

1

Assessment of Productivity Gains
Achieved through Automated Source Re-Coding

Pramod Chandraiah and Rainer Dömer

Technical Report CECS-08-02

February 15, 2008

Center for Embedded Computer Systems

University of California, Irvine

Irvine, CA 92697, USA

pramodc@cecs.uci.edu, doemer@cecs.uci.edu

http://www.cecs.uci.edu/

Center for Embedded Computer Systems
University of California, I rvine

2

Assessment of Productivity Gains
Achieved through Automated Source Re-Coding

Pramod Chandraiah and Rainer Dömer

pramodc@cecs.uci.edu, doemer@cecs.uci.edu

Technical Report CECS-08-02

February 15, 2008

Center for Embedded Computer Systems

University of California, Irvine

Irvine, CA 92697, USA

Abstract

The input SoC specification plays a vital role in determining the quality of end
implementation. Creating a SoC specification acceptable to the synthesis and refinement
tools is immensely time-consuming and often this task dominates the time taken by the
overall synthesis process. To overcome this bottleneck in the synthesis design flow, we
have proposed a source re-coder. Our Source re-coder integrates manual specification
programming with interactive automation. By replacing textual re-coding with automatic
code transformations, our source re-coder makes it possible to create a SoC specification
in significant shorter time.

In this report, we assess the productivity gains that can be achieved using our source re-
coder. We have conducted an experiment on a class of students. The students were asked
to provide the times needed to manually implement some important code transformations,
and also the automatic times needed to implement the same transformations using our
source re-coder. Based on the data collected from the students, we analyze and assess the
productivity gains that can be achieved.

This technical report documents our experiments, analyzes the results, and provides some
insights on potential productivity gains achievable through our source recoder approach.
We conclude that our source re-coder is very effective and time efficient in re-coding SoC
models and that productivity gain of multiple orders of magnitude are possible by use of
automated recoding. We also extract some empirical quantities, such as the number of
lines coded per designer hour, which can serve as reference to estimate manual and
automatic coding times for future experiments.

3

Contents
1 Introduction... 5

1.1 Source Re-Coder ... 6

2 Experiments.. 7

2.1 Setup... 7

2.2 Experiment 1... 7

2.3 Experiment 2... 7

2.4 Experiment 3... 8

3 Comparison and Analysis.. 8

3.1 Function to Behavior (F2B) Recoding ... 8

3.2 Analysis of F2B Transformation.. 9

3.3 Statement to Behavior (S2B) Recoding.. 10

3.4 Analysis of S2B operation... 11

3.5 Pointer Re-coding.. 11

3.6 Analysis of Pointer Re-coding operation.. 12

3.7 Additional Feedback.. 12

4 Generalization for Future Estimation... 13

5 Challenges in Measuring Productivity Gains... 14

6 Conclusions... 16

7 Acknowledgements... 16

8 Reference.. 17

A1. Student Instructions for Experiment 1.. 18

A2. Times Reported by Students for Experiment 1.. 22

A3. Student Instructions for Experiment 2.. 24

A4. Times Reported by Students for Experiment 2.. 30

A5. Student Instructions for Experiment 3.. 32

A6. Times Reported by Students for Experiment 3.. 38

4

List of Figures
Figure 1: Plot of Gains for different students... 9

Figure 2 Plot of Gains for different students.. 11

Figure 4 Plot of gains for different students... 12

Figure 5: Page-1 of Student Instructions for Experiment 1 .. 18

Figure 6: Page-2 of Student Instructions for Experiment 1 .. 19

Figure 7: Page-3 of Student Instructions for Experiment 1 .. 20

Figure 8: Page-4 of Student Instructions for Experiment 1 .. 21

Figure 9: Page-1 of Student Instructions for Experiment 2 .. 24

Figure 10: Page-2 of Student Instructions for Experiment 2 .. 25

Figure 11: Page-3 of Student Instructions for Experiment 2 .. 26

Figure 12: Page-4 of Student Instructions for Experiment 2 .. 27

Figure 13: Page-5 of Student Instructions for Experiment 2 .. 28

Figure 14: Page-6 of Student Instructions for Experiment 2 .. 29

Figure 15: Page-1 of Student Instructions for Experiment 3 .. 32

Figure 16: Page-2 of Student Instructions for Experiment 3 .. 33

Figure 17: Page-3 of Student Instructions for Experiment 3 .. 34

Figure 18: Page-4 of Student Instructions for Experiment 3 .. 35

Figure 19: Page-5 of Student Instructions for Experiment 3 .. 36

Figure 20: Page-6 of Student Instructions for Experiment 3 .. 37

5

Assessment of Productivity Gains
Achieved through Automated Source Re-Coding

Pramod Chandraiah and Rainer Dömer

pramodc@cecs.uci.edu, doemer@cecs.uci.edu

Center for Embedded Computer Systems

University of California Irvine

Abstract

The input SoC specification plays a vital role in determining the quality of end
implementation. Creating a SoC specification acceptable to the synthesis and refinement
tools is immensely time-consuming and often this task dominates the time taken by the
overall synthesis process. To overcome this bottleneck in the synthesis design flow, we
have proposed a source re-coder. Our Source re-coder integrates manual specification
programming with interactive automation. By replacing textual re-coding with automatic
code transformations, our source re-coder makes it possible to create a SoC specification
in significant shorter time.

In this report, we assess the productivity gains that can be achieved using our source re-
coder. We have conducted an experiment on a class of students. The students were asked
to provide the times needed to manually implement some important code transformations,
and also the automatic times needed to implement the same transformations using our
source re-coder. Based on the data collected from the students, we analyze and assess the
productivity gains that can be achieved.

This technical report documents our experiments, analyzes the results, and provides some
insights on potential productivity gains achievable through our source recoder approach.
We conclude that our source re-coder is very effective and time efficient in re-coding SoC
models and that productivity gain of multiple orders of magnitude are possible by use of
automated recoding. We also extract some empirical quantities, such as the number of
lines coded per designer hour, which can serve as reference to estimate manual and
automatic coding times for future experiments.

1 Introduction
Motivated by the need to meet the time to market and aggressive design goals like low
power, high performance and low cost, researchers have proposed various methodologies
for effective design development, including top-down and bottom-up approaches. All
these technological advances have significantly reduced the development time of
embedded systems. However, design time is still a bottleneck in the production of
systems, and further reduction through automation is necessary.

One critical aspect neglected in optimization efforts so far is the design specification
phase, where the intended design is captured and modeled for use in the design flow.

6

Design flows today assume the availability of a high-quality specification, requiring the
designer to manually create this specification. Today’s design flows do not take
advantage of the availability of reference models of application which can used to create
a suitable quality specification in a System Level Design Languages (SLDL).

In our research, we address this problem of creating the SoC specification. By combining
the manual coding with controlled automation, our re-coding approach aids in faster
creation of a quality SoC specification.

To aid the designer in coding and re-coding, we have proposed a source re-coder. Our
source re-coder is a controlled, interactive approach to implement analysis and code
transformation tasks. Some of the transformations supported by source re-coder have
been discussed in [1, 2, 4, 5]. The details of the source re-coder itself are presented in [3].
One of the main advantages of the source re-coder are the gains in the designer
productivity due to the effective automation (compared to manual programming).

In our previous articles, the gains reported were based on the experiments conducted by a
single experienced designer. In this report, we present the experiments and results
conducted by a class of 15 students using source re-coder. These results not only
corroborate our previous claim of significant productivity gains, but also show the need
for automatic programming tools like our source re-coder.

1.1 Source Re-Coder
Our source re-coder is a controlled, interactive approach to implement analysis and
transformation tasks. In other words, it is an intelligent union of editor, compiler, and
powerful transformation and analysis tools. The conceptual organization of the source re-
coder is shown in [3]. Unlike other program transformation tools, our approach provides
complete control to generate and modify a specification model suitable for the design
flow. By making the re-coding process interactive, we rely on the designer to concur,
augment or overrule the analysis results of the tool, and use the combined intelligence of
the re-coder and the designer for the modeling task. Our re-coder supports re-modeling of
SLDL models at all levels of abstraction.

It consists of 5 main components:

• A textual editor (based on QT and Scintilla) maintaining the textual document
object

• An Abstract Syntax Tree (AST) of the design model

• Preprocessor and Parser to convert the document object into AST

• Transformation and analysis tool set

• Code generator to apply changes in the AST to the document object

The parser and the code generator support C and SpecC source code. The analysis results
of each transformation are remembered in the abstract syntax tree and get carried to the
subsequent transformations automatically. The transformations are performed and
presented to the designer instantly. The designer can also make changes to the code by

7

typing and these changes are applied on-the-fly, keeping it updated all the time. More
details of this interactive environment are discussed in [3].

2 Experiments
In the past, we have measured the productivity gains achieved using source re-coder by
comparing the times taken by a single experienced designer to implement certain
transformations manually, over times to implement the same transformations on the same
examples using source re-coder. To get more diverse and realistic results, we conducted
experiments on a set of students instead of a single experienced designer.

2.1 Setup
A class of 15 students enrolled in the graduate course “System-on-Chip Description and
Modeling” [6] offered in the Department of Electrical Engineering and Computer
Science at University of California Irvine, were given a MP3 audio decoder application in
SpecC SLDL [7]. As an assignment, the students were asked to implement 3 kinds of
transformations, both manually and automatically using our source recoder. We focused
on creating behaviors [5], and recoding pointers [1]. These transformations are related in
the sense that they are necessary in creating analyzable SoC models with definite
structure which is necessary for architecture exploration.

The experiments were conducted over 4 weeks and were split into three assignments. In
the first two assignments, the transformations were conducted manually, and in the third
assignments, the same transformations on the same example were conducted using the
source re-coder.

In the following sections, we will describe the experiments in detail and summarize the
results reported by the students.

2.2 Experiment 1
In the first experiment, the students were given the source code of a MP3 audio decoder
in SpecC language and were asked to convert two function calls into behaviors. For the
first behavior, the designers were given detailed instructions to implement the
transformation. For the second behavior, only brief instructions were provided. The
detailed instructions given to the students are listed in Appendix-A1.

Since the main idea behind this assignment was to measure the manual time needed to
implement the transformation, the students were asked to provide the time to correctly
implement the transformations. The complete timing data provided by the students is
given in Table 11 in Appendix-A2.

2.3 Experiment 2
In this part of the experiment, the students were given the source code of a MP3 audio
decoder in SpecC language and were asked to implement two types of transformations.

• To wrap two sets of C statements into behaviors.

8

• To perform pointer recoding on four pointers

For creating the first behavior, the designers were given detailed instructions to
implement the transformation. For the second behavior only brief instructions were
provided. Similarly, the procedure to recode one pointer was explained in detail and brief
instructions were provided to recode the three other pointers. The detailed assignment
description is given in Appendix-A3.

Since the main idea behind this assignment was to measure the manual time needed to
implement the transformation, the students were asked to provide the time to correctly
implement these transformations. The complete timing data provided by the designers is
given in Table 12 and Table 13 in Appendix-A4.

2.4 Experiment 3
After completion of the two manual assignments, the source re-coder was introduced to
the students. The students were asked to implement the same transformations (previously
implemented manually) using the source re-coder. At the end of the experiment, the
students provided the time taken to implement these transformations using the source re-
coder.

The detailed assignment description is given in Appendix-A5. The times reported for this
experiment are given in Table 14 and Table 15 in Appendix-A6.

3 Comparison and Analysis
The detailed results provided by the students for each experiment are listed in the tables
Table 11, Table 12, Table 13, Table 14, and Table 15 (in the appendix). In this section,
we will summarize those results and compare the manual times from Experiments 1 and 2
with the automatic times obtained from the Experiment 3.

3.1 Function to Behavior (F2B) Recoding
The comparison of manual and the automatic times for two function-to-behavior
transformations is reported in Table 1 for 15 students. Clearly, the manual times for
implementing these transformations varied widely across designers from 3 hrs 50 mins
(student 9) to 26 mins (student 14). The average manual time across 15 students was 1 hr
and 17 mins. On the other hand, using the source re-coder, the students were able to
implement the transformations rather quickly. The automatic times varied from 15 min
(student 8) to 1 min (student 3). The average automatic time was 5 mins. The gain in
productivity across different students (Figure 1) varied from 57.5 (student 9) to 3.7
(student 14) with an average gain of factor 18.9. Though it just takes a couple of clicks in
the source re-coder to realize these transformations, it still took minutes for many
students as they had to familiarize themselves with the tool and simultaneously read the
instructions provided. We believe, as the designer gets comfortable with the editor and
the tools in the re-coder, automatic transformations can be realized even faster.
Comparing the average manual time (1 hr 17 mins) with the fastest automatic time (1

9

min), the gain that can be potentially achieved is about two orders of magnitude (factor
77).

0

20

40

60

80

100

1st
Qtr

2nd
Qtr

3rd
Qtr

4th
Qtr

East

West

North

0.0

10.0

20.0

30.0

40.0

50.0

60.0

Gain

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Student

Productivity gain for F2B transformations for
different students

Figure 1: Plot of Gains for different students

Table 1: Compar ison of manual and automatic times for re-coding 2 functions into
behaviors (F2B transformation)

3.2 Analysis of F2B Transformation
Table 1 shows the time for 2 Function-to-Behavior transformations. From this table and
Table 11 (Appendix-A2), the following derivations can be made. The Table 2 lists the
minimum, average, and maximum values observed for different quantities. Besides the
observed quantity, the potential maximum gain is obtained by comparing the average
manual time observed (1:17) to the fastest automatic time (1 min), which evaluates to
factor 77.

Quantities
Minimum
Observed

Average
Observed

Maximum
Observed Potential

Manual time for 1 F2B 0:26 1:17 3:50 --
Automatic time for 1 F2B 0:01 0:05 0:15 --

Gain 3.7 18.9 57 77

Table 2: Analysis of F2B operations

Student
Manual
h:min

Automatic
h:min Gain

1 1:02 0:11 5.6
2 1:39 0:09 11.0
3 0:49 0:01 49.0
4 1:00 0:04 15.0
5 1:21 0:04 20.3
6 0:55 0:04 13.6
7 0:58 0:05 11.6
8 1:26 0:15 5.7
9 3:50 0:04 57.5

10 1:19 0:04 19.8
11 0:32 0:02 16.0
12 1:02 0:03 20. 7
13 1:21 0:05 16.2
14 0:26 0:07 3.7
15 1:37 n/a n/a

Average 1:17 0:05 18.9
Std.Dev 0.033 0.003 15.6

Max 3:50 0:15 57.5
Min 0:26 0:01 3.7

10

3.3 Statement to Behavior (S2B) Recoding
The comparison of manual and automatic times for 2 statement-to-behavior
transformations is reported in Table 3 for 15 students. The data for each transformation is
reported separately. For the first transformation, where detailed instructions were
provided, the manual times varied across designers from 1 hr 18 mins (student 8) to 17
mins (student 10). The average manual time across 15 students was 41 mins. For the
second transformation, where only brief instructions were provided, the manual times
varied from 3hrs 30 mins to 20 mins with an average time of 1 hr and 7 mins.

On the other hand, using the re-coder, designers were able to implement the
transformations quickly with times varying between 21 mins down to 3 mins for the first
transformation, and 1 hr 16 mins down to 2 mins for the second transformation. The
automatic times were higher than expected as the designers had to deal with some cases
of tool crashes. For example, student 14, who reported a time of 1 hr and 16 mins, took
the tool crash into account. The maximum productivity gain of 60 was reported by
student 14. We believe, as the tool stabilizes and the designer gets comfortable with the
editor and the tools in the re-coder, automatic transformations can be realized even faster.
Comparing the average manual time (1 hr 7 mins) and the fastest automatic time (2 min),
the gain that can potentially achieved will be 67.

Statement to Behavior -1 Statement to Behavior -2

Student
Manual-1

hr:min
Automatic-1

hr:min Gain-1
Manual-2

hr:min
Automatic-2

hr:min Gain-2
1 0:33 0:12 2.8 0:23 0:16 1.4
2 0:45 0:12 3.5 0:35 0:13 2.5
3 0:19 0:05 3.8 0:44 0:04 11.0
4 0:34 0:05 6.8 1:00 0:04 15.0
5 0:51 0:21 2.4 0:38 0:15 2.5
6 0:45 0:08 5.6 0:35 0:13 2.7
7 0:24 0:09 2.7 0:33 0:10 3.3
8 1:18 0:09 8.7 1:28 0:10 8.8
9 0:47 0:05 9.4 2:00 0:02 60.0

10 0:17 0:09 1.9 1:09 0:05 13.8
11 0:21 0:07 3.0 0:20 0:14 1.4
12 0:34 0:03 11.3 1:00 0:05 12.0
13 0:39 0:08 4.9 1:10 0:06 11.7
14 0:59 0:19 3.1 1:51 n/a n/a
15 1:16 n/a n/a 3:30 n/a n/a

Average 0:41 0:09 5.0 1:07 0:09 11.2
Std.Dev. 0.013 0.004 3.0 0.034 0.003 15.5

Max 1:18 0:21 11.3 3:30 0:16 60.0
Min 0:17 0:03 1.9 0:20 0:02 1.429

Table 3: Compar ison of manual and automatic times of re-coding 2 sets of statements into
behaviors (S2B transfor mation)

11

Productivity Gains for S2B-1

0.0

2.0

4.0

6.0

8.0

10.0

12.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Student

G
ai

n
s

Productivity gains for S2B-2

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

1 2 3 4 5 6 7 8 9 10 11 12 13

Student

G
ai

n
s

Figure 2 Plot of Gains for different students

3.4 Analysis of S2B operation
The above table shows the time for 2 Statement to Behavior transformations. From the
above table and the Table 12 (Appendix-A4), the following experimental derivations can
be made. Table 4 lists minimum, average and maximum values observed for different
quantities.

Quantities
Minimum
Observed

Average
Observed

Maximum
Observed

Manual time for 1 S2B 0:17 0:54 3:30
Automatic time for 1 S2B 0:02 0:09 0:21
Gain 1.4 8.1 60.0

Table 4: Analysis of S2B operations

3.5 Pointer Re-coding
The comparison of manual and automatic pointer re-coding times for 4 pointers is
reported in Table 5 for 15 students. The manual times varied across designers from 1 hr
22 mins (student 4) to 23 mins (student 7). The average manual time across 15 students
was 50 mins. However, the automatic pointer re-coding using source re-coder took less
time, as expected. The automatic times varied from 15 mins down to 2 mins. The gain
varied between 16.4 and 3.4, and the average gain was 9.79.

Student Manual Automatic Gain
1 0:51 0:15 3.4
2 1:11 0:12 5.6
3 0:33 0:05 6.6
4 1:22 0:05 16.4
5 n/a 0:12 n/a
6 1:07 0:06 11.2
7 0:23 0:05 4.6
8 1:12 0:07 10.3
9 n/a 0:05 n/a

12

0.0

5.0

10.0

15.0

20.0

Gain

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Student

Productivity gain for Pointer Re-coding
transformation for different students

Figure 3 Plot of gains for different students

Table 5: Compar ison of manual and automatic pointer re-coding times

Clearly, some of the students who could not complete the manual pointer re-coding were
able to perform the recoding using source re-coder.

3.6 Analysis of Pointer Re-coding operation
The above table shows the time for 4 pointer re-coding transformations. From the above
table and Table 13 (Appendix-A4), the following experimental derivations can be made.
The table lists Minimum, average and maximum values observed for different quantities.

Quantities Min. Observed Avg. Observed Max. Observed

Manual time for 1 PR 0:23 0:12 1:22
Automatic time for 1 PR 0:02 0:06 0:15
Gain 3.4 9.8 16.4

Table 6: Analysis of Pointer recoding operations

Comparing the average manual time of 50 mins with the fastest automatic time (2 min),
the gain that can potentially be achieved will be 25. Note that the potential gain is low as
in our experiment the instructions included the source for the recoded pointers, In reality,
the designer will have to determine the source of pointers manually by reading the code.
Thus, the manual times will be much higher, as will be the productivity gain.

3.7 Additional Feedback
Besides the timing details, the students also provided suggestions to improve the tools.
The task of converting a function to a behavior and statements to a behavior first required
re-scoping some local variables to the class scope so that they become available for port-
mapping. The transformation to do this operation was also available in the re-coder, but
required explicit invocation by the students for every variable that required re-scoping.
Designers had to look at the variables and check if they are local and they re-scope them.
Based on the suggestions provided by the students, this re-scoping of variables was made
part of the function-to-behavior and statement-to-behavior transformations. These
transformations were modified so that all the variables that are needed for port-mapping
are automatically moved into the class scope.

10 0:44 0:03 14.7

11 0:29 0:02 14.5
12 0:37 0:03 12.3
13 0:53 0:05 10.6
14 0:44 0:06 7.3
15 n/a n/a n/a

Average 0:50 0:06 9.8
Std.Dev. 0.013 0.003 4.3

Max 1:22 0:15 16.4
Min 0:23 0:02 3.4

13

This improvement is shown in Table 7 below. The number of interactions earlier
depended on the number of variables that need to be re-scoped. These were changed to
just 1 interaction based on the feedback received.

 Further, some system crashes reported by the designers helped to fix a couple of
implementation issues in the tool. We are confident that, after these changes to the source
re-coder, the productivity gains will be much higher.

Number of interactions
Tool in Re-coder

Before this experiment After incorporating designer suggestions

Function to Behavior 1 + (n * rescope variables) 1

Statement to Behavior 1 + (n * rescope variables) 1

Pointer Analysis 1 1

Pointer Re-coding 1 1

Table 7: Reduced number of interactions needed to invoke different tools after
incorporating student feedback

4 Generalization for Future Estimation
Conducting these types of experiments is very expensive in terms of time and resources.
Therefore, we attempt to generalize our observations and experimental results. We
derived some more empirical results which we may use in future for estimating manual
and automatic times.

Irrespective of the type of transformation, the most primitive empirical result needed to
estimate manual programming time would be the number of Lines of Code (LoC)
generated per hour. Based on the 3 types of transformations implemented by the students
in Experiment 1 and 2, we obtained the number of lines of code that changed. Using the
manual times provided by the students for those transformations, we estimated the LoC
written per hour.

Using the minimum, average, and the maximum values of the manual times, we
computed 3 values of LoC per hour. These results are tabulated in Table 8 below.
Obviously, the variability in the manual times also reflects in the LoC written per hour.
One should note that these numbers are quite optimistic as we consider only re-coding
time, not the decision making time. The students were given almost line-by-line
instructions to implement the code. If the students/designers have to code all by
themselves, then the result will be much lower than these numbers. Moreover, these
numbers do not account for errors introduced into the design, which would require
tedious debugging and thereby drastically reduce the LoC written per hour further.

14

Manual time (hr:min)

Task LoC
Min.

Manual time
Avg.

Manual time
Max.

Manual time Comment
F2B-1 102 0:09 0:29 1:20 Experiment-1
F2B-2 214 0:15 0:47 2:30 Experiment-1
S2B-1 162 0:17 0:41 1:18 Experiment-2
S2B-2 158 0:20 1:07 3:30 Experiment-2
PR -1 70 0:10 0:21 1:03 Experiment-2

PR-2,3,4 112 0:13 0:28 0:58 Experiment-2

Total 818 1:24 3:56 10:39
LoC per hour

LoC per hour 584 208 77

Considers pure re-
coding, no decision

making

Table 8 L ines of Code per manual hour estimation

Similarly, the most primitive quantity to measure the automatic time using source recode
is the number of interactions for each transformation. By restricting most of the
transformations to just 1 user interaction, it becomes easier to estimate the automatic
time. As described in Section 3.7, based on the student’s feedback, we modified the
transformations to restrict the number of interactions to just one. At the time of this
experiment, since pointer recoding was the only transformation that had 1 interaction, we
can take the minimum time for pointer recoding as an optimistic estimate for all
transformations that require 1 interaction. The minimum time to recode a pointer using
source re-coder is 2 mins from Table 6. Based on this argument, we can assume that the
time for realizing a 1 interaction transformation using source re-coder is about 2 mins.
Considering the variability, the 3 values (minimum, average, maximum) are given in
Table 9 below.

Transformation type
Min. Automatic
time (hr:min)

Avg. Automatic
time(hr:min)

Max. Automatic
time(hr:min)

One-interaction
transformation 0:02 0:06 0:15

Table 9 Automatic time for 1 interaction transfor mation

5 Challenges in Measuring Productivity Gains
Conducting a real life experiment to measure the productivity gain achievable using a
tool is a challenging task, as such experiments are limited by resource and time
constraints. Some of the issues we encountered in our experiment are listed below:

1. The variations in the times provided by different designers make it hard to arrive
at a common measure of manual time. Besides the variation in the manual time,
the automatic times provided by the students also varied widely. This, we believe,
can be attributed to some of the software crashes encountered by the users, and
also the time it took to read the instructions from the assignment and get

15

acquainted with the recoder. These issues resulted in the variations in productivity
gains. These variations are shown in Table 10 below.

2. Though the MP3 design example used for the experiment was a representative of
commonly used embedded applications, the example transformations manually
conducted by the students did not necessarily represent an average case of
programming. Due to the time constraints, students could not be asked to conduct
more manual transformations. This was one of the larger limitations of our
experiment.

3. An Ideal experimental setup would be to have 2 groups of students conducting
manual and automatic experiments simultaneously, and then compare the time
taken by each group. However, due to the resource constraints such an experiment
could not be conducted.

4. In our experiment, the students were asked to implement a fewer set of
transformations on a bigger application. Another option would be to work on a
smaller application, but implement more transformations to derive a complete
specification model.

5. The students were asked to conduct the manual experiments first, and then used
automatic recoding to implement the same transformations using the source re-
coder. So the automatic part of the experiment was benefited by the knowledge of
the MP3 code that was acquired during the manual experiment.

6. The learning curve that is achieved using the source re-coder would make the
subsequent re-coding faster. However, this could not be accounted as students had
very limited time available for this experiment.

7. The experiment was conducted with a class of graduate students and not regular
designers.

8. Finally, we believe the productivity gains measured from our experiment are still
conservative compared to what can be achieved in reality. This is because the
errors made by the designers during manual programming are not taken into
account in this experiment. In the absence of errors, the designers can direct all
the effort and attention towards structuring the model instead of actually working
on textual recoding. This improves the quality of the model and further increases
the productivity gains.

Gains achieved by
different tools Minimum Average Maximum

F2B Gain 3.7 18.9 57.0
S2B Gain 1.4 8.1 60.0
PR Gain 3.4 9.8 16.4

Table 10: Var iability in the gains

16

6 Conclusions
Tools like our source re-coder are intuitively able to help the designer in faster creation of
a good SoC specification. Experiments to quantitatively measure the extent to which
such a tool can be useful to designers of varying abilities were not conducted in the past.

With the help of a real class of 15 graduate students, we conducted experiments on
creating a SoC specification for a real-life design example. The students were first given
instructions to manually implement 3 kinds of re-coding tasks on an MP3 decoder
specification, and were asked to measure the time taken to program. Following that, the
same students were introduced to our automatic source re-coder, and were asked to
implement the same transformations using the automatic tools available in the source re-
coder.

Comparing the manual and the automatic times provided by different designers, we were
able to estimate the gains that can be achieved using our interactive source re-coder. The
gains achieved varied depending on the designer and the type of transformation. Some
variability also resulted from the still immature source re-coder. Despite this variability, it
was conclusive that our source re-coder results in significant productivity gains and
effective help in reducing the overall system design time.

There were some aspects, which could not be accounted for in this experiment. For
example, due to time and resource constraints, for manual implementation the designers
were given line-by-line instructions to implement the manual transformation. However,
in reality when designers themselves have to analyze and implement the code, it would
take more time and errors before correctly realizing the transformations.

We derived certain empirical quantities such as, Lines of code per hour and time for one
interaction transformation, which can serve as reference in estimating the productivity
gains in future experiments.

In future, we would organize such experiments differently to even out some variables.
One idea is to have one set of designers working manually, and another set of designers
(of the same capability and quality) working automatically using source re-coder. If these
two independent groups implement different transformations on a smaller design example
and create a complete SoC model, we can compare the times taken these two groups and
better estimate the productivity gains.

In summary, our Source re-coder relieves the designers from complex re-coding work
and lets them think about structuring and creating parallel and analyzable models instead
of worrying about implementing the transformations. Such automation will go a long way
in helping designers in creating high quality specifications faster.

7 Acknowledgements
We very much thank the graduate students in class EECS-222A of Fall’07 for conducting
the experiments. We also would like to thank Embedded Systems Methodology group at
the Center for Embedded Systems (CECS) for fruitful discussions and providing valuable

17

feedback on the experiments, results and suggestions to improve such experiments in the
future.

8 Reference
1. Pramod Chandraiah, Rainer Dömer: "Pointer Re-coding for Creating Definitive

MPSoC Models", Proceedings of the International Conference on
Hardware/Software Codesign and System Synthesis, Salzburg, Austria,
September 2007.

2. Pramod Chandraiah, Rainer Dömer: "Designer-Controlled Generation of Parallel
and Flexible Heterogeneous MPSoC Specification", Proceedings of the Design
Automation Conference 2007, San Diego, California, June 2007.

3. Pramod Chandraiah, Rainer Dömer:"An Interactive Model Re-Coder for Efficient
SoC Specification", Proceedings of the International Embedded Systems
Symposium, "Embedded System Design: Topics, Techniques and Trends" (ed. A.
Rettberg, M. Zanella, R. Dömer, A. Gerstlauer, F. Rammig), Springer, Irvine,
California, May 2007.

4. Pramod Chandraiah, Junyu Peng, Rainer Dömer: "Creating Explicit
Communication in SoC Models Using Interactive Re-Coding",
Proceedings of the Asia and South Pacific Design Automation Conference 2007,
Yokohama, Japan, January 2007.

5. Pramod Chandraiah, Rainer Dömer: "Automatic Re-coding of Reference Code
into Structured and Analyzable SoC Models",
Proceedings of the Asia and South Pacific Design Automation Conference 2008,
Seoul, South Korea, January 2008.

6. “System-on-Chip (SoC) Description and Modeling” , Rainer Doemer, Lecture
Notes for graduate-level course EECS 222A, Fall 2007.
https://eee.uci.edu/07f/18430/

7. A. Gerstlauer, R. Dömer, J. Peng, and D. D. Gajski: “System Design: A Practical
Guide with SpecC”. Kluwer Academic Publishers, 2001.

18

Appendix

A1. Student Instructions for Experiment 1

Figure 4: Page-1 of Student I nstructions for Exper iment 1

19

Figure 5: Page-2 of Student I nstructions for Exper iment 1

20

Figure 6: Page-3 of Student I nstructions for Exper iment 1

21

Figure 7: Page-4 of Student I nstructions for Exper iment 1

22

A2. Times Reported by Students for Experiment 1
The results submitted by the students for the 2 tasks are given in Table 11. Time stamps
T0 to T5 was the primary feedback expected from the students. However, some of the
students only turned-in the durations between these stamps, which are as good. Task 1 is
the time to recode the function into behavior given the complete instructions. Task 2 is
the time to recode the 2nd function into behavior. time (T0, T1), time(T1, T2) constitute
Task1 and time(T3, T4) time(T4, T5) together constitute Task2.

Student T0 T1 T2 T3 T4 T5 time(T0,T1) time(T1,T2) time(T3,T4) time(T4,T5)
Task

1
Task

2 Total

1 9:30 9:40 9:55 10:13 10:30 10:50 0:10 0:15 0:17 0:20 0:25 0:37 1:02

2 1:40 1:48 2:02 2:25 3:11 3:42 0:08 0:14 0:46 0:31 0:22 1:17 1:39

3 17:35 17:40 17:44 17:46 17:52 18:26 0:05 0:04 0:06 0:34 0:09 0:40 0:49

4 8:24 8:35 8:50 9:03 9:13 9:37 0:11 0:15 0:10 0:24 0:26 0:34 1:00

5 10:14 10:21 10:50 11:07 11:24 11:52 0:07 0:29 0:17 0:28 0:36 0:45 1:21

6 8:20 8:30 8:45 8:50 9:15 9:20 0:10 0:15 0:25 0:05 0:25 0:30 0:55

7 9:20 9:30 9:43 9:45 9:53 10:20 0:10 0:13 0:08 0:27 0:23 0:35 0:58

8 n/a n/a n/a n/a n/a n/a 0:30 0:15 0:18 0:23 0:45 0:41 1:26

9 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 1:20 2:30 3:50

10 10:23 10:43 11:06 11:07 11:28 11:43 0:20 0:23 0:21 0:15 0:43 0:36 1:19

11 n/a n/a n/a n/a n/a n/a 0:10 0:05 0:10 0:07 0:15 0:17 0:32

12 0:00 0:17 0:28 0:00 0:18 0:34 0:17 0:11 0:18 0:16 0:28 0:34 1:02

13 2:59 3:09 3:34 8:59 9:40 9:45 0:10 0:25 0:41 0:05 0:35 0:46 1:21

14 10:36 10:45 10:47 11:01 11:06 11:16 0:09 0:02 0:05 0:10 0:11 0:15 0:26

15 8:56 9:05 9:15 9:23 10:02 10:41 0:09 0:09 0:39 0:39 0:19 1:18 1:37

Average 0:11 0:13 0:20 0:20 0:29 0:47 1:17

MAX 0:30 0:29 0:46 0:39 1:20 2:30 3:50

MIN 0:05 0:02 0:05 0:05 0:09 0:15 0:26

Table 11: Times reported by students to manually recode functions “ decodeMP3” (Task1)
and “ do_layer3” (Task2) into behaviors

Note 1: The time stamps not provided by the students are indicated by “n/a” . For
example, student 8 and student 10 provided durations and not the time stamps. Student 9
only provided the times for Task1 and Task2.

Note 2:

• time(T0,T1) is the time to create the behavior body including the portlist for 1st
F2B transformation

• time(T1,T2) is the time to create the behavior instance including the portmap for
1st F2B transformation

• time(T3,T4) is the time to create the behavior body including the portlist for 1st
F2B transformation

23

• time(T4, T5) is the time to create the behavior instance including the portmap for
1st F2B transformation

24

A3. Student Instructions for Experiment 2

Figure 8: Page-1 of Student I nstructions for Exper iment 2

25

Figure 9: Page-2 of Student I nstructions for Exper iment 2

26

Figure 10: Page-3 of Student I nstructions for Exper iment 2

27

Figure 11: Page-4 of Student I nstructions for Exper iment 2

28

Figure 12: Page-5 of Student I nstructions for Exper iment 2

29

Figure 13: Page-6 of Student I nstructions for Exper iment 2

30

A4. Times Reported by Students for Experiment 2
The results submitted by the students for the part-1 are presented below in Table 12. The
time stamps T0 to T5 refer to the time stamps given the description Appendix-A3. Task
1 is the time taken for 1st Statement-to-Behavior transformation. Columns time (T0, T1),
time (T1, T2) together constitute Task 1. Task 2 (time (T3, T4) + time (T4, T5)) is the time
taken for the 2nd Statement-to-Behavior transformation. Total is the time for Task 1 and
Task 2.

Student T0 T1 T2 T3 T4 T5 time(T0,T1) time(T1,T2) time(T3,T4) time(T4,T5)
Task

1
Task

2 Total

1 10:50 11:04 11:23 11:23 11:40 11:46 0:14 0:19 0:17 0:06 0:33 0:23 0:56

2 0:00 0:16 0:45 1:02 1:25 1:37 0:16 0:29 0:23 0:12 0:45 0:35 1:20

3 16:57 17:01 17:16 17:23 17:40 18:07 0:04 0:15 0:17 0:27 0:19 0:44 1:03

4 0:00 0:14 0:34 0:00 0:10 1:00 0:14 0:20 0:10 0:50 0:34 1:00 1:34

5 11:55 12:04 12:46 1:24 1:37 2:02 0:09 0:42 0:13 0:25 0:51 0:38 1:29

6 8:00 8:17 8:45 8:50 9:15 9:25 0:17 0:28 0:25 0:10 0:45 0:35 1:20

7 8:16 8:20 8:40 8:45 9:00 9:18 0:04 0:20 0:15 0:18 0:24 0:33 0:57

8 0:00 0:30 1:18 0:00 1:04 1:28 0:30 0:48 1:04 0:24 1:18 1:28 2:46

9 0:00 n/a 0:47 0:00 n/a 2:00 n/a n/a n/a n/a 0:47 2:00 2:47

10 9:16 9:22 9:33 9:34 9:49 10:43 0:06 0:11 0:15 0:54 0:17 1:09 1:26

11 0:00 0:03 0:21 0:00 0:12 0:20 0:03 0:18 0:12 0:08 0:21 0:20 0:41

12 n/a n/a n/a n/a n/a n/a 0:09 0:25 0:15 0:45 0:34 1:00 1:34

13 5:26 5:41 6:05 6:34 6:55 7:44 0:15 0:24 0:21 0:49 0:39 1:10 1:49

14 8:36 8:55 9:35 10:09 10:10 12:00 0:19 0:40 0:01 1:50 0:59 1:51 2:50

15 5:15 5:32 6:31 11:00 11:00 14:30 0:17 0:59 0:00 3:30 1:16 3:30 4:46

Average 0:12 0:28 0:17 0:46 0:41 1:07 1:49

MAX 0:30 0:59 1:04 3:30 1:18 3:30 4:46

MIN 0:03 0:11 0:00 0:06 0:17 0:20 0:41

Table 12: Times reported by students to manually recode the statements in lines 2792-2823
into behavior “ Bchild1_B_do_layer3” (Task1) and recode the statements in lines 2863-2887

into behavior “ Bchild2do_layer3” (Task2)

Note1: The time stamps not provided by the students are indicated by “n/a” . For example,
student 12 and student 10 provided only durations and not the time stamps.

Note 2:

• time(T0,T1) is the time to create the behavior body including the portlist for 1st
S2B transformation

• time(T1,T2) is the time to create the behavior instance including the portmap for
1st S2B transformation

• time(T3,T4) is the time to create the behavior body including the portlist for 1st
S2B transformation

31

• time(T4, T5) is the time to create the behavior instance including the portmap for
1st S2B transformation

The results submitted by the students for part-2 of the assignment are presented below in
Table 13. Task 1(=time(T0,T1)) is the time to recode the 1st pointer given the detailed
instructions. time(T2,T3), time(T4,T5) and time(T6,T7) is the time to recode each
remaining pointer. Task 2 is the accumulated time to recode the 3 pointers. Total is the
time to recode all the 4 pointers.

Stu. T0 T1 T2 T3 T4 T5 T6 T7 time(T0,T1) time(T2,T3) time(T4,T5) time(T6,T7)
Task

1
Task

2 Total

1 11:52 12:10 12:15 12:21 12:21 12:28 12:30 12:50 0:18 0:06 0:07 0:20 0:18 0:33 0:51

2 0:00 0:13 0:32 0:48 1:06 1:25 1:42 2:05 0:13 0:16 0:19 0:23 0:13 0:58 1:11

3 18:03 18:19 18:31 18:36 18:36 18:41 18:41 18:48 0:16 0:05 0:05 0:07 0:16 0:17 0:33

4 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 1:03 0:19 1:22

5 2:33 2:47 2:47 2:48 3:11 3:43 3:43 n/a 0:14 0:01 0:32 n/a 0:14 n/a n/a

6 9:30 9:55 10:13 10:20 10:30 10:44 10:50 11:11 0:25 0:07 0:14 0:21 0:25 0:42 1:07

7 9:30 9:40 9:40 9:45 9:45 9:49 9:50 9:54 0:10 0:05 0:04 0:04 0:10 0:13 0:23

8 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0:27 0:45 1:12

9 0:00 0:20 0:00 0:30 n/a n/a n/a n/a 0:20 0:30 n/a n/a 0:20 n/a n/a

10 10:54 11:13 11:14 11:20 11:21 11:29 11:30 11:41 0:19 0:06 0:08 0:11 0:19 0:25 0:44

11 n/a n/a n/a n/a n/a n/a n/a n/a 0:11 0:04 0:04 0:10 0:11 0:18 0:29

12 0:00 0:16 0:00 0:12 0:00 0:04 0:00 0:05 0:16 0:12 0:04 0:05 0:16 0:21 0:37

13 8:32 9:05 9:12 9:28 9:30 9:32 9:35 9:37 0:33 0:16 0:02 0:02 0:33 0:20 0:53

14 2:02 2:20 2:27 2:35 2:35 2:43 2:43 2:53 0:18 0:08 0:08 0:10 0:18 0:26 0:44

15 9:08 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Average 0:17 0:09 0:09 0:11 0:21 0:28 0:50

MAX 0:33 0:30 0:32 0:23 1:03 0:58 1:22

MIN 0:10 0:01 0:02 0:02 0:10 0:13 0:23

Table 13: Times reported by students to manually recode 4 pointers

Note1: Some of the students (Student 5, 9, 15) could not complete the experiment and
these are indicated as “n/a” .

32

A5. Student Instructions for Experiment 3

Figure 14: Page-1 of Student I nstructions for Exper iment 3

33

Figure 15: Page-2 of Student I nstructions for Exper iment 3

34

Figure 16: Page-3 of Student I nstructions for Exper iment 3

35

Figure 17: Page-4 of Student I nstructions for Exper iment 3

36

Figure 18: Page-5 of Student I nstructions for Exper iment 3

37

Figure 19: Page-6 of Student I nstructions for Exper iment 3

38

A6. Times Reported by Students for Experiment 3
The results provided by students for the part-1 of the assignment are consolidated in the
Table 14 below. The time stamps T0 to T5 refer to the time stamps given the description
Appendix-A5. Task 1 is the time taken for 2 Function-to-Behavior and 2 Statement-to-
Behavior transformations. Columns time(T0, T1), time(T1, T2), and time(T3,T4) give the
break-up of Task 1. Task 2(=time(T4,T5)) is the time taken to implement additional
transformations (not conducted manually before) 2 Function-to-Behavior and 1
Statement-to-Behavior.

Stu. T0 T1 T2 T3 T4 T5 time(T0,T1) time(T1,T2) time(T3,T4) time(T4,T5) Task 1 Task 2 Total

1 23:21 23:32 23:44 0:00 0:40 1:09 0:11 0:12 0:16 0:29 0:39 0:29 1:08

2 0:00 0:09 0:22 0:36 0:46 0:59 0:09 0:12 0:13 0:12 0:36 0:12 0:48

3 17:23 17:24 17:29 17:33 17:38 17:41 0:01 0:05 0:04 0:03 0:10 0:03 0:13

4 n/a n/a n/a n/a n/a n/a 0:04 0:05 0:04 0:15 0:13 0:15 0:28

5 9:35 9:39 10:00 10:15 10:15 10:31 0:04 0:21 0:15 0:16 0:40 0:16 0:56

6 9:15 9:19 9:27 9:40 n/a n/a 0:04 0:08 0:13 n/a 0:25 n/a n/a

7 12:40 12:45 12:54 13:04 n/a n/a 0:05 0:09 0:10 n/a 0:24 n/a n/a

8 n/a n/a n/a n/a n/a n/a 0:15 0:09 0:10 0:15 0:34 0:15 0:49

9 n/a n/a n/a n/a n/a n/a 0:04 0:05 0:02 0:10 0:11 0:10 0:21

10 10:30 10:34 10:43 10:48 10:58 11:05 0:04 0:09 0:05 0:10 0:18 0:10 0:28

11 n/a n/a n/a n/a n/a n/a 0:02 0:07 0:14 0:09 0:23 0:09 0:32

12 n/a n/a n/a n/a n/a n/a 0:03 0:03 0:05 0:10 0:11 0:10 0:21

13 10:26 10:31 10:39 10:45 10:49 10:56 0:05 0:08 0:06 0:04 0:19 0:04 0:23

14 2:18 2:25 2:44 4:00 4:04 4:08 0:07 0:19 1:16 0:04 1:42 0:04 1:46

15 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Average 0:05:37 0:09:29 0:13:51 0:11:27 0:28:57 0:11:27 0:41:08

MAX 0:15 0:21 1:16 0:29 1:42 0:29 1:46

MIN 0:01 0:03 0:02 0:03 0:10 0:03 0:13

Table 14: Times reported by students for conducting 4 F2B operations and 3 S2B
operations automatically using source re-coder

Note 1:

• Some of the time stamps T0 – T5 were not provided by the students and these are
indicated as “n/a” . Instead, these students provided only the durations

• Student 15 did not conduct the experiment

• Student 6 and 7 did not provide the time(T4, T5), which is a measure of the time
to conduct the additional transformation (2 F2B + 1 S2B)

Note 2:

• time(T0, T1) is the time to automatically recode 2 functions into behaviors

• time(T1, T2) is the time to automatically recode 1st set of statements

• time(T3, T4) is the time to automatically recode 2nd set of statements

39

• time(T4, T5) is the time to do additional tasks (2 F2B and 1 S2B)

Note 3:

• The time time(T3, T4) reported by student 14 is unusually high, as the student
encountered software crash and took even that time into account. So, we decided
not to consider this data for comparison of automatic and manual times.

The results provided by students for the part-2 (Pointer Recoding) of the assignment are
consolidated in the Table 15 below. In the table, Task 1 is same as time(T0,T1).

Student T0 T1 time(T0,T1) Task 1 Total
1 1:15 1:30 0:15 0:15 0:15
2 0:00 0:12 0:12 0:12 0:12
3 17:43 17:48 0:05 0:05 0:05
4 n/a n/a 0:05 0:05 0:05
5 10:23 10:35 0:12 0:12 0:12
6 10:13 10:19 0:06 0:06 0:06
7 1:21 1:26 0:05 0:05 0:05
8 n/a n/a 0:07 0:07 0:07
9 n/a n/a 0:05 0:05 0:05

10 12:00 12:03 0:03 0:03 0:03
11 n/a n/a 0:02 0:02 0:02
12 n/a n/a 0:03 0:03 0:03
13 5:30 5:35 0:05 0:05 0:05
14 9:39 9:45 0:06 0:06 0:06
15 n/a n/a n/a n/a n/a

Average 0:06:33 0:06:33 0:06:33
MAX 0:15 0:15 0:15
MIN 0:02 0:02 0:02

Table 15: Times reported by students for conducting 4 pointer re-coder operations using
source re-coder

