technique. In the first step, called Initial Data path (IDp) Extraction,
source code for a given application is analyzed in order to extract code properties that will be mapped onto hardware compo-
nents and structures and the Initial Data path is created. The Initial Data path is used for controller generation and profiling
of given application code. The profiled code is then analyzed and the data path undergoes several iterations of refinement and
estimation during the Data path Optimization step until the specified constraints have been satisfied.

2

FUn-

1

RF

Memory
Interface

RFRF

To Mem

... FUn

MUXMUX
MUX

MUX
MUX

MUX
MUX

MUXMUX

MUX

MUX

FU1

Controller

Figure 2. The data path is created first. It may be iterativly or manually improved. The controller is generated afterwords

Component
Library

Data path Generator

C

IDp
IDp

Extraction

Data path
Optimization

Constraints
Controller

Generation &
Profiling

Final
Data path

Figure 3. Data path extraction technique

As our experiments show, the generated designs have only 23% execution overhead compared to the manual design. This
result was obtained with a data path architecture that does not implement custom forwarding, chaining, non-uniform pipelin-
ing or specialized functional units. We showed that even with only basic hardware components and templates implemented
in the data path the quality and the design time are more than satisfactory.

Automating the design process in the proposed way brings several advantages. First, designers use their expertise to guide
the tool instead of using it to do cumbersome and error prone HDL coding. Secondly, extraction and optimization algorithms
generate data paths with much better cost/performance trade-off: relative to the manually extracted data paths from C, on
average, number of slices is 50.08% less, number of RAMs is 39.94% less, while the average overhead in number of cycles
is only 2.11%. Thirdly, the tool produces a working design in a fraction of time comparing to the manual process while
having only 23% performance degradation, 2.29 times more BRAMs and only 64% of used slices. Moreover, the designer
may change only constraints and repeat only optimization phase of the process instead of starting from the scratch. Finally,
the generated design may be reused or fine tuned and only the controller would need to be changed. Also, the designer may
explicitly control the type and quantity of components that would be included in the data path.

2 Related Work

In order to accomplish performance and power goals, ASIP/IS extension use configurable and extensible processors. One
such processor is Xtensa [23], that allows the designer to configure features like memories, external buses, protocols and
commonly used peripherals [1, 5]. Xtensa also allows the designer to specify a set of instruction set extensions, hardware
for which is incorporated within the processor [8]. The extensions are formed from the existing instructions in style of
VLIW, vector, fused operations or combination of those. Therefore, the customizations are possible only within bound of

3

those combinations of existing instructions. This solution also requires the decoder modifications in order to incorporate
new instructions. For example, having VLIW-style (parallel) instructions require multiple parallel decoders [8], which not
only increase hardware cost (that may affect the cycle time), but also limits the possible number of instructions that may be
executed in parallel. However, in our approach, the decoding stage has been removed. Therefore, there is no increase in
hardware complexity and no limitations on number and type of operations to be executed in parallel. In case where the code
size exceeds the size of on-chip memory, instruction caches and compression techniques may be employed, both of them
have been in scope of our current research.

The IS extensions, in case of Stretch processor [22], are implemented using configurable Xtensa processor and Instruction
Set Extension Fabric (ISEF). The designer is responsible for, using available tools, identifying the critical portion of the
code (‘hot spot’) and re-writing the code so the ‘hot spot’ is isolated into the custom instruction. The custom instruction is
then implemented in ISEF. Thus, the application code needs to be modified which requires expertise and potentially more
functional testing. The designer is expected to explicitly allocate the extension registers. In contrary, our approach allows, but
does not require C code modifications. Moreover, our approach does not require the designer to manipulate the underlying
hardware directly.

On the other hand, C-to-RTL tools, such as Catapult Synthesis [13], Cynthesizer [6], and Behaviour Synthesizer Cyber
[17] generate the data path and the controller simultaneously and to the best of our knowledge are applicable to fairly
small code size. Catapult [13] allows control over resource sharing, loop unrolling and loop pipelining. It also porvides
technology specific libraries [15] that allow specific hardware instances to be infered from C code. However, this requires
code modifications. As reported in [14], code modifications took one week while the synthesis took one day. Also, the biggest
listed C code had 480 lines of code. No other study in [16] reported on number of lines of C code. Behaviour Synthesizer
Cyber [17], in addition to abovementioned, provides various knobs for fine tuning, such as multiple clocks, gated clocks,
synchronous/asynchronous resert and synchronous/asynchronous/pipelined memory. The C code is extended to describe
hardware by adding support for bit-length and in-out declarations; synchronozation, clocking and concurrency; and various
data transfers (last two often not required). Such description is called behavioral C or BDL. Therefore, as seen in [27], the
existing C code needs to be modified for in/out declaration, fifo requests, etc. In addition to control over loop unrolling and
pipelining, Cynthesizer [6] also provides contol over operator balancing, array flattening, chaining, mapping of arrays or
array indexes to memory, etc. The designer may also select a part of design to be implemented in gate level design in a given
number of cycles.

In case of all of the tools, the data path is built ‘on the fly’ and heavily co-dependent on controller generation. Moreover,
the resulting controler is usualy in FSM style. Use of the FSM imposes size constraints for the design. Some of the tools, like
[6, 17], do provide FSM partitioning or hierarchical FSMs in order to expand beyond these constraints. Besides, while all do
allow that a designer gives guideline to a tool, there is no mechanism by which a designer may influence a choice of particular
components (other than inferring via code change in case of Catapult). Therefore, after the design has been made, designer
may not make any modifications in the datapath. Contrary, the proposed technique separates creation of the data path and the
controller, which automatically overcoms size constraint. Also, the designer may specify a subset of components and have
the remainig of the data path automatically generated. Finally, the data path can be modified as little or as much after the
automatic generation. Therefore, we find that providing designer with ability to control the automated design process and the
ability to handle any size of C code are valuable assets in data path generation.

Many traditional HLS algorithms, such as [2, 18] create data path while performing scheduling and binding. [2] uses ILP
formulation with emphasis on efficient use of library components, which makes it applicable to fairly small input code. [18]
tries to balance distribution of operations over the allowed time in order to minimize resource requirement hence the algorithm
makes decisions considering only local application requirements. [4] takes into account global application requirements to
perform allocation and scheduling simultaneously using simulated annealing.In contrast with the previous approaches, we
separate data path creation from the scheduling and/or binding i.e. controller creation. This separation allows: potentiall
reuse of created data path by reprogramming, controllability over the design process, and use pre-layout information for data
path architecture creation.

[11, 26, 25, 3, 12] separate allocation from binding and scheduling. [11] uses ‘hill climbing’ algorithm to optimize number
and type of functional unit allocated, while [26] applies clique partitioning in order to minimize storage elements, units and
interconnect. [25] use the schedule to determine the minimum required number of functional units, buses, register files and
ROMs. Than, the interconnect of the resulting data path is optimized by exploring different binding options for data types,
variables and operations. In [3] the expert system breaks down the global goals into local constraints (resource, control
units, clock period) while iteratively moves toward satisfying the designer’s specification. It creates and evaluates several
intermediate designs using the schedule and estimated timing. However, all of before-mentioned traditional HLS techniques

4

use FSM-style controller. Creation and synthesis of such state machine that corresponds to thousands of lines of C code, to
the best of our knowledge, is not practically possible. In contrast to this, having programmable controller, allows us to apply
our technique to (for all practical purposes) any size of C code, as it will be shown in Section 5.

Similarly to our approach, [12] does not have limitations on the input size, since it uses horizontally microcoded control
unit. On the other hand, it requires specification in language other than C and it produces only non-pipelined designs, none
of which is the restriction of the proposed technique.

Paper organization Our proposed technique is described in Fig. 3. It consists of two main steps: Initial Data path Extrac-
tion and Data path Optimization. Initial Data path Extraction (Section 3) extracts the properties of the input C code and maps
them to the given components and component structures from the Component Library. Data path Optimization (Section 4.4)
first select the portion of code to be optimized (Section 4.2), converts partial resource constraints to timing overhead (Sec-
tion 4.1) and estimates execution characteristics of intermediate candidate designs (Sections 4.2 and 4.4) until the specified
overhead is met.

3 Initial Data path Extraction

In order to extract the best possible data path architecture for a given C code, one needs to identify

� properties of the C code

� matching components for each property

� component structures/templates for given set of properties.

The set of properties of the C code include data types, operators, variables, parallelism, loops and dependencies. The
components include functional units, storage elements (registers, register files, memories) and interconnect like buses, multi-
plexers and tri-state buffers, while structures/templates refer to different connectivity templates, like bus-based interconnect,
multiplexer-based interconnect, dedicated connections, data path or component pipelining and load/store architecture model.
For example, used data types and the number of used bits to represent them would determine the bit-width of used com-
ponents; the available parallelism would affect selection of number of instances of functional units, number of registers or
register file ports and pipelining.

The first step is to extract properties form the C code. Code property may be extracted from high level code, its CDFG or
any other intermediate representation that front end of compile generates. We chose to start form an architecture independent
schedule that assumes no resource constraints, such as ASAP and ALAP. We chose ALAP as the starting point since our
experiments show that the parallelism is more evenly distributed across cycles than in corresponding ASAP. Following
properties are extracted from code’s ALAP schedule:

� OP: a set of operations for the given application code

� mop: the maximum number of concurrent usages of operand op

� ms and md : the maximum number of concurrent data transfers of the source and destination operands, respectively.

Furthermore, we define:

� Ops
�
FU � as a set of operations that a functional unit FU performs

� Selected set of selected functional units for the implementation of a final data path

� nFU the number of instances of the functional unit FU in the Selected.

A matching heuristics H
�
OP� Ops

�
FU ����� Selected maps the set of operations OP to a set of functional units Selected

to implement the custom data path. The heuristics H determines both a type and the number of instances of a functional
unit. Algorithm 1 describes the heuristics used in this work. �Ops(FUi) � represents the cardinal number of set Ops(FUi).
According to heuristics H, a functional unit FUi will be selected to perform an operation opi if it performs the greatest total
number of operands alongside the chosen one. Therefore, this heuristics prioritizes functional units with a higher possibility
for sharing. As for the number of instances, the heuristics includes an additional units of a chosen type to the set Selected

5

Algorithm 1 H(OP,Ops(FU))
for all opi � OP do

Select FUi such that
opi � Ops(FUi) &&
�Ops(FUi) � = max(�Ops(FUk) � , � k such that opi � Ops(FUk))
if mop � nFUi then

Add [(mop � nFUi) � FUi] to Selected
end if

end for
return Selected

only if the maximum number of occurrences of operand opi is greater than the number of units nFU of that type currently
in Selected, i.e. if mop � nFUi. For example, if application requires 3 units to perform additions and 4 units to perform
subtractions, and an ALU is chosen for both addition and subtraction operator, the tool will allocate only 4 instances of the
ALU.

The derived required number of source operand transfers ms determines the number of register file output ports and the
number of source busses, where the number of destination operand transfers md translates into register file input ports and
the destination buses. The register file ports are selected using heuristics described in [24].

To ensure that the interconnect is not a bottleneck in the Initial Data path, the connection resources are allocated in greedy
manner. This means that output ports of all register files are connected to all source buses. Similarly, input ports of all register
files are connected to all destination busses. The same connection scheme applies to the functional units and the memory
interface, making it possible to transfer any source operand to any functional unit or memory interface and the result back
into a register file. Note that data forwarding is not presented in this paper and that it is a part of our current research.

A hardware component in the Component Library is represented by a data structure that consists of the unique ID, com-
ponent type, number and type of input and output ports, delay, area and power. A functional unit also has a list of operations
that it performs.

4 Data path Optimization

Data path optimization uses information from two sources: schedule and execution profile. The schedule provides cycle-
by-cycle usage of every resource within a basic block and the profile provides the execution frequency for each of the blocks.
Therefore, we define a dynamic schedule as a schedule of an application where each basic block is annotated with its execution
frequency. The Initial Data path is compiled and profiled in order to create the dynamic schedule. The dynamic schedule
alongside with the constraints specified by the designer and the Component Library are input to the data path optimization
step.

Our data path optimization method proceeds as follows. First, the basic blocks to be optimized are selected based on
the criteria that will be shown in Section 4.2. Then, for each selected basic block a histogram (usage per cycle) for each
data path resource is created. The histogram is also annotated with the frequency of a corresponding basic block. For each
specified resource constraint, the estimation algorithm computes the Timing Overhead. After that, the algorithm traverses the
constrained design space, creating new designs and estimating the overhead for each new design. If the current refinement
step does not produce a design that performs within Timing Overhead, the algorithm backtracks to the previous design, marks
the refinement effort as ‘tried’ and continues modifying the previous design. Once all designs have been explored, the output
net-list is created. Following sections provide details of each step of the data path optimization.

4.1 Resource Constraint Specification

In practice, completely automatic data path selection has not been shown to be better or even at par with manual design.
We address this problem by providing control to the designer to put constraints on the chosen components while creating the
data path. In the one extreme case, the designer may completely specify the data path, thereby rendering the optimization
trivial. Alternately, the designer may chose to specify no constraints. In that case, the optimization algorithm produces a best-
effort result. The Resource Constraint (RC) specification is simply a set of bounds for the number of chosen components.

6

The constraints may be given partially. For example, constraint

1 � num
�
adder32 ��� 2 (1)

implies that the data path must have at least one 32-bit adder but not more than two. If the designer wishes to let the tool decide
the number of multipliers, no constraint may be specified for adders. The optimization algorithm ensures that components
with specified lower bounds are not optimized away aggressively.

Each of given constraints is used to compute the number of extra cycles (dc) that are required for application execution if
the upper bound of instances of the component is used (Figure 4). To compute dc, we use the estimation algorithm that will be
shown in Section 4.4. Once dc values for all constraint components have been computed, the smallest one is chosen to be the
Timing Overhead. The Timing Overhead value is used to compute the number of instances for all unrestrained components
(Section 4.5).

1

2

3
4 addernumber of

instances

0 1 2 3 4 5 time

available

estimated delayed executionin use

operation but no available units

1

2
3

4 addernumber of
instances

time

resource constraint

0 1 2 3 4 5 6

dc

Figure 4. dc computation for given resources constraints

4.2 Critical Code Extraction

The goal of this step is to select basic blocks in the source code that contribute the most to the execution time and have the
largest potential for optimization. The question is how to decide which basic blocks are the most promising. Our selection
criterion is based on the relative size and the relative execution frequencies of the basic blocks in the application. It is likely
that very large basic blocks have high potential for optimization, since they have several operations that may potentially be
performed in parallel. On the other hand, even minor optimization of basic blocks that have high frequency will yield high
overall performance gains. Finally, we have a class of basic blocks that have average length and average frequency, so an
average reduction in their length will yield overall performance improvement comparable to the improvement from previous
two types of optimization.

Following our optimization policy, we keep 3 lists of pointers to the basic blocks. The first list is sorted by frequency-
length product, the second by length and the third by frequency. We use the parameterizable metrics to decide if the block is
to be included in the list of blocks for optimizations. For frequency-length product we use:

fi � li � Pf l �∑N
j � 0 f j � l j (2)

where fi and li are frequency and length (number of cycles) of the basic block i, m f li is frequency-length product, Pf l

is parameter specified by the designer and N is the total number of blocks in the application. The block i is considered for
optimizing if inequality 2 is satisfied.

In case of the list sorted by length, we observe the length of the block li and

li � Pl �maxN
j � 0

�
l j � (3)

7

where Pl is length parameter specified by the designer. The current block is considered for optimizing if inequality 3 is
satisfied.

Given fi as the frequency of the basic block i,

fi � Pf �maxN
j � 0

�
f j � (4)

where Pf is frequency parameter. We include the block i in the optimization candidate list if inequality 4 is satisfied.
List creation is performed during histogram creation; hence it does not contribute significantly to the overhead in the

execution time of the Data path Optimization. The lists contain only pointers to the basic blocks and do not introduce any
space overhead. The optimization algorithm will be applied only to the selected subset of blocks.

4.3 Histogram Creation

A histogram shows cycle-by-cycle usage for each data path resource. A histogram is created for each selected basic block
for:

� each component type, in case of functional units and buses

� for data ports of the same kind (input or output), in case of the storage units.

It is important to group the items of the same kind (i.e. all adders or all source buses) together in order to easily estimate
potential impact on execution while changing the number of instances of a particular data path resource. Histograms are
extracted from the schedule generated for the Initial Data path. The example of a histogram for adders is shown in the
Figure 4. The shown basic block has 6 cycles (0 to 5). It can be seen that no instance of adder is used in cycle 2, one instance
is used during cycles 0, 1 and 4, and three instances are used in the cycles 3 and 5. If we assume that the type and number of
instances of all other components (other FUs, memories, register files and its ports, buses and multiplexers) do not change,
we can conclude that we need 3 instances of adder to execute this basic block in no more than 6 cycles.

time

1

2

3

4 multipliernumber of
instances

0 1 2 3 4 5

1

2

3

4 multipliernumber of
instances

time

selected number

0 1 2 3 4 5 6

Timing Overhead

Figure 5. ‘Spill’ Algorithm: computing the number of instances of multiplier for a given Timing Overhead

4.4 Timing Overhead Computation

As described in Section 4.1 the designer specifies constraints in a form of lower and upper bound for the number of
instances for resources in the data path. Changing the number of instances of a resource may affect the application execution
time. As seen in the example in the Figure 4, if the number of adders is changed from three to two, we may expect that the
number of cycles required for execution of the basic block would increase. The Algorithm 2 is used to transform the given
Resource Constraints (RC) to Timing Overhead. Timing Overhead is the additional number of cycles by which the designer
is willing to extend the program execution in order to optimize number of resources used. For each constrained resource r,
the estimation algorithm (Section 4.4) computes the time overhead, dc, (in number of cycles) if the specified upper bound
of resource instances is used. The smallest of all values for dc becomes a Timing Overhead. The Timing Overhead is a

8

Algorithm 2 Compute Time Overhead
in: Resource Constraints
in: Histogram f or each Constrained Component
out: Timing Overhead
for all r � ResourceConstraints do

r� new num � Constraint
�
r �

dc
� Estimate

�
r� new num �

if dc � TimingOverhead then
TimingOverhead � dc

end if
end for

maximum overhead that the number of instances of an unconstrained resource may cause in order to be included in the final
data path.

In our example, as per the Equation 1, the upper bound is two and if we assume that there is only one resource constraint
specified, both dc and Timing Overhead are equal to one cycle (Figure 4). For all other, unconstrained resources, the number
of instances needs to be sufficient so that the given basic block executes in maximum seven cycles (six for the original
schedule and one for Timing Overhead).

The estimation is done for a single resource type at a time and therefore the input is a set of histograms for that resource
for selected basic blocks. The task of estimation step is to quantify the effect of change in number of instances of the resource
to the application execution time and resource. In order to do so, we compute the number of extra cycles (dc) that is required
to execute a single basic block with the desired number of units (NewNumber) using ‘Spill’ algorithm (Algorithm 3).

Algorithm 3 Spill

in: Histogram
�
H � f or a Resource r

in: Number o f Instances : NewNum
out: dc //in number of cycles
for all X � cycle � H do

CycleBudget � NewNumber � X � InUse;
if CycleBudget � 0&&DemandCounter � 0 then

CanFit � min
�
CycleBudget � DemandCounter �

DemandCounter
� � CanFit

else
DemandCounter

� � CycleBudget
end if

end for
dc
��� DemandCounter � NewNumber �

return dc

We keep a counter (Demand Counter) of operations/data transfers that were originally scheduled for the execution in
the current cycle on an instance of the resource r, but could not possibly be executed in that cycle with the NewNumber of
instances. For example, in both cycles 3 and 5 (in bottom of the Figure 4) there is one operation (shown in dashed lines) that
can not be executed if only two adders are used. Those operations need to be accounted for by the Demand Counter.

In each cycle, we compare the number of instances in use in a current cycle (X � InUse) to the NewNumber. If the number
in the current cycle is greater, the number of ‘extra’ instances is added to the Demand Counter, counting the number of
operations/transfers that would need to be executed later. On the other hand, if the number in the current cycle is less then
the NewNumber, there are available resources that may execute the operations/transfers that were previously accounted for
with Demand Counter. In the bottom of Figure 5 the available resources are shown in yellow and the ‘postponed’ execution
of ‘extra’ operations is shown by arrows. The ‘Spill’ algorithm models in this way the delayed execution of all ‘extra’
operations. After going through all cycles in a given block, the Demand Counter equals to the number of operations that
need to be executed during the additional cycles dc.

The ‘Spill’ algorithm uses only statically available information and provides the overhead for a single execution of a

9

given basic block. In order to estimate the resulting performance, we incorporate execution frequencies in the estimation.
The estimated total execution time equals sum of products of block’s dc and block’s frequency for each block selected for
the optimization. We must note that this method does not explicitly account for interference while changing the number of
instances of other resources than the specified ones.

RF

Memory
Interface

RFRF

MUXMUX
MUX

MUX

MUX

MUX

FUn-

1...

MUX
MUX MUX

FU1 To Mem

Figure 6. An Example of Extracted Data path Model.

4.5 Balancing Instances of Unrestricted Components

We assume that it is acceptable to trade off certain percentage of the execution time in order to reduce number of used
resources (hence to reduce area and power and increase component utilization).

Therefore, we select a subset of all possible designs that contains all candidate designs, to be estimated. The candidate
designs are created as follows:
� set the number of instances for the constrained resources to their upper bound specified by the constraints

� set the number of instances of unconstrained resources (functional units, buses, storage elements and their ports) to the
same values as in the Initial Data path

� assume the same connectivity as in the Initial Data path

� randomly select a resource type and have its number of instances varied.

For the example depicted in Figure 5, where a multiplier is selected to have its number of instances varied, there will be
two candidate designs created: with one and with two multipliers. The candidate design with no multipliers would not make
sense, since there will be no units1 to perform the operations that were originally performed by the multiplier. Also, there is
no need to consider three multipliers, since two already satisfy the constraints.

The Algorithm 4 is used to create candidate designs and estimate their overhead. The U pdate function assigns an average
value as a starting value to resource r� candidate num. The estimation returns the number of Overhead cycles. If the estimated
Overhead is greater than Timing Overhead, the value of r� candidate num is incremented; otherwise it is decremented. When
the number of instances is determined, and the resource type gets marked as tried. The refinement continues by selecting
the next resource type. It may happen that even if we increase the r� candidate num of instances of some type, the Timing
Overhead can not be met. The algorithm then backtracks to the minimal r� candidate num that causes violation, marks the
component type as tried and reports the ‘best effort’ design.

In the simple case, shown in the Figure 5 if the Timing Overhead is 1 cycle, having 2 units would deliver required
performance. Since having 1 units also results in the acceptable overhead (also 1 cycle overhead), the algorithm chooses the
smaller number.

1This is due to the matching heuristics (Algorithm 1)

10

Algorithm 4 Compute Number of Instances
in: AllowedTimingOverhead
out: SelectedNumbero f Instanceso fUnrestrainedComponent
//For all Unrestrained Components
for all r � rnd

�
AllResources � ResourceConstraints � do

label
r� candidate num � U pdate

�
r �

CreateNewDesign
Overhead � Estimate

�
r� candidate num �

if
�
Overhead � TimingOverhead � then
goto label

end if
end for
SelectedNumber � r� candidate num
return SelectedNumber

4.6 Component Allocation and Net-list Creation

In order to allocate the final data path, we use the same heuristics as described in 3. Previously, during the initial allocation,
the operands from the code were matched with the components from the library to determine the type of functional unit. Here
the functional unit type is inherited from the Initial Data path, and the parameters (such as the number of instances, ports,
registers) are specified by the outcome of the Estimation (Section 4.4). Based on the connectivity statistics, the tool decides
to provide full or limited connectivity. The full connectivity scheme is used in Initial Data path as described in Section 3.
In limited connectivity scheme, we reduce number of connections from register file’s output ports to the source buses, and
we connect only one bus to one output port. Please note that the tool actually replaces busses with muxes in net list in
order to comply with synthesis guidelines for state of the art synthesis tools. Also in order to decrease area and propagation
delay, wherever applicable, the tool removes multiple levels of multiplexers that would occur by simply replacing buses with
multiplexers.

Table 1. Parameter Values and Code Size (LOC).
Gen. T [sec]

Bench. (Pl,Pf ,Pf l)[%] LoC Non-pipe Pipe

bdist2 (60,50,45) 61 0.2 0.8

Sort (80,60,45) 33 0.1 0.1

dct32 (18,65,50) 1006 1.3 2.3

Mp3 (30,55,50) 13898 15.6 42.6

inv/forw 4x4 (50,45,55) 95 0.2 0.8

5 Results

We implemented the IDp Extraction and the Data path Optimization in C++. We used programmable controller unit, NISC
compiler ([7, 20]) to generate schedule and Verilog generator ([9, 10]) for translating architecture description from ADL to
Verilog. For synthesis and simulation of the designs, we used Xilinx ISE 8.1i and ModelSim SE 6.2g running on a 3GHz
Intel Pentium 4 machine. The target implementation device was a Xilinx Virtex II FPGA xc2v2000 in FF896 package with
speed grade -6. The benchmarks used were bdist2 (from MPEG2 encoder), Sort (implementing bubble sort), dct32 (from
MP3 decoder), Mp3 (decoder) and inv/forw 4x4 (functions inverse4x4 and forward4x4 are amongst top five nost frequently
executed functions from H.264). Profiling information was obtained manually.

Table 1 shows input parameters, benchmark length and generation time. Parameters Pl, Pf , Pf l are defined in Section
4.2. We decided on parameter values using the profiling information. The selected values of parameters ensure that blocks

11

that affect the execution time the most are selected for optimization. The following column shows the number of lines of
the C code (LoC). The largest C code has 13,898 lines of code, proving the ability of the proposed approach to handle large
industrial scale applications. The last two columns present average generation time for non-pipelined and pipelined designs.
Even for industrial size application generation time is less than one minute.

Table 2. Difference in components and parameters between respective baseline and generated design
Bench. Pipe. ALU1 ALU2 ALU3 RF2x1 RF4x2 RF6x3 RF8x4 RF16x8 IDp

bdist2
N #R=64 #R=64 #R=64 #R=64 #R=64 #R=64 #R=64 #R=64 Rf 16x8, 3 Alu, 2 Mul
Y #R=32 #R=32 #R=32 #R=32 #R=32 #R=32 #R=32 #R=32 Rf 16x8, 3 Alu, 2 Mul

Sort
N #R=16 #R=16 #R=16 #R=16 #R=16 #R=16 #R=16 #R=16 Rf 16x8, 2 Alu
Y #R=16 #R=16 #R=16 #R=16 #R=16 #R=16 #R=16 #R=16 Rf 16x8, 2 Alu

dct32
N Rf 4x2 Rf 6x3 Rf 8x4 - 2 Alu 3 Alu 3 Alu 3 Alu Rf 16x8, 3 Alu, 2 Mul
Y Rf 4x2 Rf 4x2 Rf 6x3 - 2 Alu 2 Alu 2 Alu 3 Alu Rf 16x8, 3 Alu, 2 Mul

Mp3
N - Rf 6x3 Rf 8x4 - 2 Alu 3 Alu 3 Alu 3 Alu Rf 16x8, 3 Alu, 2 Mul
Y Rf 4x2 Rf 6x3 Rf 6x3 - 2 Alu 2 Alu 2 Alu 2 Alu Rf 16x8, 3 Alu, 2 Mul

inv/forw 4x4
N #R=16 #R=16 #R=16 #R=16 #R=16 #R=16 #R=16 #R=16 Rf 16x8, 4 Alu
Y #R=16 #R=16 #R=16 #R=16 #R=16 #R=16 #R=16 #R=16 Rf 16x8, 4 Alu

In this paper, we present three sets of experiments. The first set of experiments illustrates design space exploration
using the automatic extraction of data path from application C code. The second set of experiments compares our selection
algorithm to manual selection of componenets from C code. The last set of experiments compares the presented extraction
technique to HLS and manual design in order to establish quality of generated designs.

5.1 Interactive Design Exploration

Results of the exploration experiments are shown in Figures 7, 8 and 9. Used baseline data path architectures are MIPS-
style manual designs (pipelined and non-pipelined) [10] with an ALU, a multiplier, two source and one destination bus and a
128-entry register file with one input and two output ports. Only for the Mp3 application we have added a divider unit to this
processor for comparison with the generated data path. In order to perform fair comparison the size of storage elements has
been customized for every application such that the resources (area) are minimized. Also, for comparison with automatically
generated pipelined design, the pipelined version of manual design was used as a baseline. In-house compiler is used to
create schedule for all baseline and generated data paths. This guarantees that the execution time depends on the data path
architecture and does not depend on the compiler optimizations.

While exploring different designs for selected applications we specified the resource constraints on the number of ALUs
and number of output and input ports of register file (RF). The tool extracts a data path from the C code such that it complies
to the specified constraint and resulting data paths are named as:

� ALU N, where N ��� 1 � 2 � 3 � is specified number of ALUs

� RFOxI, where
�
O � I � ��� � 2 � 1 � � � 4 � 2 � � � 6 � 3 � � � 8 � 4 ��� are the number of output and input ports.

In case of data path denoted by RFOxI, two resource constraints were used to generate the design: one for the number of
output and the other for the number of input ports while all the remaining elements (like functional units, memories and
connectivity) are decided by the tool as described in Section 4.

Fig. 7 shows the number of execution cycles for generated architectures normalized to the number of cycles for the
baseline architecture. This graph includes two additional data paths that are generated only to illustrate tool behavior and to
explore theoretical limits of the used data path model (Fig. 4.6). Those additional configurations are:

� RF16x8: a configuration that was generated using RF 16x8 constraint

� IDp: an Initial Data path

Table 2 summarizes generated architectures for all the configurations that are presented in this paper. Each benchmark and
each configuration have a non-pipelined and a pipelined architecture generated, and those are presented in rows marked with

12

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

bdist2 0.82 0.82 0.82 0.98 0.67 0.68 0.67 0.67 0.46

Sort 0.89 0.89 0.89 0.89 0.88 0.88 0.89 0.88 0.88

dct32 0.86 0.72 0.70 0.97 0.75 0.71 0.70 0.70 0.68

Mp3 0.76 0.68 0.67 0.93 0.72 0.67 0.67 0.67 0.67

inv/forw 4x4 0.97 0.97 0.97 0.98 0.92 0.92 0.92 0.92 0.92

ALU 1 ALU 2 ALU 3 RF2x1 RF4x2 RF6x3 RF8x4 RF16x8 IDp

(a) Non-pipelined

0.70

0.80

0.90

1.00

1.10

bdist2 0.95 0.95 0.95 0.95 0.77 0.77 0.77 0.77 0.77

Sort 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

dct32 0.93 0.91 0.90 0.97 0.90 0.90 0.90 0.90 0.89

Mp3 0.85 0.81 0.81 0.96 0.83 0.81 0.81 0.81 0.81

inv/forw 4x4 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 1.00

ALU 1 ALU 2 ALU 3 RF2x1 RF4x2 RF6x3 RF8x4 RF16x8 IDp

(b) Pipelined

Figure 7. Relative number of execution cycles on data paths generated for different architecture

N and Y in the column ‘Pipe.’ The table lists the difference from the corresponding baseline architecture. For example:
‘#R=64’ means that the generated data path has 64 registers in register file, ‘Rf 4x2’ means that there is a register file with 4
output and 2 input ports and ‘-’ means that there is no change to the baseline data path parameters.

For generated non-pipelined data paths (Fig. 7(a)) normalized execution cycles range from 0.98 to 0.46. All of the
benchmarks experience only a small improvement for RF2x1 configuration because this configuration is the most similar
to the baseline. Also, the number of cycles is not exactly the same but slightly reduced. This effect is due to replacing of
buses in architecture specification with multiplexers which allows for more efficient handling by the compiler. This effect is
particularly emphasized in case of bdist2. For this benchmark the improvements are small (0.82) for all ALU configurations
and may be attributed to the effect of explicit multiplexer specification that results in more efficient compiler handling and
shorter prologue/epilogue code. We see the further reduction to 0.67 for RF4x2 configuration which exploits the parallelism
of operations executed on different units. No further improvement is seen for further increase in the number of register file
ports. However, execution on the IDp, which has two ALU and two multiplier units, experiences additional improvement in
number of cycles to 0.47.

Benchmark Sort is sequential in nature and therefore it does not experience significant improvement regardless of the
number of ALUs or register file ports that are introduced. Both benchmarks dct 32 and Mp3 have abundance of available
parallelism. The dct32 benefits the most from having two ALUs (ALU2 - 0.72) and increase in number of ports or adding more

13

0.60

0.80

1.00

1.20

1.40

1.60

bdist2 1.03 1.03 1.06 1.03 1.09 1.08 1.14

Sort 0.87 0.90 0.90 0.87 0.89 0.95 0.98

dct32 1.36 1.38 1.46 1.28 1.36 1.39 1.46

Mp3 1.03 1.10 1.20 1.03 1.11 1.13 1.20

inv/forw 4x4 0.90 0.94 0.94 0.87 0.89 0.92 0.98

ALU 1 ALU 2 ALU 3 RF2x1 RF4x2 RF6x3 RF8x4

(a) Non-pipelined

0.60

0.70

0.80

0.90

1.00

1.10

bdist2 0.80 0.81 0.81 0.80 0.86 0.86 0.89

Sort 0.74 0.74 0.74 0.74 0.80 0.78 0.81

dct32 0.98 0.98 0.98 0.93 0.98 0.96 1.02

Mp3 0.91 0.98 0.98 0.94 1.00 0.98 1.01

inv/forw 4x4 0.81 0.81 0.81 0.74 0.81 0.79 0.84

ALU 1 ALU 2 ALU 3 RF2x1 RF4x2 RF6x3 RF8x4

(b) Pipelined

Figure 8. Relative cycle time on data paths generated for different architecture

units (in IDp) contributes by only 4% of additional improvement. Similarly, Mp3 executes in 0.68 of the number of baseline
execution cycles for ALU2 configuration. Note that specifying two ALUs as resource constraint for both benchmarks results in
an increase in the number of RF ports and buses: since both instances of ALU and one instance of multiplier are significantly
utilized, the resulting configurations have RF 6x3 and full connectivity scheme. On the other hand, both benchmarks suffer
from significant increase of prolong/epilogue code which sets back the savings in number of cycles that are obtained by the
‘body’ of the benchmark. Adding more ALUs does not help in case of benchmark inv/forw 4x4. The benchmark benefits the
most from additional register file ports, because this configuration exposes limited parallelism beetween the operations that
execute on functional units of different type.

As for the pipelined configurations, shown in Fig. 7(b), across all the benchmarks maximum reduction in the number
of execution cycles for generated data paths (0.77) is less than a maximum reduction for the non-pipelined designs since
the pipelining itself exploits some degree of available parallelism. In case of bdist2 there is no improvement with increased
number of ALUs since the tool allocates single RF2x1. Same as for the non-pipelined configurations, the minimal normalized
number of cycles is reached for RF4x2 due to the increased simultaneous use of ALU and multiplier. On the other hand,
benchmark Sort does not change the number of execution cycles since pipelining takes advantage of already limited available
parallelism.

For dct32 the tool allocates RF 4x2, RF 4x2 and RF 6x3 (together with sufficient connectivity resources) for configurations

14

ALU 1, ALU 2 and ALU 3 respectively, where for Mp3 it allocates RF 4x2, RF 6x3 and RF 6x3. The most of the execution
cycle reduction is brought by increase in number of register file ports in case of configuration ALU 1. Increasing both
number of ALUs and ports brings down the normalized cycles only by 0.02 and 0.04 down to 0.90 and 0.81 for dct32 and
Mp3, respectively. For all the RF configurations, both benchmarks have the same trend for allocation: the tool recognizes
a potential for adding more ALUs and therefore two ALUs are allocated for all of them, except for RF16x8 configuration
of dct32 where three ALUs are allocated. One would expect the tool would allocate more units for RF8x4 and RF16x8.
However, the data dependencies limit concurrent usage of more units than allocated. The results for IDp illustrate this: even
though IDp has three ALUs and two multipliers, further reduction in number of normalized cycles is only by 0.01 to 0.02
for dct32 and Mp3, respectively. Similarly to Sort, inv/forw 4x4 has almost no improvement if the number of instances of
increases.

Fig. 8 show normalized cycle time for non-pipelined and pipelined automatically generated designs. We observed the cycle
time in order to explain the total execution time of each benchmark. Current version of the tool does not take into account
post synthesis results. However, we believe that this feature is crucial for DFM and are currently working on incorporating
pre-layout information in data path optimization.

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

bdist2 0.85 0.85 0.87 1.01 0.73 0.73 0.77

Sort 0.77 0.79 0.80 0.77 0.79 0.84 0.87

dct32 1.17 1.00 1.01 1.24 1.02 0.98 1.01

Mp3 0.78 0.74 0.80 0.97 0.80 0.76 0.80

inv/forw 4x4 0.87 0.91 0.91 0.85 0.82 0.85 0.89

ALU 1 ALU 2 ALU 3 RF2x1 RF4x2 RF6x3 RF8x4

(a) Non-pipelined

0.60

0.70

0.80

0.90

1.00

bdist2 0.76 0.77 0.77 0.76 0.66 0.67 0.69

Sort 0.73 0.74 0.74 0.73 0.80 0.78 0.81

dct32 0.90 0.88 0.88 0.90 0.88 0.87 0.92

Mp3 0.78 0.79 0.79 0.90 0.84 0.79 0.82

inv/forw 4x4 0.80 0.80 0.81 0.73 0.80 0.78 0.83

ALU 1 ALU 2 ALU 3 RF2x1 RF4x2 RF6x3 RF8x4

(b) Pipelined

Figure 9. Relative execution time on data paths generated for different architecture

Results for normalized cycle time for designs are intuitive: as complexity of generated data path increases, so does the
cycle time. For non-pipelined designs (Fig. 8(a)), designs for all benchmarks except Sort have larger cycle time than for

15

corresponding baseline. The main contributor to cycle time length is register file: as the number of ports increase, the
decoding logic increases and so does the cycle time. In case of Sort cycle time is lower because of reduction of the register
file size. For non-pipelined configurations the normalized cycle time ranges from 0.85 to 1.46. Pipelined configurations
(Fig 8(b)) uniformly have smaller or equal cycle time as the baseline configuration. For each benchmark, there is almost no
difference in cycle time across all ALU configurations. Mp3 is the only benchmark that has significantly lower normalized
cycle time for ALU1 configuration (0.91) than for remaining two ALU configurations (0.98). RF configurations experience
the increase in cycle time with increase in complexity. For RF6x3 in case of Sort, dct32, Mp3 and inv/forw 4x4 there is a
small decrease in cycle time comparing to RF4x2 configurations because the synthesis too manages to decrease combinational
delay of interconnect.

0.00E+00

1.00E-05

2.00E-05

3.00E-05

4.00E-05

5.00E-05

6.00E-05

7.00E-05

8.00E-05

9.00E-05

Nonpipelined Pipelined

Texe [s]

Baseline ALU 1 ALU 2 ALU 3 RF2x1 RF4x2 RF6x3 RF8x4

(a) bdist2

0.00E+00

2.50E-04

5.00E-04

7.50E-04

1.00E-03

1.25E-03

1.50E-03

1.75E-03

2.00E-03

2.25E-03

2.50E-03

Nonpipelined Pipelined

Texe [s]

Baseline ALU 1 ALU 2 ALU 3 RF2x1 RF4x2 RF6x3 RF8x4

(b) Sort

0.00E+00

2.50E-04

5.00E-04

7.50E-04

1.00E-03

1.25E-03

1.50E-03

1.75E-03

2.00E-03

2.25E-03

2.50E-03

Nonpipelined Pipelined

Texe [s]

Baseline ALU 1 ALU 2 ALU 3 RF2x1 RF4x2 RF6x3 RF8x4

(c) dct32

0.00E+00

2.50E-03

5.00E-03

7.50E-03

1.00E-02

1.25E-02

1.50E-02

1.75E-02

2.00E-02

2.25E-02

2.50E-02

Nonpipelined Pipelined

Texe [s]

Baseline ALU 1 ALU 2 ALU 3 RF2x1 RF4x2 RF6x3 RF8x4

(d) Mp3

0.00E+00

2.50E-04

5.00E-04

7.50E-04

1.00E-03

1.25E-03

1.50E-03

1.75E-03

2.00E-03

2.25E-03

2.50E-03

Nonpipelined Pipelined

Texe [s]

Baseline ALU 1 ALU 2 ALU 3 RF2x1 RF4x2 RF6x3 RF8x4

(e) inv/forw 4x4

Figure 10. Total execution time on generated data paths

Fig. 9 shows normalized total execution time. Across all configurations and all benchmarks, except all non-pipelined
configurations for dct32, total execution time has been reduced. Non-pipelined dct32 experiences increase in execution time
for all but ALU2 configuration: the reduction in number of cycles is not sufficient to offset the large increase in the cycle time.
The reduction in number of cycles is less than expected because of explosion of prologue/epilogue code. The non-pipelined
configurations reduce the execution time up to 0.73, 0.77, 1.00, 0.74 and 0.82 for bdist2, Sort, dct32, Mp3 and inv/forw
4x4, respectively. Normalized execution times for all non-pipelined configurations, except for the Sort, are greater than the
corresponding normalized number of cycles. The Sort has further decrease in execution time due to significant cycle time
reduction (resulting from ‘minimized’ data path comparing to the baseline). Furthermore, for dct32 and Mp3, that perform the
best for ALU2, several other configurations have minimum normalized number of cycles. Pipelined configurations uniformly
experience smaller normalized execution time comparing to the non-pipelined. The minimums are 0.66, 0.73, 0.88, 0.79
and 0.73 for bdist2, Sort, dct32, Mp3 and inv/forw 4x4, respectively. For all applications, each normalized execution time
is smaller than the corresponding normalized number of execution cycles. Furthermore, the configurations that perform in
minimal time are the same as the one that perform in minimal number of cycles.

16

In order to find a data path with with a minimum execution time and the best configuration we plot for each benchmark
(absolute) execution time in Fig. 10. The leftmost bar shows the execution time on a baseline architecture. The best
implementation for bdist2 is pipelined RF4x2. RF6x3 has only slightly longer execution time, but since it is uses more
resources, it is less desirable (recommendable) choice. Benchmark Sort benefits from reduction of resources and therefore
the best configuration is ALU1. For this benchmark, all of the pipelined configurations perform worse than corresponding
non-pipelined. Benchmark dct32, despite having plethora of available parallelism performs good only for non-pipelined
Baseline, ALU2 and RF6x3 configurations. The pipelined configurations do not perform as well as non-pipelined. To improve
on the current generated pipelined architectures, we may consider use of multi-cycle and pipelined functional units which
may reduce the cycle time. Furthermore, if there is only single function to be performed on the generated hardware module,
both prologue and epilogue code may be eliminated and the speedup of ‘parallel’ architectures would increase. Here we
presented the results for all the applications with prologue/epilogue code because we believe that the application execution
needs to have data received and sent proceeding and following the execution of the benchmark body. Therefore, benchmark
is a function that needs to be called and therefore the prologue and epilogue code are required. In this case, the number
of registers that need to be stored and restored, and hence the length of prologue and epilogue code, needs to be estimated.
Non-pipelined designs for Mp3 perform better than pipelined, for the same reason. Overall, the best design would be for
ALU2 configuration with 32% performance imptovement over the baseline.

Table 3. Comparison between components and parameters of manual and automatically generated design
Automatic

Bench. Manual Non-pipe Pipe

bdist2
#R=32, Rf 8x4, #R=64, Rf 4x2, #R=32, Rf 4x2,
4 Alu, 1 Mul 1 Alu, 1 Mul, 1 Comp 1 Alu, 1 Mul, 1 Comp

Sort
#R=32, Rf 4x2, #R=32, Rf 2x1, #R=32, Rf 2x1,
1 Alu 1 Alu, 1 Mul, 1 Comp 1 Alu, 1 Mul, 1 Comp

dct32
#R=48, Rf 8x4, #R=128, Rf 8x4, #R=128, Rf 4x2,
4 Alu, 2 Mul, 1 Comp, 2 Adders 3 Alu, 1 Mul, 1 Comp 2 Alu, 1 Mul, 1 Comp

Mp3
#R � 16, Rf 16x8, 4 Alu, 8 Mul #R=128, Rf 8x4, #R=128, Rf 2x1,
1 Or, 1 Comp, 1 NotEq Comp, 1 Div 3 Alu, 1 Mul, 1 Comp, 1 Div 1 Alu, 1 Mul, 1 Comp, 1 Div

inv/forw 4x4
#R=32, Rf 8x4, #R=16, Rf 4x2, #R=16, Rf 2x1,
4 Alu, 1 Comp 1 Alu, 1, Mul, 1 Comp 1 Alu, 1 Mul, 1 Comp

bdist2

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

manual
non-

pipelined

automatic
non-

pipelined

manual
pipelined

automatic
pipelined

Slice RAM

(a) Cost

bdist2

0

500

1000

1500

2000

2500

3000

3500

manual
non-

pipelined

automatic
non-

pipelined

manual
pipelined

automatic
pipelined

Number of Cycles

(b) Performance

Figure 11. bdist2: Number of slices, number of RAMs and number of cycles for manually selected and automatically
generated data paths

17

Sort

0

500

1000

1500

2000

2500

3000

3500

4000

manual
non-

pipelined

automatic
non-

pipelined

manual
pipelined

automatic
pipelined

Slice RAM

C

(a) Cost

Sort

0

20000

40000

60000

80000

100000

120000

140000

160000

manual
non-

pipelined

automatic
non-

pipelined

manual
pipelined

automatic
pipelined

Number of Cycles

(b) Performance

Figure 12. Sort: Number of slices, number of RAMs and number of cycles for manually selected and automatically
generated data paths

5.2 Selection Algorithm Quality

Table 3 shows the comparison of manually designed architectures and the automatically generated ones. The manual
designs were created by computer engineering graduate students. The students were asked to select the components for the
templatized data path, as the one in Figure 6, based on the application C code. Running and profiling the code on the host
machine with the same input as used for the automatic generation data was allowed.

There is only one column for manual designs in the Table 3 because the designers had the same component/parameter
selection for non-pipelined and for pipelined data paths. However, our experiments in Section 5.1 show that often, there is
less resources required for pipelined configurations. Such examples are configurations ALU2, ALU3, RF 6x3 and RF 8x4
for dct32 in Table 2. The non-pipelined and pipelined configurations presented in Table 3 are the one that have the smallest
number of execution cycles for the given benchmark, as seen in the Figure 7.

It is interesting to notice that for manual designs, in most cases, the number of instances and parameters of selected register
files and functional units outnumbers the one in the best generated architectures. For example, for benchmark bdist2 manual
designer anticipated use of four ALUs. The non-pipelined IDp for benchmark bdist2 needs only three and pipelined IDp only
one ALU, which shows that the designer overestimates the number of ALUs. Also, the optimal automatically generated data
path uses only one ALU in both non-pipelined and pipelined case. However, for this benchmark, the designer underestimated
register file size: in case where there are more functional units, more operations may be perform in parallel and therefore
there will be more operands/registers required. The tendency to allocate manually more resources than actually required may
be explain the best on the example of function inverse4x4 from H.264, shown in Algorithm 5.

Algorithm 5 Part of inverse4x4 C code
1: ...
2: t0 = *(pblock++);
3: t1 = *(pblock++);
4: t2 = *(pblock++);
5: t3 = *(pblock);
6:

7: p0 = t0 + t2;
8: p1 = t0 - t2;
9: p2 = SHIFT(t1, 1) - t3;

10: p3 = t1 + SHIFT(t3, 1);
11: ...

18

dct32

0

5000

10000

15000

20000

25000

manual
non-

pipelined

automatic
non-

pipelined

manual
pipelined

automatic
pipelined

Slice RAM

(a) Cost

dct32

0

20000

40000

60000

80000

100000

120000

140000

manual
non-

pipelined

automatic
non-

pipelined

manual
pipelined

automatic
pipelined

Number of Cycles

(b) Performance

Figure 13. dct32: Number of slices, number of RAMs and number of cycles for manually selected and automatically
generated data paths

The designer allocates four ALUs based on an observation that code in lines 7, 8, 9 and 10 is not dependent and an
assumption that once all if the operations from line 2 to line 5 are completed, the entire block of lines 7 to 10 will be executed
at the same time. However, code in lines 2 to 5 has data dependencies, requires sequential execution and performs memory
access. Therefore, it makes sense to compute expressions in line 7 and line 8 as soon as t0 and t2 are available. Hence, no
need for 4 ALU in the data path.

Similarly, for dct32, data dependencies are not ‘visible’ from C code. Therefore, the designer allocates four ALUs, two
multipliers, a comparator and two adders. IDp for dct32 has only three ALUs, two multipliers and a comparator even though
it has a register file RF 16x8. IDp configuration performs in 0.68 of the baseline, which is only 2% better than configurations
ALU3, RF8x4 and RF16x8 that have less resources. The number of registers in the register file is computed based on the
number of units (eight without the comparator), the fact that each unit has two inputs and one output, and assumption that for
each source/destination the data memory will be used twice. Therefore:

#R � 8 �
�
2
�

1 � � 2 � 48 (5)

i.e. the designer decides on 48 registers. Practically, with these many units, there are more than 48 registers required for
temporary variables, if we want to avoid access to memory for fetching data and storing results.

Manual selection of components and parameters for Mp3 shows the same properties: the number of functional units was
overestimated, the number of registers in the register file was underestimated and the pipelining was selected after the decision
on units had been made. The designer profiled the application and found that among all computationally intensive functions,
function synth full contributes 35% to total execution. The designer identified eight multiplications and four additions that
may be executed in parallel in this function. Also, only the lower bound for the number of registers in the register file was
specified.

In order to better understand cost/performance trade-off for manually and automatically generated data paths we defined
a total cost of a design Cdesign as a sum of slices and a sum of RAMs for all the selected components.

Cdesign
� ∑

components
slice
� ∑

components
RAM (6)

We synthesized all available components and assigned cost in terms of slices and RAMs. We generated both non-pipelined
and pipelined versions of manual design, so that we can perform fair comparison of cost and performance. We assumed that
when pipelining was selected all inputs and outputs of functional units have a pipeline register (uniform pipelining, such as
shown in Figure 6). Cost of pipeline registers was added to the total cost of pipelined data path designs. The performance is
measured in the number of execution cycles, since neither the designers nor the tool were given any synthesis information as
an input.

19

Mp3

0

10000

20000

30000

40000

50000

60000

manual
non-

pipelined

automatic
non-

pipelined

manual
pipelined

automatic
pipelined

Slice RAM

(a) Cost

Mp3

0

200000

400000

600000

800000

1000000

1200000

1400000

manual
non-

pipelined

automatic
non-

pipelined

manual
pipelined

automatic
pipelined

Number of Cycles

(b) Performance

Figure 14. Mp3: Number of slices, number of RAMs and number of cycles for manually selected and automatically
generated data paths

Figures 11, 12, 13, 14 and 15 show set of cost/performance graphs for all presented benchmarks. All automatically
generated designs have significantly lower cost comparing to the ones manually derived from C code. Relative to the cor-
responding manual designs, the automatically generated ones have from 7.41% (dct32 non-pipelined) to 82.13% (pipelined
inv/forw 4x4) less slices and from 8.22% (non-pipelined bdist2) to 87.46% (pipelined Mp3) less RAMs. As seen in the perfor-
mance graphs, overhead in the number of cycles is negligible for all designs except for the above mentioned pipelined Mp3.
Mp3 has 18.84% overhead, but 81.50% and 87.46% less slices and RAMs, which according to us is a reasonable trade-off.
For all the remaining designs, overhead of the number of cycles ranges from 0.00% to 0.68% relative to the corresponding
manual design.

This experiment showed that translating C code into simple hardware design is a non-trivial process. Selecting components
and their parameters, tracking data and control dependencies, and estimating operation sequencing and available parallelism
based on high level description results in underutilization of data path elements. On the other hand using our tool, within the
same time, a designer may explore many different alternatives and create working solution that satisfies his or her needs.

5.3 Design Refinement Quality

Fig. 16 plots values for the number of cycles (No.cycle), clock cycle time (Tclk), total execution time (Texe), number
of slices and bRAMs (Slice and BRAM) for several different data paths for dct32 benchmark. All the values have been
normalized to the corresponding values of a manually designed data path for the same application. Note that the same C code
has been used as a starting point for all designs, including manual. The graphs show following data paths:

� Baseline - corresponds to a pipelined version of a baseline design for the dct32 used in 5.1

� ALU1-N and RF4x2-N - generated non-pipelined data paths for constraints ALU 1 and RF 4x2, respectively

� RF4x2-P - generated pipelined data path for constraint RF 4x2

� HLS - a design generated by academic high level synthesis tool [21]

To alleviate different assumptions of different tools and designers for wrapping the function by send/receive primitives, we
present here the results for the body of the dct32 function, contrary to experiments in 5.1. The manual implementation
has been designed by third-party RTL designer [19]. It is important to notice, that the largest normalized value accross all
metrics is 3.3 times the corresponding metric of the manual design. Hence, none of the compared metrics are several orders
of magnitude larger than the manual design. The overhead of number of cycles for generated designs range from 23% (i.e
1.23 on the graph) to 80% of the manual design, while cycle time experiences from 25% (0.85 in the figure) speedup to 25%
(1.25 in the figure) slowdown. The best generated design RF4x2-P has 1.23 times longer execution time comparing to the

20

inv/forw 4x4

0

1000

2000

3000

4000

5000

6000

7000

8000

manual
non-

pipelined

automatic
non-

pipelined

manual
pipelined

automatic
pipelined

Slice RAM

(a) Cost

inv/forw 4x4

0

20000

40000

60000

80000

100000

120000

140000

160000

manual
non-

pipelined

automatic
non-

pipelined

manual
pipelined

automatic
pipelined

Number of Cycles

(b) Performance

Figure 15. inv/forw 4x4: Number of slices, number of RAMs and number of cycles for manually selected and
automatically generated data paths

0

0.5

1

1.5

2

2.5

3

3.5

No.cycle 2.51 1.80 1.23 1.52 1.83

Tclk 1.03 1.20 1.20 0.81 1.67

Texec 2.59 2.16 1.47 1.23 3.06

Slice 0.53 0.66 0.66 0.64 1.36

BRAM 2.29 2.29 2.29 2.29 0.14

Baseline ALU1-N RF4x2-N RF4x2-P HLS

Figure 16. Performance and area comparison for dct32

manual. Baseline and all generated architectures have from 0.53 to 0.64 times slices and 2.29 times block RAMs (bRAMs)
compared to the manual design. This is because the tool attempts to map all storage elements to bRAM on FPGA. On the
other hand, the design generated by HLS tool use 1.36 times slices and only 0.14 times bRAMs due to heavy use of registers
and multiplexers. The generated designs outperform the design produced by HLS tool with respect to all the metrics except
the number of used bRAMs. Moreover, the average generation time for dct32 is 2.3 seconds while it took 3 man-weeks
for the manual design. The fastest extracted design has only 23% of execution overhead and a negligible generation time
compared to the manual design. Hence, we believe that the proposed data path extraction from C code is valuable technique
for creation an application specific data path design.

6 Conclusions and Future Work

In this paper we presented a novel problem of finding a matching data path architecture for a given application C code.
We proposed a solution in a form of technique for data path architecture extraction from the application code itself. The
technique is based on matching the code properties to hardware components and templates. The final data path architecture
was optimized to confirm to designer’s resource constraints. The proposed technique allows handling of any size of C code,

21

controllability of the design process, fine tunning of both data path and controller separately and having an arbitrary number
of components and connections. As a proof of concept, we implemented the automatic data path extraction technique and
presented a series of experiments on wide range of application size, from small to industry size. Each data path architecture
was generated in less than a minute allowing the designer to explore several different configurations in much less time
than required for finalizing a single design. The selection algorithm and our iterative design technique lead to significant
cost reduction with negligible performance degradation comparing to the corresponding designs that have been created by
designers who started from C source code. We define a total cost of a design in terms of total number of slices and RAMs
for all selected components, and performance in terms of number of the execution cycles. Our experiments showed that up
to 82.13% of slices and 87.46% of RAMs was saved. The number of execution cycles was 18.84% more in case of a single
benchmark and for the remaining benchmarks, the maximum increase in the number of cycles was 0.68%. We measured
design refinement quality on an example of dct32 for which we synthesized all the designs on an FPGA board. We also
showed that the best generated data path architecture is only 23% slower, had 2.29 times more BRAMs and 0.64 times slices
utilized comparing to the manual design.

The presented approach is geared toward performance optimization. Our current work includes incorporating the pre-
layout information in order to optimize for area, cycle time and power. The future work includes automatic determining the
best number of pipelined stages for both components and the data path as well as extracting memory hierarchy structure form
a given C code. We are also interested in using data dependency informations to guide automatic functional unit chaining,
data forwarding and utilization of special functional units.

7 Acknowledgments

The authors wish to thank Pramod Chandraiah for providing the Mp3 source code. Many thanks to Pramod Chandraiah,
Weiwei Chen, Gunar Schirner, Lin Yang and Bin Zhang for manual designs and Roger Ang, Hansu Cho and Dongwan Shin
for manual and HLS designs for dct32. We would also like to thank Mehrdad Reshadi and Bita Gorjiara for compiler support
and Verilog generator.

References

[1] 2005. Automated Configurable Processor Design Flow, White Paper, Tensilica, Inc. http://www. tensil-
ica.com/pdf/Tools white paper final-1.pdf January 2005.

[2] B. Landwehr, P. Marwedel, and R. Dömer. OSCAR: Optimum Simultaneous Scheduling, Allocation and Resource Binding Based
on Integer Programming. In Proc. European Design Automation Conference, pages 90–95, Grenoble, France, 1994. IEEE Computer
Society Press.

[3] F. Brewer and D. Gajski. Chippe: A system for constraint driven behavioral synthesis. IEEE Trans. on Computer-Aided Design, jul
1990.

[4] S. Devadas and R. Newton. Algorithms for hardware allocation in data path synthesis. IEEE Trans. on Computer-Aided Design, jul
1989.

[5] 2006. Diamond Standard Processor Core Family Architecture, White Paper, Tensilica, Inc. http://www. tensilica.com/pdf/Diamond
WP.pdf, October 2006.

[6] 2008. Forte Design System Cynthesizer http://www.forteds.com/products/cynthesizer.asp.
[7] D. Gajski. Nisc: The ultimate reconfigurable component. Technical report, Technical Report TR 03-28, University of California-

Irvine, October 2003.
[8] D. Goodwin and D. Petkov. Automatic generation of application specific processors. In Proceedings of the International Conference

on Compilers, Architecture and Synthesis for Embedded Systems, 2003.
[9] B. Gorjiara, M. Reshadi, P. Chandraiah, and D. Gajski. Generic netlist representation for system and pe level design exploration. In

Proceedings of the 4th international conference on Hardware/software codesign and system synthesis, pages 282–287, New York,
NY, USA, 2006. ACM.

[10] B. Gorjiara, M. Reshadi, and D. Gajski. Generic architecture description for retargetable compilation and synthesis of application-
specific pipelined ips. In Proceedings of International Conference on Computer Design (ICCD) (CODES+ISSS), 2006.

[11] P. Gutberlet, J. Müller, H. Krämer, and W. Rosenstiel. Automatic module allocation in high level synthesis. In Proceedings of the
Conference on European Design Automation (EURO-DAC ’92), pages 328–333, 1992.

[12] P. Marwedel. The MIMOLA system: Detailed description of the system software. In Proceedings of Design Automation Conference.
ACM/IEEE, June 1993.

[13] 2008. Mentor Graphics Catapult Synthesis http://www.mentor.com/products/esl/ high level synthesis/catapult synthesis/index.cfm.
[14] 2008. Mentor Graphics Technical Publications: Alcatel Conquers the Next Frontier of Design Space Exploration using Catapult C

Synthesis http://www.mentor.com/techpapers/fulfillment/upload/mentorpaper 22739.pdf.

22

[15] 2008. Mentor Graphics Technical Publications: Designing High Performance DSP Hardware using Catapult C Synthesis and the
Altera Accelerated Libraries http://www.mentor.com/techpapers/fulfillment/upload/mentorpaper 36558.pdf.

[16] 2008. Mentor Graphics Technical Publications http://www.mentor.com/training and services/tech pubs.cfm.
[17] 2008. NEC CyberWorkBench http://www.necst.co.jp/product/cwb/english/index.html.
[18] P. Paulin and J. Knight. Force-directed scheduling for the behavioral synthesis of ASICs. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, jun 1989.
[19] R. Ang http://www.cecs.uci.edu/presentation slides/ESE-BackEnd2.0-notes.pdf.
[20] M. Reshadi and D. Gajski. A cycle-accurate compilation algorithm for custom pipelined datapaths. In International Symposium on

Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2005.
[21] D. Shin, A. Gerstlauer, R. Dömer, and D. D. Gajski. An interactive design environment for C-based High-Level Synthesis. In

A. Rettberg, M. C. Zanella, R. Dömer, A. Gerstlauer, and F.-J. Rammig, editors, IESS, volume 231 of IFIP, pages 135–144. Springer,
2007.

[22] 2005. Stretch. Inc.: S5000 Software-Configurable Processors http://www.stretchinc.com/products/ devices.php.
[23] 2005. Tensilica: Xtensa LX http://www.tensilica.com/products/xtensa LX.htm.
[24] J. Trajkovic, M. Reshadi, B. Gorjiara, and D. Gajski. A graph based algorithm for data path optimization in custom processors. In

Proceedings of 9th EUROMICRO Conference on Digital System Design, pages 496–503. IEEE Computer Society, 2006.
[25] F.-S. Tsai and Y.-C. Hsu. STAR: An automatic data path allocator. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 2(9):1053–1064, september 1992.
[26] C. Tseng and D. Seiwiorek. Automated synthesis of data paths in digital systems. IEEE Trans. on Computer-Aided Design, 1986.
[27] K. Wakabayashi. C-based synthesis experiences with a behavior synthesizer, Cyber. In DATE ’99: Proceedings of the conference on

Design, Automation and Test in Europe, page 83, 1999.

23

