Technical Report:
Communication SW Generation from TL to PCA Level
for MPSoC

Ines Viskic, Samar Abdi and Daniel D. Gajski
Center for Embedded Computer Systems
University of California, Irvine, CA 92617
{iviskic, sabdi, gajski} @ics.uci.edu

July 6, 2007

Abstract

This paper describes the automatic generation of MPSoC communication SW from
transaction level (TL) to a pin and cycle-accurate (PCA) level. At the transaction level,
the communication in MPSoC is abstracted with send/receive and read/write calls to
channels modeling system busses. Since the view of the MPSoC platform is abstracted
with the goal of fast simulation and performance estimation, the TLM cannot be com-
piled and downloaded to the FPGA board. Our communication synthesis tool auto-
matically transforms abstracted TLM communication functions into platform specific
IF and drivers in the output PCAM. The output model can then be fed into platform
synthesis tools and compilers for automatic download to the board. The results of our
experiments demonstrate the effectiveness of our tool. The automatic IF and drivers
generation for PCAM yields significant productivity gain over manual design, while
maintaining comparable performance (as measured by the communication delay) and
code size.

1 Introduction

The increasing performance requirements and application complexity require the advance-
ment of system design into multiprocessor system on chips (MPSoC). MPSoC systems
execute faster than traditional single core SoC because of their high computing power and
large-scale parallelism. MPSoC usually consist of multiple application-specific, heteroge-
neous processors (CPUs), multiple units of digital signal processing hardware (DSP units),
memory units and controllers, high-speed on-chip communication interfaces and sophisti-
cated communication protocols.

Designing MPSoC with traditional methodologies (top-to-bottom, bottom-up) is inef-
ficient due to systems size and complexity, making it difficult to meet the stringent time
to market constrains. Platform based HW/SW co-design is widely seen as a solution to
simplifying the MPSoC design process. It consists of separating the application code into
multiple concurrent processes, mapping each into predefined SW/HW components in the
MPSoC platform and making them communicate correctly. However, manually design-
ing MPSoC communication is becoming an extremely challenging part of platform based
HW/SW co-design, being both error prone and time consuming.

This paper describes the automatic generation of platform dependent, application spe-
cific communication SW in MPSoC designs from TLM function calls. The communication
software synthesis is a part of the integral Synthesis Tool for MPSoCs.

The rest of the paper is organized as follows: Section 2. presents the related work and
Section 3 explains the general principles of automatic system level synthesis. Section ??
provides focus on the synthesis of communication SW: its inputs, outputs and synthesis
procedure(s). Experimentation in Section 5. demonstrates the effectiveness of automatic
synthesis. We conclude the paper with the summary of contributions in Section 6.

2 Related Work

Several research groups target multiprocessor architectures and work to develop an efficient
MPSoC design methodology. Jerraya et al. [1] have developed a generic architecture model
of MPSoC (GAM-MPSoC). This model is characterized with modularity, flexibility and
scalability. Using GAM-MPSoC and binaries for each processor as inputs, the authors are
able to synthesize component wrappers and communication channels to generate a detailed,
pin-accurate micro-architecture of the system. However, the process is not fully automatic,
since the allocation tables needed for SW to HW mapping have to be written manually.
This slows down the SW/HW design process, since the allocation is done at the address-
and pin-level of accuracy.

Obermaisser et al. [5], [6] propose a novel approach to MPSoC design, by introduc-
ing a time-triggered (TT) communication network. Each micro-component of the MPSoC
interfaces with the TT interconnect using Trusted Interface SubSystem (TISS), and the TT
communication is scheduled and managed by a Trusted Network Authority (TNA) com-
ponent in accordance with the global clock and global communication time-slot schedule
table. Diagnostic and error correction is performed by a dedicated Diagnostic Unit (DU).
Such architecture allows determinism and error containment and correction, but has the
limitation on scalabity and robustness due to a global clock, which is hard to implement
in large systems. Also, the interconnect is restricted to support a single communication
protocol managed by the TNA.

Ihmor et al. [2] work on rapid system prototyping of reconfigurable embedded systems.

The developed design flow enables an automated synthesis of interface adapter modules
in systems with incompatible SW and HW interfaces. However, the software interfaces
are restricted to the form of memory mapped I/O and message based communication is
outside their scope. Further, the interface adapter module does not support routing, but only
queuing and forwarding functions, from source to (fixed route) destination.

F. Oppenheimer, D. Zhang and W. Nebel published a methodology [3] that allows the
automated synthesis of shared memory for the communication of hardware and software via
memory mapped I/O. The approach uses an XML based description language (COMIX)
that is independent from the target language for modeling hardware/software interfaces.
The implemented synthesis tool (COHSID) then automatically generates software device
drivers and hardware I/O components from a COMIX specification. However, the input to
the synthesis algorithm requires explicit definition of all communication registers.

The work of Zissulescu et al. [9] models and synthesizes point-to-point communication
in multiprocessor systems. The synthesis is done in two steps: first includes an automatic
generation of a process network with a simple model of a queued (FIFO) inter-process
communication. Then, the network is synthesized, by converting the FIFO-based com-
munication into hardware read/write memory operations. This approach focuses only on
point-to-point communication, and is not applicable to busses and/or complex Networks-
on-Chips systems, because it introduces long delays in the routing process. Further, it only
support small data exchanges (scalars) and the usage of large packets instead of scalars in
the communication protocol is not feasible.

G. Schirner, R. Doemer [7] propose a System Design Environment for SW development
which provides an abstract RTOS model and processor models at 3 level of abstraction.
Parts of the design flow are automated so the designer can focus on the algorithm design
and space exploration. The approach is useful for ARM, AMBA bus and uC/OS designs, but
is not extendible for general platforms with general protocols and RTOS implementations.

Some research effort are focused on raising the level of TLM communication inter-
connect paradigm from message-blocking FIFO transactions to service based procedures.
These services execute over existing FIFO transactions (another comm. layer) and establish
the Hardware Procedure Call (HPC) protocol. The HPC transports an arbitrary number of
arguments of complex data-types, and it consists of two transactions for service invocation,
(input parameters return value length definitions) and one for return value transfer. How-
ever, this approach is restricted to proposed HPC protocol, and allows only a restricted set
of communication scenarios (simple bus-architecture, no routing, no dynamic scheduling,
no service priority etc.) supported by HPC.

3 MPSoC Design

MPSoC design is a process of creating an arbitrary MPSoC platform targeted for an ar-
bitrary application so that the system meets the specified performance requirements. The
process consist of two phases. First is (a), the modeling phase, where the design space is
searched for the best fit of platform and application, with regards to performance require-
ments. In this phase the designer references the system’s untimed specification model and
performance constraints to create the system’s TLM with estimated timing and fast simu-
lation. Second is (b), the synthesis phase, where the chosen TLM is implemented. During
system synthesis, the designer might reuse certain features of the chosen TLM, but the
output PCAM is mostly implemented manually at register transfer level.

We approach the problem of MPSoC design with automatic TLM and PCAM synthe-
sis. The generation of TLM is simplified with GUI-based MPSoC platform definition. The
application code from the system’s spec is mapped to each TLM component and their com-
munication is made possible by the automatically generated TL channel functions. After
TL modeling, the synthesizable PCAM is automatically generated form the TLM chosen for
implementation. The PCA communication between the platform components is generated
automatically for that particular platform configuration.

The focus of this paper is the synthesis of communication SW performed in the synthe-
sis phase of MPSoC design. It is the part of the Synthesis Tool that inputs the TLM chosen
for implementation and outputs the PCAM. The following sections provide an overview of
all models in MPSoC design flow and the functionalities of the TLM-to-PCAM Synthesis
Tool.

BB 288l oy OO

V3 Y [y

= CH2))
B3 B4

Figure 1: System Spec example.

3.1 Spec Model

The system spec is the untimed, functional application that does not reflect the MPSoC
platform or any implementation aspects of the system. The spec code is partitioned into

4

concurrent processes that exchange data either (a) asynchronously or (b) synchronously.
The asynchronous data exchange is enabled with a shared access to a global variable. The
synchronous data transfer uses a a dedicated point-to-point channel to synchronize and
exchange data between two processes.

Figure 1 shows an example spec. The computations is encapsulated in four processes
(B1 through B4). Additionally, only processes B1 and B2 have a shared access to variables
v1 to v3, while variable v4 is shared among all processes. The asynchronous communication
is modeled by links to the global variables, and synchronous communication is presented
with channels CH1 and CH2. The spec model provides validation of the system’s algorith-
mic functionality and serves as a reference model during TLM generation.

32 TLM

The TLM is a simulatable model of system computation and communication. The com-
putation is modeled with processes contained in processing elements (or PEs), and the
communication is modeled with the set of TL channels implementing send, receive, read
and write methods. The processes of different PEs (i.e. remote processes) communicate
with each other via send and receive methods. Read and write methods enable processes to
access shared memory units. The memory accesses of a process do not require synchroniza-
tion because once the process successfully arbiters for a channel, the memory is guaranteed
to be ready for read/write. Remote process communication requires both processes to be
synchronized prior to any data exchange.

LM% CPU
[v3 | Memory
[LBusi—

=]

TLM

3

E— (JOFE Bus Bridge —TTH Bus [}

HW IP

Figure 2: MPSoC TLM example.

Figure 2 shows an example TLM, with three computing components (CPU, HW and an
IP) and a shared memory unit, Memory. The CPU contains local memory LM and executes
two concurrent processes (B1 and B2), while HW and /P each implement a single process:
B3 and B4, respectively. Further, CPU and HW processes communicate through channel
OPB Bus. Since they share a channel, an arbiter unit Arb resolves possible contentions.
1P, on the other hand, uses channel DH Bus. Therefore, to enable communication between
different protocols, a Bridge stores and forwards messages between OPB Bus and DH Bus.

TLMs simulate fast because: (a) the TLM implements both SW and HW in a single,
system-level modeling language (e.g. SystemC, SpecC) and (b) the TLM communication
is implemented as message transfers with estimated timing and no pin level details in the
TL channel. The TL channel contains two event constructs (req, ack) and a synchronization
flag to ensure reliable message transfer between a sender and a receiver process.

3.3 PCAM

Unlike TLM, the PCAM implements communication at the pin-accurate level.

The SW components in PCAM (processors) contain the executable code and communica-
tion drivers, compiled and linked with the used libraries. The drivers are processor depen-
dent, written in C/assembly.

The HW components in PCAM (such as IPs and bridge elements) are written using HW
description languages (e.g. Verilog, VHDL) at register-transfer level (RTL). Both compu-
tation and communication in HW is implemented with finite state machines with data path
(FSMD).

CPU
[] EXE
LMRz] | (APILE PCAM
| %3 | BTOE Memory
| D“vAers

1 o
ig HW IP g}

Figure 3: MPSoC PCAM example.

Figure 3 shows the example of a PCAM. As the TLM, it includes a CPU, HW, IP,
Memory, and arbiter Arb and a Bridge. The CPU, however, contains a compiled executable
and an RT OS for task scheduling, while HW and /P implement computation with FSMDs.
Moreover, the communication between components is also implemented differently for HW
and SW. SW driver for the CPU contains interrupt handling routines and data transfer meth-
ods. These methods are analogous to the channel methods in the TLM.

The PCAM executes slower then the TLM, but accurately represents the system plat-
form, which allows for an automatic download to FPGA using commercial platform syn-
thesis tools.

4 Synthesis Tool

The synthesis outline is shown on Figure 4. The inputs to the synthesis are the chosen
TLM (shown on top of the figure, left) and designer’s decisions which are inputted by
the designer through the graphical user interface (GUI, on top of the figure, right). For
example, the decisions regarding SW communication synthesis include data transfer type,
packet size, routing scheme and synchronization mechanism.

The Parameter Extractor unit parses through the TLM and identifies PEs and their chan-
nel connection(s). Each communicating pair of PEs is then attributed with the parameters
describing the their connection. The list of communication parameters is shown in the Table
1. The parameters belong to either of the three protocol classes: process synchronization,
routing and data transfer. These protocol classes are described in the following sections.

J L J L

Synthesis Tool
| tlsw L —

HW ip i
> ‘Parameter ! - 0s
Gen [™ Gen ||~y
> ! Extractor | e
i Lib

Verilog ¥
PCAM Generator

Download to FPGA

y Binary code

Figure 4: TLM to PCAM MPSoC synthesis.

The SW Gen, depending on the parameter values, utilizes different libraries (shown on
Figure 4, right) to assemble platform specific drivers for each PE. The synthesized drivers
are then compiled and linked to the corresponding application code for each process in the
MPSoC that uses them. The HW Gen unit applies input parameters to generate bridges for
translation of incompatible bus protocols. HW Gen is outside the scope of this paper.

The outputs of SW Gen and HW Gen (Binary and Verilog files, respectively) are fed
into the PCAM Generator, shown on the bottom of the figure. The generated PCAM can
then be automatically downloaded into the FPGA board.

Parameter Name Parameter Value(s)
Synch. Flag Location In Initiator/Resetter PE
Process Synch. Flag Set Style FIXED/RUNTIME
Synchronization || Synch. Flag Set Method SIGNAL/BUS
Routing Type FIXED/RUNTIME
Routing Routing Metric DISTANCE/DELAY
Transfer Type MSG/PCT
Data Packet Size positive integer
Transfer No. of Bridges >0

Table 1: List of parameters for communication SW synthesis

4.1 Process Synchronization

Process synchronization is achieved by one process setting the synchronization flag and
the other process checking and resetting the flag. The parameters corresponding to process
synchronization, as shown in Table 1, are (1) Synchronization Flag Location, (2) Synch.
Flag Set Style and (3) Synch. Flag Set Method.

Regarding parameter (1), the synchronization flag may reside in either the PE Initiator
or in the resetting PE (Resetter). The Initiator is the PE whose process will write into the
synchronization flag first and thus initiate the synchronization. Consequently, the Resetter
contains the process that will complete the synchronization by resetting the flag.

Parameter (2) defines whether the PEs Initiator and the Resetter are defined at compile
time or at run-time. If they are defined during compilation, even if the process in the Resetter
reaches the synchronization point first, it may not set the flag. Instead, the process must read
it until it is set by the process in the Initiator and then reset it. If the PEs are decided on
run-time, the Initiator is the PE whose process reaches the synchronization point first.

The flag set/reset method can be implemented with either polling or interrupt, with
regards to Parameter (3). In polling, the flag is accessed via bus, while in the interrupt
scheme, a dedicated (interrupt) signal accesses the flag. The polling mechanism contains a
polling routine with corresponding, bus-addressable polling register (i.e. synchronization
flag). The interrupt based synchronization contains an interrupt handler with its interrupt
flag. The interrupt device must be connected to an interrupt signal to drive.

The figure 5 shows two examples of synchronization implementation. In (a), the flag
resides in the local memory of the PE with Process I and the synchronization method
is interrupt based. Process 1 sets/resets the flag with local read/write operations, while
Process 2 sets/resets the flag remotely, with an interrupt signal. Alternately, the flag may
reside in the local memory of the Process 2, shown on figure (b). Then, Process I regularly
reads the flag by polling (test-end-set operation). Every test operation utilizes the bus. (The
flag register must have a bus address, i.e. be accessible via bus).

‘Process 1 ‘ ’ Process 2‘ ‘ Process 1 ‘ ’Process 2‘
4 interrupt test-and-set A

[| [Eapa)| || Esdeed]||[- gEtEd

N s & S O o
0 O o S 9 ¥
Q Q F \J

0y,

%
&
K—
g 8
& T

) (b)

Figure 5: Process Synchronization: (a) Flag in Resetter, interrupt set/reset, (b) Flag in
Initiator, polling

4.2 Routing

Routing defines the source-to-destination path through which the data will be transferred.
If the source and destination PEs are directly connected with the bus, the routing function
outputs the unique identifier of that bus. If the PEs communicate indirectly, the result of
routing function is an ordered string of busses and bridges from source to destination, start-
ing and ending with bus identifiers the source and destination (respectively) are connected
to.

{Busy},if direct connection
Route(Process;, Process;)) = { {Busk,B;, Busy,By...Bus,},
if bridged connection

The routing parameters shown in Table 1 are: (1) Routing Type and (2) Routing Metric.
If the routing function is called during compilation, the routing for each source-destination
will be FIXED during execution (Parameter 1). If the process calls the routing function
before each send, the routing is decided on RUN-TIME.

Regardless of when it is called, the routing function will output different routes depend-
ing on the chosen metric, i.e. the value of Parameter (2). If the criteria for choosing a route
is distance, the routing algorithm will take into account the number of bridges and busses
connecting the source and destination. Alternatively, the algorithm can output the route
with the shortest message transfer delay from source to destination. The time delay of each
route can be estimated by inspecting the number of unused FIFO locations in the interme-
diate bridges. The assumption is that the bridges with the least packet load will transfer the
message the fastest.

4.3 Data Transfer

The final communication parameter class is Data Transfer, which contains the following
parameters: (1) Transfer Type, (2) Data Packet Size and (3) Number of Bridges. The data
that is being exchanged can be transferred either in a single message or packaged into fixed
size packets (Parameter 1). For single message transfers, process synchronization is done
at the beginning of the transfer and the message is sent in whole. In packet transfers, the
sending process packages the message into packets of equal size and synchronizes with the
receiving process before each packet transfer.

Parameter (2) is depended on the Transfer Type: message transfers have Packet Size set
to 0, while packaged transfers have a positive integer for Packet Size.

Finally, the Number Of Bridges (Parameter 3) has the following effect on data transfer:
If there is at least one bridge between the source and the destination, the sending process
needs to invoke the service and request FIFO allocation of the first bridge. In direct com-
munication no such requests are needed.

BEGIND

FOR Y Remote{Pi, Pj)

FOR Y/ Bk IN Route{Pi, Pj)

INCLUDE APIs OF Bi

PCT 22
TYFE == ==nd
]

=]
ASSEMBLE_MGS(Ptr) .

Figure 6: Driver Synthesis Procedure Diagram.

4.4 Synthesis Procedure

At the top level, the communication SW synthesis parses through PEs in the system and
identifies remote process communication pairs (comm.type(p j, px)) For all such pairs, the

10

driver synthesis generates PCAM level drivers to replace the TL channel calls with. Figure
6 shows diagram of the partial driver synthesis procedure. For clarity, the diagram captures
only the generation of send/recv driver methods. The drivers for memory access operations
are synthesized similarly, using different values of the synthesis parameter set.

The route determines if the bridge header file will be included in the drivers, and the
synchronization Synch includes either interrupt enable methods (interrupt based scheme) or
polling register initialization (for polling scheme). The synchronization completes either
after execution of interrupt handler, or after the polling returns the set poll _reg value. If
the transfer includes message packaging (PCT), the message is either disassembled into
packets before sending or assembled from received packet after receiving, depending on
the type of transfer (send /recv).

Finally, all PEs, IPs and bridges in MPSoC are registered as devices in PCAM, with
corresponding IF registers. The bridges have one or more request registers, one for each
process accessing the bridge. In the interrupt based synchronization, appropriate interrupt
flags and interrupt handlers will be registered to it. Similarly, if the device is synchronized
with polling, it will have polling registers and polling function.

CPU CPU CPU

(CEXE] (CEXE)

(_RTO0S [RTOS)

pvs: DT ovs: S, DT HW ores:S, R, DT HW
Hf\.L. HlAL HAL

Bridge Bus 1 Bus 0
Bus 1
Bus 2
Bus
IP i
HW E Bus N

Figure 7: Example of different drivers configurations in MPSoC. Drivers implement (a)
data transfer only, (b) process synchronization and data transfer, (c) routing, process syn-
chronization and data transfer

4.5 Bus drivers for PCAM

The output bus drivers are customized to achieve high performance for each design. Fig-
ure 7. shows three different driver schemes that can be generated automatically with SW
Gen. The CPU drivers are shown over the hardware abstraction layer (HAL) and under the
compiled application (EXE) code (and possibly an embedded real-time operating system

11

RTOS). Different properties of custom drivers (shown on figure with symbol Drvs) are ab-
stracted with symbols DT, S and R, representing data transfer, synchronization and routing
functionalities, respectively.

Figure on the left shows the CPU attached to the personalized Bridge that interfaces the
system bus and handles routing and synchronization with all destination(s), so the drivers
need only include the data transfer. Middle figure shows the CPU communicating either
directly (to the HW) or through the Bridge (to access the IP). Here, the drivers need to im-
plement process synchronization and data transfer, but not routing since the design does not
contain multiple routes to any destination PEs. Finally, the right figure shows the scheme
in which the CPU’s drivers contain all communication features.

S Experiments and Results

We have applied our approach to an industrial strength example: the MP3 decoding algo-
rithm. The MP3 decoder is a device for decompression of a MP3 input stream that outputs
audio data. The input data stream is organized in frames and encoded using the MP3 com-
pression algorithm. The MP3 decoder functionality is shown on Figure 8.

2 granules
AliasRed —>{ IMDCT FilterCore]
Left channel
—> HuffDec PCM |—»
mp3 pcm
AliasRed —>{ IMDCT FilterCore]
Right channel

Figure 8: Block functionality of the MP3 Decoder Example.

The first phase uses Huffman tables, (block Huf fDec), after which each frame is sub-
divided into two granules of equal size (Left and Right channel). Each branch generates
requantized output in three steps (blocks): the AliasRed for alias reduction, the IMDCT
block and FilterCore for creating PCM samples. The correctness of our experiments is
validated by comparing the generated PCM samples with the reference data stored in the
golden file.

5.1 Experiment Setup

Experimental setup includes four different platform configurations of MPSoC implemented
on Xilinx Multimedia FPGA Board with configurable Microblaze soft core, running at

12

27Mhz. The PCAM models of these platform configurations have been implemented both
manually and automatically, using our Synthesis Tool.

Each platform contains Microblaze processor with 4MB of external memory (Mem-
ory block) and an OPB Timer for timing. The parallelism is introduced with one or more
concurrent HW units performing /IMDCT sampling and/or polyphase filtering FilterCore
(depending on the design platform). Since HW units communicate with double-handshake
(DH) and Microblaze processor supports OPB protocol, the Bridge is inserted to translate
between the two protocols. The data exchanged between the processor and HW units is
transferred packets ranging in size from 16 to 36 bytes.

The initial configuration contains only one polyphase filtering (FilterCore) HW unit,
while the rest of the decoding is running on the Microblaze. Next configurtion has two con-
current FilterCore units. The third configuration consists of two concurrent IMDCT units.
Our results show that this configuration yields more speedup over the previous platform
designs. Finally, the maximum speedup was achieved with implementing four HW units
attached to the DH bus. Figure 9 shows the fourth configuration.

Microblaze

Memory

OPB Timer

C] int_handler||[send/recv][read/write
I

OPB Bus

Bridge

O«O+0O<0
DH Bus

| | | |

Left Right Left Right

Figure 9: MP3 Decoder Platform: SW + 2 DCT units + 2 IMDCT units.

The transfer of input data from the Microblaze to the IMDCT units includes 88 data
transfers, each having 18 byte packets. The outputs from the IMDCT s is transferred back
to the Microblaze in 88 packets, each 36 bytes in size. Similarly, the input to the FilterCore
units is sent in 72 data transfers with 16-byte while the output is contained in 144 transfers
of 32-byte packets. Each data transfer includes requesting the Bridge, synchronizing with
the destination with the interrupt scheme and the data transfer. Following are the results
of comparisons in communication speed between the manual and automatically generated
PCAMs of MP3, mapped on four MPSoC platforms configurations.

13

Design Code size(in bytes) Total comm. delay Total comm.
(% diff.) (in cycles) (% diff.) | delay (in ms)
SW+1DCT 171,362 957,060 3545
Manually SW+2DCT 160,640 1,914,120 70.89
implemented || SW+2IMDCT 163,492 1,875,588 69.46
PCAM SW+2DCT+2IMDCT || 153,420 3,789,708 140.36
SW+1DCT 172,072 (+4.14%) 949,932 (-7.44%) 35.18
Automatically | SW+2DCT 161,280 (+3.98%) | 1,899,864 (-7.44%) 70.04
generated SW+2IMDCT 164,132 (+3.91%) | 1,863,972 (-6.19%) 69.04
PCAM SW+2DCT+2IMDCT || 153,624 (+1.33%) | 3,763,836 (-6.83%) 139.40

Table 2: Comparison of manual vs. automatic PCAMs of the MP3 Decoder

Design Code size (in lines) | Development Time
(% dift.) (% dift.)

SW+1DCT 162 5h+2h
Manually SW+2DCT 192 5h+25h
implemented SW+2IMDCT 192 5h+25h
drivers SW+2DCT+2IMDCT | 252 5h+35h

SW+1DCT 168 (+3.70%) Sh+0.14s (-28%)
Automatically || SW+2DCT 208 (+8.33%) 5h+0.14s (-33%)
generated SW+2IMDCT 208 (+8.33%) 5h+0.14s (-33%)
drivers SW+2DCT+2IMDCT | 288 (+13.83%) |5h+0.14s (-37%)

Table 3: Comparison of manual vs. automatic bus driver design development

5.2 Results

Table 2. presents the results of our experiments for both models, with measures of design
size (in bytes of compiled code for Microblaze processor) and performance (in number of
cycles for communication between the processor and the external HW units). First we show
the measurements for manual designs of all four implemented platforms. As expected, with
more external units, the code size of Microblaze processor decreases since the processor
is relieved from extra computation (third column), and the communication time increases
due to more data transfer operations (shown in columns four, in clock cycles, and five, in
milliseconds). The last four rows show results for code size and communication delay of
automatically generated models.

The manual code contains a number of optimizations dependent on the MP3 Decoder
application. For example, the communication between the main process in the CPU and the
HW units is sequential: for each frame, the FilterCore transfers always follow the IMDCT

14

transfers. Therefore, the manually written drivers for the CPU all share a single global flag
for process synchronization.

However, at this time the SW Gen Tool does not implement any static code analysis for
similar optimizations, so the automatically synthesized drivers have independent synchro-
nization between unique pairs of processes. This results in occasional redundancies of code
in the automatic drivers as compared to the manual design. However, in complex platforms
such small code savings provide slim benefits, so automatically synthesized models show
comparable results when compared to respective manual designs. The measurements for
communication delay (Table 2, columns four and five) show similarity in timing results
between automatic design and manual implementations.

Table 3. shows comparison of code size and development time for drivers and commu-
nication IFs. Manual design of bus drivers is between 4% and 14% smaller than automatic
design (code redundancies).However, the automatically generated bus drivers were synthe-
sized in less than 200 ms. The manual development of bus drivers took approximately 2
to 3 hours to implement, depending on the complexity of the platform configuration. For
each platform configuration, these drivers development times have been increased with the
time interval spent on design development, i.e. platform configuration design (2-3 hours,
depending on the configuration) and testing and debugging (estimated 3 hours). A compar-
ison of manual and automatic design times shows a significant productivity gain of up to
35% of total manual development time, when using our tool.

6 Conclusion

This paper defines a tool for automatic synthesis of MPSoC communication firmware that
is customized for its application. The customization is achieved by selecting values for a
parameter set that captures its communication protocol(s), and by selecting the appropriate
MPSoC platform template. The output code can then be compiled and directly downloaded
to the FPGA board.

The major contribution of this paper is, (a) the automation of synthesis, which yields
high productivity of MPSoC systems for designers and makes short time-to-market pro-
jections realistic to achieve. Our experimental results show dramatic speedup in automatic
design implementation since the designer is relieved from error prone coding for drivers of
each of the components in MPSoC.

Another benefit of our approach is (b), rapid design space exploration. Also due to au-
tomation, there is no need for manual rewriting the code in different code partitioning and
mapping schemes. With simple selection of different parameter values, various communi-
cation schemes and protocols are synthesized automatically.

Future work includes expanding the parameter set for platform definition to include
more complex MPSoC and network-on-chip (NoC) designs. Moreover, we plan to optimize

15

details of the synthesis algorithm in order to further improve on the size and performance
of automatically generated models.

7 Acknowledgments

This work is a continuation of the decades of research in system design and synthesis
methodology done by members of the SER group adjoint to the CECS at UCI. We greatly
appreciate their valuable inputs. Special acknowledgments go to Hansu Cho for providing
the Verilog implementation of Bridge component, and Pramod Chandraiah for the specifi-
cation model of the MP3 Decoder.

References

(1]

(2]

(3]

[4]

[5]

(6]

(7]

[8]

A.A. Jerraya, N.E. Zergainoh, AL. Baghdadi, “HW/SW codesign of on-chip commu-
nication architecture for application-specific MPSoC,” International Journal of Em-
bedded Systems, 2005.

S. Ihmor, M. Visarius, and W. Hardt, Modeling and Automated Synthesis of Reconfig-
urable Interfaces, Ph.D. Thesis, Faculty of Computer Science, Electrical Engineering
and Mathematics of the University of Paderborn, 2006.

F. Oppenheimer, D. Zhang and W. Nebel, “ Modelling Communication Interfaces with
ComiX,” Proceedings of the 6th Ade-Europe International Conference, 2001.

P. Gerin, H. Shen, A. Chureau, A. Bouchhima, A.A. Jerraya, “ Flexible and Exe-
cutable Hardware/Software Interface Modeling For Multiprocessor SoC Design Us-
ing SystemC, ” Proceedings of the 12th Asia and South Pacific Design Automation
Conference, 2007.

H. Kopetz et al “ Error Containment in the time-triggered SoC Architecture, ” Pro-
ceddings of the 2nd IESS, 2002.

K. Steinhammer, A. Ademaj “ HW implementation of the Time-Triggered Ethernet
Controller, ” Proceddings of the 2nd IESS, 2002.

G. Schirner, R. Doemer “ Embedded Software Development in a System-Level Design
Flow, ” Proceddings of the 2nd IESS, 2002.

K. K. Ryu, V. J. Mooney III “ Automated Bus Generation for Multiprocessor SoC
Design, ” Proceedings of Design, Automation and Test in Europe Conference and
Exhibition, 2003

16

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

C. Zissulescu, B.Kienhuis, and E. Deprettere, “ Laura: Leiden architecture research
and exploration tool, ” Proceedings of Design, Automation and Test in Europe Con-
ference, 2004.

W. Cesrio, A. Baghdadi, L. Gauthier, et al., “Component-Based Design Approach for
Multicore SoCs, ” Proceddings of the 39th Design Automation Conference, 2002.

R. Passerone, J. Rowson, A. Sangiovanni-Vincentelli, “Automatic Synthesis of Inter-
faces between Incompatible Protocols,” Proceddings of the 35th Design Automation
Conference, 1998.

K.K Ryu, E. Shin, V.J. Mooney, “A Comparison of Five Different Multiprocessor SoC
Bus Architectures, ” Proceedings of the EUROMICRO Symposium on Digital System
Design, 2001.

J. Gong, D. Gajski, S. Bakshi, “Model Refinement for HW/SW Codesign, ” Proceed-
ings of European Design and Test Conference, 1996.

T.Y. Yen, W. Wolf, “Communication Synthesis for Distributed Embedded Systems, ”’
Proceedings of International Conference on Computer Aided Design, 1995.

M. Loghi, et al, “Analyzing On-Chip Communication in a MPSoC Environment, ”
Proceedings of Design Automation and Test in Europe Conference and Exhibition,
2004.

S. Narayan, D. Gajski, “Protocol generation for communication channels, ” Proceed-
ings of the 31st Design Automation Conference, 1994.

S. Narayan, D. Gajski, “Synthesis of System Level Bus Interfaces, ” Proceedings of
Design Automation and Test in Europe Conference and Exhibition, 1994

T. Givargis, F. Vahid, “Parameterized System Design, ” Proceedings of International
Conference on Hardware-Software Codesign and System Synthesis, 2000

L. Benini, G. D. Micheli, “Network on-chips, In IEEE Computer vol. 1 pp 70-78,
2002

P. Guerrier, A. Greiner, “A Generic Architecture for On-Chip Packet-Switched Inter-
connections, ” Proceedings of Design Automation and Test in Europe Conference and

Exhibition, 2000

D. Gajski et al., “SpecC: Specification Language and Methodology, ” Kluwer Aca-
demic Publishers, 2000

17

