
A Tool for Equivalence Verification of TLMs using Model
Algebra

Lochi Yu, Samar Abdi, Daniel Gajski

UCI Technical Report TR-08-04
Feb. 28, 2008

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8919

{lochi.yu,sabdi,gajski}@uci.edu

Abstract

This report presents a tool for functional equivalence verification of transaction level mod-
els (TLMs). The tool is based of the theory of Model Algebra which provides the objects and
composition rules needed to abstract TLMs into symbolic expressions. Synthesis and verifi-
cation of TLMs is made possible by the manipulation of these symbolic expressions using the
transformation rules of Model Algebra. We define the verification problem in the context of
platform based design. Functional TLMs that are refined as a result of design optimization are
verified against original TLMs for consistency. We describe the Application Program Interface
for the Model Algebrabased verification tool. The tool is composed of two main parts: the
model creation component and the verifier component. The first API allows the user to abstract
TLMs into model algebraic expressions, while the second API allows the application of different
transformations on the expressions as well as algorithms for automatic equivalence checking
for certain refinements.

1

Contents

1 Introduction 1

2 Application Program Interfaces 3
2.1 Class Structure . 3
2.2 Model Algebra’s objects . 3

2.2.1 Behavior . 4
2.2.2 Variable . 5
2.2.3 Condition . 5
2.2.4 Channel . 5
2.2.5 Link . 5
2.2.6 Port . 6
2.2.7 Control Dependency . 6
2.2.8 Data Dependencies . 6

2.3 Model Input API . 6
2.3.1 Basic functions . 6
2.3.2 Complex functions . 10

2.4 Verifier API . 11
2.4.1 Control functions . 11
2.4.2 Transformation functions . 11
2.4.3 Examples . 12

3 Tool Usage 12
3.1 Calling the Tool . 12
3.2 Using the Graphical Interface . 12
3.3 Creating Models: an example . 16

3.3.1 Program explanation . 17
3.3.2 Example: Modeling a CASE statement 18

4 Acknowledgments 18

References 18

i

List of Figures

1 Architecture and functional refinement in platform based design. 1
2 TLM equivalence verification problem. 2
3 Initial screen . 13
4 Flattening Rule Icon . 13
5 Channel Resolution Icon . 13
6 Identity Elimination Rule Icon . 14
7 Control Elimination Rule Icon . 14
8 Control Relaxation Rule Icon . 14
9 Automatic Rule Application Icon . 14
10 Print Statistics Icon . 14
11 Improve Layout Icon . 15
12 Check for Isomorphism Icon . 15
13 Save and Quit Icon . 15
14 Representation of a CASE statement . 19

ii

A Tool for Equivalence Verification of TLMs using Model Algebra

L. Yu, S. Abdi, D.Gajski
Center for Embedded Computer Systems

University of California, Irvine

Feb. 28, 2008

1 Introduction

With the growing complexing of modern systems, the abstraction level for specifying such systems
has moved above RTL. The so called transaction level modeling (TLM) approach is being increas-
ingly adopted to cope with the amount of software and heterogeneous cores in current systems.
However, using TLM exclusively for modeling without giving thought to synthesis and verification
is a trap that must be avoided. For TLMs to be synthesizable and verifiable, well defined TLM
semantics are required. Existing formalisms for RTL design such as FSDM or boolean algebra are
insufficient to express TLMs. Therefore, new formalisms for TLM based design are needed. Fur-
thermore, the TLM semantics must allow simulation models written in languages like SystemC [1]
to be easily abstracted into mathematical expressions for symbolic manipulation.

b1

v

b2

p

PE1
PE2

Mem
Bus

b1

v

b2

p

PE1

b1

v

e1

p1

PE1

e2

b2

p2

PE2

Mem
Bus

c

(a) (b) (c)

Architecture
Refinement

Function
Refinement

b1

v

b2

p

PE1
PE2

Mem
Bus

b1

v

b2

p

PE1

b1

v

e1

p1

PE1

e2

b2

p2

PE2

Mem
Bus

c

(a) (b) (c)

Architecture
Refinement

Function
Refinement

Figure 1: Architecture and functional refinement in platform based design.

Model Algebra [3][2] is one such formalism that can be used for refinement and verification of
TLMs. As part of the GSRC initiative on core design technologies, Model Algebra based TLM

1

verification is being applied to the Platform based Design [5] paradigm as implemented in the
Metropolis II [4] framework. Figure 1 shows a simple design optimization step in the platform based
approach. The basic concept is the separation of functional and architectural modeling. Executable
models are defined in the functional space which platform netlists are defined in the architecture
space. Subsequently, a mapping is defined from the functional to architecture space, that allows
designers to evaluate useful metrics. A key assumption is a many to one mapping from the function
space to the architecture space. This constraint is neccessary to produce an unambiguous design.

Figure 1(a) shows a simple mapping of a sequential composition of two functional objects
(called behaviors) onto a processing element (PE) in the architecture. Now, assume that the de-
signer figures that this mapping does not produce a satisfactory execution time. So, he or she may
select another PE (PE2) that is optimized for behavior b2. The new architecture is shown in Figure
1(b). However, in this new function and architecture specification, there is no feasible mapping.
This is because a sequential composition cannot be mapped to a concurrent architecture. Therefore,
the function must now be refined to the one shown in Figure 1(c) by isolating b2 into a concurrent
process. A synchronization channel is added to keep the execution order between b1 and b2. This
new refined functional model is now mappable to the refined architecture.

b1

v

e1

p1
e2

b2

p2

c

b1

v

b2

p

?
b1

v

e1

p1
e2

b2

p2

c

b1

v

b2

p

?

Figure 2: TLM equivalence verification problem.

As we saw in the optimization example above, functional models may need to be refined every
time the architecture netlist is modified. It is imperative that each such refinement be functionality
preserving. This poses the TLM functional equivalence problem as illustrated in Figure 2. The
problem is to verify that any functional refinement produces a TLM that is functionally equivalent
to the original TLM. In this paper we propose such a tool based on Model Algebra that verifies
equivalence of two well formed TLMs. By well formed, we mean that the TLMs must follow the
semantics of the objects and composition rules of Model Algebra. The theory of Model Algebra
has been published in [3]. Here, we present the specific application programming interfaces (APIs)
that have been developed to facilitate construction of algebraic TLMs and to perform symbolic
transformations on them in conformance with the rules of Model Algebra. We also present the
usage of the verification tool and an explanation of the tool’s graphical user interface (GUI).

2

2 Application Program Interfaces

2.1 Class Structure

Our models are composed of objects and the relationships between them: Behaviors, Control De-
pendencies, Data Dependencies, Ports, Variables, Links and Channels. For each of these objects,
there exists a class with different attributes and methods. In order to construct the relationships be-
tween them, and set those attributes, the tool offers the class Design. Once the model is constructed,
the class Verifier is used to transform it and check its equivalency with another model.

2.2 Model Algebra’s objects

Each of the following classes contain a set of attributes which are written and read by the following
way:

• Class: ABC

• Instance name: abc

• Attribute: xyz

• Write attribute: abc→set xyz(char * value)

• Read attribure: char * value = abc→get xyz(void)

In addition to these attributes there can be a sequence of other objects, which can be accessed by
the following way:

• Sequence: mno

• Reset counter: abc→set mno index(0)

• Get next object: mno * mno = abc→get mno next()

• Get a particular object: mnp * mno = abc→get mno idx(int number)

• Add an object: abc→add mno element(class mno *)

• Delete an object: abc→del mno element(int number)

These objects must be added to an instance of the class Design.

3

2.2.1 Behavior

Attributes:

• id: name of the instance

• parent: name of the parent behavior

• type: type of behavior (hierarchical, identity, leaf)

• vsp: virtual starting point identity behavior

• vtp: virtual terminating point identity behavior

Sequences:

• behavior: subbehaviors inside this behavior

• variable

• condition

• channel

• link

• port

• cd: control dependencies

• dd var nb read: data dependency non-blocking read from a variable

• dd var nb write: data dependency non-blocking write to a variable

• dd port nb read: data dependency non-blocking read from a port

• dd port nb write: data dependency non-blocking write to a port

• dd port b read: data dependency blocking read from a port

• dd port b write: data dependency blocking write to a port

• dd ch nb read: data dependency non-blocking read from a channel

• dd ch nb write: data dependency non-blocking write to a channel

Methods: All objects should be constructed inside a ’top’ behavior. In order to save the design, the
following function should be used:

• void print to file(FILE * filename, int ident): the file pointer should be provided, as well as
the starting indentation of the behavior (use 0). The extension of the filenames used in this
tool is .mag.

4

2.2.2 Variable

Attributes:

• id: name of the instance

• parent: name of the parent behavior

2.2.3 Condition

Attributes:

• id: name of the instance

• parent: name of the parent behavior

• type

• name

2.2.4 Channel

Attributes:

• id: name of the instance

• parent: name of the parent behavior

Sequences:

• link

2.2.5 Link

Attributes:

• id: name of the instance

• parent: name of the parent behavior

• sender

• receiver

5

2.2.6 Port

Attributes:

• id: name of the instance

• parent: name of the parent behavior

• direction: direction of the data flow

• portmap: mapping to a variable or another port

2.2.7 Control Dependency

Attributes:

• id: name of the instance

• parent: name of the parent behavior

• condition: condition to which this control dependency maps

• predecessors: behaviors that precede this control dependency

• successor: behavior that follows this control dependency

2.2.8 Data Dependencies

The data dependencies classes are differentiated by the direction of the data flow, type and object:
read/write, blocking/nonblocking, variable/port/channel. Attributes:

• id: name of the instance

• parent: name of the parent behavior

• address

• source

• destination

2.3 Model Input API

2.3.1 Basic functions

ERROR addBehavior(behavior *be, char *id, behavior *parent) Adds a previously instanti-
ated behavior to the design. If it’s added as a subbehavior, the parent must be specified; otherwise,
it should be NULL.

6

ERROR addHierBehavior(behavior *be,char *id,behavior *parent) Same as addBehavior,
except that it calls add vsp vtp (see below) by default.

ERROR behaviorExists(char *id) Returns NO ERROR if the specified behavior exists in the
design. Returns ERROR BEHAVIOR NOEXISTS otherwise.

behavior* getBehavior(char *id) Returns the pointer to a behavior given its ID.

ERROR addIdentity(behavior *be,behavior *parent) Adds an Identity Behavior as a subbe-
havior to a parent. The ID is chosen by using an internal counter.

ERROR addCD(behavior*be, char *id, list〈behavior*〉 predecessors, behavior *successor)
Creates a Control Dependency object, given the parent behavior, its ID, a list of predecessing be-
haviors, and a successor behavior.

ERROR addCD(behavior*be, list〈behavior*〉 predecessors, behavior *successor) Creates a
Control Dependency object, given the parent behavior, a list of predecessing behaviors, and a suc-
cessor behavior. Its ID is chosen using the character ’q’ followed by a number taken from an internal
counter.

ERROR addCD(behavior*be, char *id, list〈behavior*〉 predecessors, behavior *succes-
sor,variable *var) Creates a Control Dependency object which depends on a variable, given the
parent behavior, its ID, a list of predecessing behaviors, a successor behavior and the variable which
it depends on.

ERROR addCD(behavior*be, list〈behavior*〉 predecessors, behavior *successor,variable
*var) Creates a Control Dependency object, given the parent behavior, a list of predecessing be-
haviors, a successor behavior and the variable which it depends on.

ERROR addCD(behavior*be, char *id, list〈behavior*〉 predecessors, behavior *successor,
port *pt) Creates a Control Dependency object which depends on a port, given the parent be-
havior, its ID, a list of predecessing behaviors, a successor behavior and the port which it depends
on.

ERROR addTrueCD(behavior*be,behavior *predecessor, behavior *successor) Creates a
Control Dependency object which is always true, given the parent behavior, a list of predecessing
behaviors, and a successor behavior.

7

void add vsp vtp(behavior *be) Adds the Virtual Starting Point and Virtual Terminating Point
to a given behavior.

behavior *getvsp(behavior *be) Returns the pointer to the VSP behavior, given its parent.

behavior *getvtp(behavior *be) Returns the pointer to the VTP behavior, given its parent.

ERROR addPort(behavior *be,char *portname,char *direction, char *map) Adds a port to
a behavior, given its name, direction and if it’s mapped to another port or variable.

port *getPort(behavior *be, char *portname) Returns the pointer to a port given its name and
parent.

variable * addVar(behavior *be,char *varname) Adds a varialbe to a behavior, given its name
and parent.

variable *getVar(behavior *be,char *varname) Returns the pointer to a variable given its name
and parent.

ERROR addDDVNBW(behavior *be, port *sourceport,variable *destvar) Adds a data de-
pendency - non blocking write to a variable, given its parent, source port and destination variable
pointers.

ERROR addDDVNBW(behavior *be,char *id, port *sourceport,variable *destvar) Adds a
data dependency - non blocking write to a variable, given its parent, ID, source port and destination
variable pointers.

ERROR addDDVNBR(behavior *be, variable *sourcevar, port *destport) Adds a data de-
pendency - non blocking read from a variable, given its parent, source port and destination variable
pointers.

ERROR addDDVNBR(behavior *be,char *id, variable *sourcevar, port *destport) Adds a
data dependency - non blocking read from a variable, given its parent, ID, source port and destina-
tion variable pointers.

ERROR addDDPBW(behavior *be,char *id, port *source, port *destination) Adds a data
dependency - blocking write to a port, given its parent, ID, source port and destination port pointers.

8

ERROR addDDPBW(behavior *be, port *source, port *destination) Adds a data dependency
- blocking write to a port, given its parent, source port and destination port pointers.

ERROR addDDPBR(behavior *be,char *id, port *source, port *destination) Adds a data de-
pendency - blocking read from a port, given its parent, ID, source port and destination port pointers.

ERROR addDDPBR(behavior *be, port *source, port *destination) Adds a data dependency
- blocking read from a port, given its parent, source port and destination port pointers.

ERROR addChannel(behavior *be, channel *ch, char *id) Adds a channel given its parent and
ID.

ERROR addDDCHW(behavior *be,char *id,port *sourceport, channel *destinationch)
Adds a data dependency - write to a channel, given its parent, ID, source port and destination
channel.

ERROR addDDCHR(behavior *be,char *id,channel *sourcech, port *destport) Adds a data
dependency - read from a channel, given its parent, ID, source channel and destination port.

ERROR addLink(behavior *be,char *id,channel *ch,port *source, port *destination) Adds
a link between a source and destination ports to a given channel.

ERROR addLink(behavior *be,channel *ch,port *source, port *destination) Adds a link be-
tween a source and destination ports to a given channel.

ERROR addDDPNBW(behavior *be,char *id, port *source, port *destination) Adds a data
dependency - non blocking write to a port, given its parent, ID, source port and destination port.

ERROR addDDPNBW(behavior *be, port *source, port *destination) Adds a data depen-
dency - non blocking write to a port, given its parent, source port and destination port.

ERROR addDDPNBR(behavior *be,char *id, port *source, port *destination) Adds a data
dependency - non blocking read from a port, given its parent, ID, source port and destination port.

ERROR addDDPNBR(behavior *be, port *source, port *destination) Adds a data depen-
dency - non blocking read from a port, given its parent, source port and destination port.

9

2.3.2 Complex functions

ERROR addHierBehaviorReturn(behavior *be,char *be name,behavior *parent) This will
add a hierarchical behavior, add the port that will write its return value and add the variable. The
variable will be named ’behaviorname result’, and the corresponding data dependency will also be
added. The output port will be named ’behaviorname return port’.

ERROR addBehaviorReturn(behavior *be,char *be name,behavior *parent) This will add a
behavior, add the port that will write its return value and add the variable. The variable will be
named ’behavior result’, and the corresponding data dependency will also be added.The output port
will be named ’behaviorname return port’.

void addReturnBeh(behavior *be,variable *result) Adds a behavior that reads a given variable,
writes to its parent output port (’behaviorname return port’) and goes to the VTP.

behavior * addReturnBeh(behavior *be,port *pt) Adds a behavior that will write to given port
and goes to the VTP of its parent. It is basically a behavior that returns a constant.

void addB2Vrw(behavior *be, behavior *parent, variable *var) Will take a behavior and a
variable and create the two ports, and two data dependencies (variable non blocking read and write).

void addB2Vr(behavior *be, behavior *parent, variable *var) Will take a behavior and a vari-
able and create a port and a non blocking read.

void addB2Prw(behavior *be, behavior *parent, port *ptin, port *ptout) Will take a behavior
and two ports, and create the two data dependencies (port non blocking read and write).

void addB2Pr(behavior *be, behavior *parent, port *ptin) Will take a behavior and a port and
create a data dependency - non blocking read.

void addB2Pw(behavior *be, behavior *parent, port *ptout) Will take a behavior and a port
and create a data dependency - non blocking write.

behavior * addRWId(behavior *parent, char *varread, char *varwrite) Will create an iden-
tity behavior that will read from a variable and write into another

void addCase(behavior *parent, behavior *initial, behavior *final) Adds a CASE statement:
will create a behavior reading from a variable, write into another and proceed if true to another
behavior. Will create the behavior, the CD, the DD and the second variable

10

void addIf(list〈behavior*〉 funcs,behavior *parent,behavior *startbeh, behavior *ifbeh, be-
havior *elsebeh) IF statement with just one function call //if (func(any parameter)==12) else
//assumes the return variable named: func return

void addFor(behavior *parent, behavior *be, behavior *loopstart, behavior *loopend, behav-
ior *exitb) FOR statement, need to manually set the variable DDs

2.4 Verifier API

2.4.1 Control functions

int transform(behavior *, int enable) Takes a behavior and opens the graphical interface. The
enable int can be 0 for no graphics displayed in the canvas, 1 for displaying just behaviors and
control dependencies (no data dependencies nor variables), and 2 for full graphics.

int verify(behavior *, behavior *, int enable) Takes two behaviors and opens the graphical in-
terface. The ’Check Equivalency’ icon will be enabled (see below). The enable int can be 0 for no
graphics displayed in the canvas, 1 for displaying just behaviors and control dependencies (no data
dependencies nor variables), and 2 for full graphics.

void printStats(behavior *) Prints the statistics of rules applied. See below in ’Statistics Icon’.

2.4.2 Transformation functions

STATUS flatten(behavior *be)

STATUS flattenChannels(behavior *be)

STATUS identityElimination(behavior *be)

STATUS controlElimination(behavior *be)

STATUS controlRelaxation(behavior *be)

11

2.4.3 Examples

3 Tool Usage

3.1 Calling the Tool

There are several options when calling tlmver: either using the graphical interface to visualize and
decide each transformation, or automatically call the transformation rules with no graphical output.
The option -display will invoke the graphical tool (uDrawGraph); if not given, the default is to print
the final results in the standard output. The options are:

$ tlmver -display file.mag Will load the model saved as file.mag and display it using uDraw-
Graph. The transformation rules can be applied using the enabled icons.

$ tlmver -reduce file.mag -o reduced.mag Will load the model saved as file.mag and reduce it
using all the transformation rules. When the transformation rules can no longer reduce the model,
it will be saved as reduced.mag.

$ tlmver -model file.mag -ref reference.mag Will load two models, take the one in file.mag and
apply the transformation rules automatically. When the transformation rules can no longer reduce
the model, it will check for equivalency with the model in reference.mag. Note: the model in
reference.mag will not be transformed before the equivalency check.

$ tlmver -display -model file1.mag -ref file2.mag Will load both models and display them both
using uDrawGraph. The reference model will be shown in a smaller window, and the first model
will be the only one that can be transformed using the icons.

$ tlmver -help This will display the help message with the different options of the tool.

3.2 Using the Graphical Interface

The graphical interface is handled by uDrawGraph which is released under LGPL.
When it opens, the screen will show as Figure 3.
The graphical user interface is composed of basically 2 parts: the canvas and the control panel

on the left.

Control Panel This panel is composed of these icons:

AUTO This applies the previous rules iteratively until all of them fail to produce a transformation.

12

Figure 3: Initial screen

Figure 4: Flattening Rule Icon

Figure 5: Channel Resolution Icon

13

Figure 6: Identity Elimination Rule Icon

Figure 7: Control Elimination Rule Icon

Figure 8: Control Relaxation Rule Icon

Figure 9: Automatic Rule Application Icon

Figure 10: Print Statistics Icon

14

Statistics Prints the summary of all rules applied, the number of times it was applied, the order
of the transformations, the total transformation time, and graphical statistics (number of objects and
relationships).

Figure 11: Improve Layout Icon

Layout Since objects and edges can be dragged and the transformation rules themselves will
delete objects and create new ones, the canvas may be disorganized after a few transformations,
especially in complex models. In order to adjust the canvas to further optimize the use of its space
and be able to visualize better the model, this icon will reorganized all objects and edges the best
way it can.

Figure 12: Check for Isomorphism Icon

Isomorphism This icon is only enabled when a model and a reference model are loaded into the
design. Will check both models for isomorphism. Does not apply any transformation on any model.

Figure 13: Save and Quit Icon

Saving and Quitting This will take the model being transformed and save it under the name of
the top behavior’s name plus the string ” reduced.mag”.

Canvas The canvas is the whitespace where all objects and relations are displayed. All objects
and edges in the canvas can be dragged, but no addition nor deletion can be made. All modifications
of the model should be made either in its creation phase (design class) or using the transformation
icons (which uses the verifier class).

The representation of the objects is shown in the Table 1.

15

Table 1: Legend for canvas’ objects
Object Representation

Behavior Single Frame Rectangle
Hierarchical Behavior Double Frame Rectangle

Identity Behavior Red Rectangle
Control Dependency Circle

Channel Light Blue Oval
Link Bold Blue Line

Data Dependency Green and Red Lines
Variable Green Rectangle

Control Flow Dashed Line

3.3 Creating Models: an example

Starting from C code, the user is able to create a representation in Model Algebra. For the following
C code, we need to construct the model.

i n t v ;
f1(&v) ;
i f (v<CONSTANT){

f2(&v) ;
5 }

The corresponding model is created by the following code, which is in the file model1.cc in the
directory examples/api tests/model1.cc.

/ / create new behavior
design ∗des = new design () ;
behavior ∗ top = new behavior ;
des−>addBehavior (top , ” top ” ,NULL) ;

5 des−>add vsp vtp (top) ;

l i s t <behavior∗> predecessors ;

behavior ∗b = new behavior ;
10 des−>addBehavior (b , ”b” , top) ;

predecessors . push front (des−>getvsp (top)) ;
des−>addCD(top , ”q1” , predecessors , b) ;
predecessors . c l e a r () ;
des−>addPort (b , ” b out ” , ”OUT” , ” por t ”) ;

15 behavior ∗bq= new behavior ;
des−>addBehavior (bq , ”bq” , top) ;
predecessors . push front (b) ;
des−>addCD(top , ”q2” , predecessors , bq) ;
predecessors . c l e a r () ;

20 des−>addPort (bq , ” bq in ” , ”IN” , ” por t ”) ;

16

des−>addPort (bq , ” bq out ” , ”OUT” , ” por t ”) ;
des−>addVar (top , ” var ”) ;
des−>addDDVNBW(top , ”bwr” , des−>getPor t (b , ” b out ”) , des−>getVar (top , ” var ”)) ;
des−>addDDVNBR(top , ”bqr” , des−>getVar (top , ” var ”) , des−>getPor t (bq , ” bq in ”)) ;

25
des−>addVar (top , ” varq ”) ;
des−>addDDVNBW(top , ”bqw” , des−>getPor t (bq , ”bq\ out ”) , des−>getVar (top , ” varq ”)) ;
behavior ∗ f = new behavior ;
des−>addBehavior (f , ” f ” , top) ;

30 des−>addPort (f , ” f i n ” , ”IN” , ” por t ”) ;
predecessors . push front (bq) ;
des−>addCD(top , ”q3” , predecessors , f , des−>getVar (top , ”varq ”)) ;
des−>addCD(top , ”q4” , predecessors , des−>getvtp (top) , des−>getVar (top , ” varq ”)) ;
predecessors . c l e a r () ;

35
des−>addDDVNBR(top , ” rd ” , des−>getVar (top , ” var ”) , des−>getPor t (f , ” f\ i n ”)) ;

/ / add contro l dependencies
predecessors . push front (f) ;

40 des−>addCD(top , ”q5” , predecessors , des−>getvtp (top)) ;
predecessors . c l e a r () ;

FILE ∗output ;
output=fopen (”model1 .mag” , ”w”) ;

45 top−>p r i n t t o f i l e (output , 0) ;
f c lo se (output) ;

3.3.1 Program explanation

In lines 2 to 5, a new design is created and a top behavior is created and added into the design. The
Virtual Starting and Terminating Points are added to the top behavior as well. In lines 9 to 12, a
behavior ’b’ is created and inserted into the top behavior. Control flow is specified by the use of
a list of predecessor behaviors (in this case only the VSP of ’top’); so that the VSP flows into the
newly created behavior ’b’. A port is inserted into ’b’. Another behavior ’bq’ is created, inserted
into ’top’ , its ports and control flow specified (lines 15 to 20). The control flow would go from the
VSP, to ’b’ and then to ’bq’. A variable ’var’ is created, and data will be written from the output port
in ’b’ and read from the input port in ’bq’ (lines 23 and 24). Another variable ’varq’ will be written
by ’bq’ (lines 26,27). There are two more Control Dependencies ’q3’ and ’q4’ which direct the flow
depending on the value in ’varq’; it may go either to the behavior ’f’ or the VTP of ’top’ (lines 32
and 33). Finally, a behavior ’f’ will read ’var’ and finish in the VTP of ’top’(named vtp top by the
function add vsp vtp). The resulting model is shown in Figure 1 below.

17

3.3.2 Example: Modeling a CASE statement

The previous example showed how to model an IF statement. For a Case statement, there are some
complex functions that can be used to speed up the model creation. For instance, for the following
code:

switch (e r r o r (e r ro r da ta , stream , frame)) {
case MAD FLOW STOP:

goto done ;
case MAD FLOW BREAK:

5 goto f a i l ;
case MAD FLOW IGNORE:

break ;
case MAD FLOW CONTINUE:
d e f a u l t :

10 continue ;
}

The API calls could be:

behavior ∗mad recoverable = new behavior ;
d−>addBehaviorReturn (mad recoverable , ” mad recoverable ” , run sync) ;
d−>addB2Vrw(mad recoverable , run sync , stream) ;
pred . push front (mad recoverable) ;

5 d−>addIf (pred , run sync , id2 , er ror , end) ;
pred . c l e a r () ;
d−>addCase (run sync , er ror , mad synth f inish) ;
d−>addCase (run sync , er ror , f a i l) ;
d−>addCase (run sync , er ror , e r r o r) ;

10 d−>addCase (run sync , er ror , end) ;

The tool would represent this model as shown in Figure 14.

4 Acknowledgments

This work was supported in part by the Gigascale Systems Research Corporation (GSRC) under its
Heterogeneous Systems Design pillar (Task 1.4.3.2).

References

[1] SystemC, OSCI[online]. Available: http://www.systemc.org/.

[2] S. Abdi and D. Gajski. A formalism for functionality preserving system level transformations.
In Proceedings of the Asia-Pacific Design Automation Conference, pages 139–144, 2005.

18

Figure 14: Representation of a CASE statement

[3] S. Abdi and D. Gajski. Verification of system level model transformations. International Jour-
nal of Parallel Programming, 34(1):29–59, 2006.

[4] A. D. et al. A next-generation design framework for platform-based design. In Conference on
Using Hardware Design and Verification Languages (DVCon), February 2007.

[5] A. Sangiovanni-Vincentelli. Defining platform-based design. EEDesign of EETimes, February
2002.

19

	1 Introduction
	2 Application Program Interfaces
	2.1 Class Structure
	2.2 Model Algebra's objects
	2.2.1 Behavior
	2.2.2 Variable
	2.2.3 Condition
	2.2.4 Channel
	2.2.5 Link
	2.2.6 Port
	2.2.7 Control Dependency
	2.2.8 Data Dependencies

	2.3 Model Input API
	2.3.1 Basic functions
	2.3.2 Complex functions

	2.4 Verifier API
	2.4.1 Control functions
	2.4.2 Transformation functions
	2.4.3 Examples

	3 Tool Usage
	3.1 Calling the Tool
	3.2 Using the Graphical Interface
	3.3 Creating Models: an example
	3.3.1 Program explanation
	3.3.2 Example: Modeling a CASE statement

	4 Acknowledgments
	References

