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Abstract
Partial dynamic reconfiguration, often called RTR (run-time reconfiguration) is a key feature in

modern reconfigurable platforms. While partial RTR enablesadditional application performance,
it imposes physical constraints necessitating simultaneous scheduling and placement while map-
ping application task graphs onto such architectures. In this report we present PARLGRAN, an ap-
proach that maximizes performance of application task chains by selecting a suitable granularity
of data-parallelism for individual data parallel tasks. Our approach focusses on reconfiguration
delay overhead and placement-related issues (such as fragmentation) while selecting individual
data-parallelism granularity as an integral part of simultaneous scheduling and placement. As a
key step to validating our proposed heuristic, we have additionally formulated (and implemented)
an exact strategy (ILP). We demonstrate that our heuristic generates high-quality schedules by: (a)
comparing our heuristic with the exact strategy on small testcases (b) a very large set of synthetic
experiments with over a thousand data-points where we compare our results with a simpler strategy
that tries to statically maximize data-parallelism, i.e.,does not consider the overheads and con-
straints associated with partial RTR (c) a detailed application case study of JPEG encoding. The
detailed case-study confirms that blindly maximizing data-parallelism can result in schedules even
worse than that generated by a simple (but RTR-aware) approach oblivious to data-parallelism.
Last, but very important, we demonstrate that our approach is well-suited for true on-demand
computing – detailed execution time estimates of our heuristic indicate that the heuristic execution
time is comparable to hardware task execution time making itfeasible to integrate our heuristic in
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a run-time scheduling approach.

Keywords: Partial dynamic reconfiguration, data-parallelism, granularity selection, linear place-
ment, scheduling
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1 Introduction

Reconfigurable architectures are popular for applicationswith intensive computation such as im-
age processing, since a limited amount of logic can be customized to set up deep pipelines, and/or
exploit more coarse-grain parallelism, etc. Partial dynamic reconfiguration, or, run-time recon-
figuration (RTR) allows additional customization during application execution, making it possible
to obtain increased performance [15]. Our overall goal is tomaximize performance of applica-
tions represented as precedence-constrained task DAGs (directed acyclic graphs) onsingle-context
architectures with partial RTR (Xilinx Virtex-II is a commercial instance of such architectures).
Some key issues in mapping applications onto such devices are the significant reconfiguration
delay overhead, physical (placement) constraints, etc.

In this report, we focus on precedence-constrainedtask chains, common in image-processing
applications [10], [6]. In such applications, area-execution time characteristics of key tasks such as
IDCT, Quantize, etc, are predictable because of complete pipelining. Additionally, many computation-
intensive tasks such as DCT are completelydata-parallel, i.e., results of task execution on a block
of data are identical irrespective of whether the task processed any other (disjoint) block of data
before or after the current block. On an architecture with partial RTR, it is possible to improve
application execution time bydynamicallyadjusting the parallelism granularity of such tasks, i.e.,
reconfiguring the architecture to instantiate multiple copies of such tasksduring application exe-
cution– each copy (instance) uses an identical amount of HW resources, but processes only part
of the data. Due to complete pipelining, execution time of such tasks is directly proportional to
the volume of data processed, and thus, reducing the data volume proportionately improves (re-
duces) the application execution time. Note that on architectures with no partial RTR, the scope
of exploiting such data-parallelism is much more limited – partial RTR enables resource reuse,
significantly expanding the potential of exploiting data-parallelism.
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Figure 1. Granularity of individual data-parallel tasks

As an example, we consider a simple chain with two tasks, as shown in Figure 1. Assuming
that there are enough resources to simultaneously execute 3copies of taskT1 or 2 copies of task
T2, (b) and (c) show some possible task graph configurations after such a transformation. How-
ever, such a transformation can be quite costly on architectures with partial RTR– each new task
instance (copy) adds a significant reconfiguration overhead. Therefore the transformations need to
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be guided by selecting the right granularity of parallelismthat masks the reconfiguration overhead
and maximizes performance. One important issue is that because of the reconfiguration overhead,
multiple instances of a task are typically unable to start execution at the same time– therefore,
individual execution time (workloads) of the multiple instances may vary.

One key additional goal of any proposed approach is that it needs to be applicable in asemi-
onlinescenario. We define asemi-onlinescenario as follows:
(a) The application chain structure is known in advance, i.e., predecessor and successor of each
individual task is known statically anddoes notchange during application execution. This property
is satisfied by many common image-processing applications such as Sobel filtering [2], JPEG
decoding, etc. Additionally, characteristics such as logic requirement of each individual task are
also available statically.
(b) When such an application is invoked dynamically on a device with partial RTR capability, it
is allocated a set of logic resources depending upon system capacity and resource requirement of
other applications concurrently active on the same device.
(c) A run-timescheduling approach generates a schedule based on the static information and two
run-timeparameters: (i) allocated logic resources (b) image size.
(d) The scheduled application starts execution.

That is,semi-online-ness property allows an application to adapt to key changesin its runtime
environment – change in available logic resources and change in input image size directly affect
the potential for performance improvement (compared to a stictly sequential schedule). An ap-
proach qualifies as semi-online if execution-time of approach is suitable for inclusion in a run-time
scheduler, i.e., the measure of viability iscumulative execution time= (schedule length generated
by approach + execution time of approach on a typical embedded processor).

We propose such an approach, PARLGRAN, that attempts to maximize application performance
on architectures with partial RTR by choosing the right parallelism granularity for each individual
data-parallel task. By granularity we mean both thenumber of instances(copies) of that task,
and, theworkload (execution time) of each copy. Our approach considers physical (placement)
constraints, and utilizes configuration prefetch [14] to reduce the latency. The key constraints of
such architectures necessitate joint scheduling and placement [12], [1]. Our approach therefore,
incorporates granularity selection as an integral part of simultaneous scheduling and placement.
To the best of our knowledge, ours is the first effort to solve this problem.

To validate our approach, we have formulated (and implemented) an exact strategy as well
as a simpler heuristic that tries to statically maximize performance gain from data parallelism
without considering the constraints and overheads due to partial RTR. Experiments on smaller test
cases demonstrate that our proposed approach generates results close to that of the exact (ILP).
Since the exact strategy is very time-consuming, we additionally evaluate the quality of schedules
generated by our proposed approach on a very large set of overa thousand synthetic experiments
by comparing results with that of the simpler heuristic – average improvement in schedule length
is over 20%.

Next, we conduct a detailed case study of JPEG encoding– the experiments demonstrate that
the static parallelization approach can end up generating schedules much worse than a simple (but
RTR-aware) approach oblivious to data-parallelism. Finally, we have obtained detailed execution
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time estimates of our approach on a typical embedded processor, the PPC405 processor at a clock
frequency of 400 MHz. The data indicates that execution timeof our approach is comparable to
that of task execution time. Equally importantly, for our case study, cumulative performancemono-
tonically improves. In other words, for a given image size, as available area increases, (heuristic
execution time + schedule length) monotonically decreases. Thus, PARLGRAN is well-qualified
for a semi-online scenario, allowing inclusion in a run-time scheduler.

2 Related work

While there exists a large body of work in mapping task chainstypical in image processing to
reconfigurable architectures, a significant amount of work such as [10] does not consider dynamic
reconfiguration. More recently, there has been a spurt in work focussed on exploiting the powerful
capabilities of partial dynamic reconfiguration for image-processing/ multimedia applications [2],
[3], [9], etc. Our work is closely related to work such as [3],[2] etc that focus on task graph
scheduling with RTR-related constraints.

Recent work on scheduling application task graphs with RTR-related constraints [3], [2], often
do not focus on the critical role played by placement on such architectures. Our work focusses
on joint scheduling and placement required on architectures with partial RTR, similar to [5], [12].
However, prior work in joint scheduling and placement typically ignore key architectural con-
straints such as the resource contention due to a single reconfiguration controller, configuration
prefetch to reduce the reconfiguration latency, etc. Ignoring these key issues makes the problem
closer to the rectangle packing problem [17] and does not realistically exploit RTR. Other recent
work such as [4] focus on the problem of configuration reuse asan alternative strategy to reduce
the reconfiguration overhead, an aspect we do not address in this work.

Additionally, work on task-graph scheduling for such architectures [3], [1] typically does not
include application restructuring considerations. While[2] presents some application restructur-
ing considerations, their work is completely oblivious to placement concerns. Also, their target
device is amulticontextarchitecture with multiple concurrently active reconfiguration processes.
Commercially available devices with partial RTR aresingle contextarchitectures where only a
single reconfiguration process is active at any instant. (True multicontext architectures such as
Morphosys [13] incur a significant area overhead.) To the best of our knowledge, this work is the
first effort that focuses specifically on techniques for transforming applications onsingle-context
architectures and includes very detailed consideration ofall partial RTR related constraints such
as placement, resource contention due to the sequential reconfiguration mechanism, etc.

There is of course a vast body of knowledge in the compiler domain on extracting parallelism
from programs at different levels of granularity [19]. Suchcompile-timetechniques [11] are typ-
ically unaware of partial RTR constraints – equally importantly, they also incur a high execution
overhead, since they are not intended for execution in an embedded environment. In our work,
we explicitly focus on low execution-complexity of our approach such that it can be applied in a
run-time scheduling environment.
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Figure 2. Target dynamic architecture

3 Problem overview

3.1 Target architecture

Our target dynamically reconfigurable device as shown in Figure 2 consists of a set of config-
urable logic blocks (CLB) arranged in a two-dimensional matrix. The basic unit of configuration
for such a device is a frame spanning the height of the device.A column of resources consists of
multiple frames. A task occupies a contiguous set of columns. The reconfiguration time of a task is
directly proportional to the number of columns (frames) occupied by the task implementation. One
key constraint is that only one task reconfiguration can be active at any time instant. An example of
our target device is the Xilinx Virtex-II series where constraints such as dynamic tasks occupying
a contiguous set of columns are critical for realization of partial run-time reconfiguration.

3.2 Application specification

A taskTi executing on such a system can be represented as a 3-tuple (ci , ti, r i) whereci is the
number of resource columns occupied by the task,ti andr i are the execution time and reconfigu-
ration overhead respectively. Each task needs to be reconfigured before its execution is scheduled.
The physical constraints on such a device necessitates joint scheduling and placement [12], [1].

In image processing applications, we often find chains (linear sequences) of such tasks. For a
chain ofn tasks, (T1..Tn), each task in the chain has exactly one predecessor and one successor.
Of course, the first task,T1, has no predecessor, and the last task,Tn, has no successor. A prede-
cessor task utilizes a shared memory mechanism to communicate necessary data to its successor–
this shared memory can be physically mapped to local on-chipmemory and/or off-chip memory
depending upon memory requirements of the application.
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3.3 Problem Objective

Our overall goal is to maximize performance (minimize schedule length) under physical and
architectural constraints, given a resource constraint ofCconscolumns available for the application,
whreCcons is less than that required to map the entire application, i.e., Ccons < ∑n

i=1(ci) 1. An
additional key goal is that our approach should have a low computational overhead suitable for
implementation on a typical embedded processor.

4 Detailed problem specification and Exact mathematical formulation (ILP)

In this section we first motivate our problem and follow-up with a detailed problem specification.
Next, we provide an exact mathematical (ILP) formulation.

4.1 Motivation and Detailed problem specification
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Figure 3. Effect of significant reconfiguration overhead

Ideally, the degree of parallelism for a data-parallel taskis limited only by the availability of HW
resources. Let us consider a chain with only a single data-parallel taskT1 that executes in timet1
usingc1 columns, as shown in Figure 3 (a). Given a resource constraint ofCconscolumns, we expect
performance to be maximized (schedule length minimized) when this task is instantiatedbCcons

c1


times, as in Figure 3 (b). In these figures, theX-axis represents the columnar area constraintCcons

and theY-axis represents the schedule length. For sequential tasks(0 degree of data-parallelism),
the execution of taskTi is represented asEi as in Figure 3 (a). Each individual taskTi requires
reconfiguration before execution – however, for ease of representation, we show all our schedules
as starting from execution of the first taskT1 in the chain. For data-parallel tasks, we additionally
denote the execution ofj-th instance (copy) of the task asE j

i as in Figure 3 (b).
Unfortunately, as we discuss next, theideal performance gain in Figure 3 (b) is typically not

achievable while considering realistic issues on such architectures.
1We assume of course that the largest task fits into the available area, i.e.,Ccons � max(ci)
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4.1.1 Significant Reconfiguration overhead

For modernsingle-contextarchitectures that support partial RTR, the large reconfiguration delay is
a key bottleneck in achievingideal parallelism. To illustrate this, we consider Figure 3 (c). In this
figure, reconfiguration forj-th instance (copy) ofT1 s denoted asRj

i . Similar to our convention
of not explicitly showing reconfigurationR1 for taskT1 in Figure 3(a), we do not explicitly show
reconfigurationR1

1 for the first data-parallel instanceT1
1 in Figure 3 (c). We simply assume that

the reconfiguration controller is available at the beginning of the execution of the first instanceT1
1 .

Next we attempt to maximize performance by instantiating anadditional copyT2
1 and distributing

the workload (execution time) equally between the two instancesT1
1 andT2

1 . However, execution
of the second instanceE2

1 can start only after the reconfiguration overhead,r1. Thus, instead of
the ideal workload oft12 , the workload of the second task instance is onlyt1�r1

2 leading to less
performance improvement than expected. The actual schedule length ist1+r1

2 instead of theideal
schedule length oft12 .

For a single task, a simple equation suffices to compute theoptimal workloadleading to maxi-
mum performance improvement, as shown in the following lemma:

Lemma 1 For parallelizing a task Ti into j instances, and given that the reconfiguration controller
is available at the beginning of execution of the first instance, the best performance (least execution
time) is obtained when the workload (execution time) of the j-th instance is:

ti�r i� j� j�1
2

j .

Proof:
The proof follows directly from the simple example of parallelizing taskT1 into two task in-

stances (j = 2).
When thej-th task instance is ready for execution (reconfiguration for T j

i is complete), workload
completed byT1

i is ( j � 1)� r1, workload completed byT2
i is ( j � 2)� r1, � � � ; � � �, workload

completed byT j�1
i is r1. The aggregate workload completedbefore Tj

i starts is:
r1� (( j�1)+( j�2)+ � � �1) = r1� j� j�1

2
To maximize performance (minimize schedule length), the remaining workload is distributed

equally between allj task instances, i.e., workload assigned to instanceT j
i is:

ti�r i� j� j�1
2

j

Lemma 1 clearly demonstrates that maximizing performance involvesunequalworkload (exe-
cution time) distribution between multiple copies of a taskto compensate for the significant recon-
figuration overhead and the sequentiality constraint on thereconfiguration controller.

Along with reducing expected performance, the large reconfiguration delay also potentially pre-
vents performance improvement if more than a few copies of a task are instantiated, as shown in
Figure 4. Even though enough resources are available to instantiate four copies of taskT1, instan-
tiating the fourth copy does not improve the schedule lengthany further. In fact, assigning any
non-zero workload to the fourth instance leads to a longer schedule than a schedule with only three
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Figure 4. Parallelism degree determined by reconfigurationoverhead

instances. Similar to the previous Lemma for computingoptimal workload, a simple equation suf-
fices to compute theoptimal number of instancesleading to maximum performance improvement,
as shown below.

Lemma 2 For parallelizing a task Ti and given that the reconfiguration controller is available
at the beginning of execution of the first instance, the best performance (least execution time) is
obtained when there are exactly nopt

i instances,

nopt
i = MIN(bCcons

ci
;d1+q1+8� ti

ri
2 e�1)

Proof:The first termbCcons
ci
 states that one trivial bound on the number of instances is simply

the maximum number of task copies that fit in the available area. The second term follows from
Lemma 1 as shown below:

If the jw-th instancedoes notimprove performance, the aggregate workload completedbefore
T jw

i starts execution isgreater thanthe task workload, i.e.,
r i � jw� jw�1

2 > ti,
Or, jw� ( jw�1)> 2� ti

r i
Solving the above quadratic equation, performancedoes notimprove if:

jw � d1+p1+8�ti=r i

2 e.
Thus, the maximum number of instancesnopt

i such that performancedefinitely improvesis given
by: nopt

i = jw�1, leading to the second term in the lemma.

Thus, the granularity of data-parallelism, that includes determining the number of instances is
determined by two factors: along with the very obvious factor of the number of instances that fit
in the given space, the other key factor is the ratio of task execution time to task reconfiguration
time. In the experimental section, we have conducted experiments on images with different sizes
– for such experiments, the reconfiguration time for individual tasks is invariant, while the task
execution time is proportional to the image size. The experimental results validate this lemma,
i.e., there is more performance improvement with increasing image size (resulting from potentially
more instances for each data-parallel task)
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Unfortunately, the simple equations in Lemma 1 and Lemma 2 are not sufficient to compute the
schedule length for a precedence-constrainedtask chain. We next consider the additional compli-
cations introduced by precedence constraints.

4.1.2 Precedence Constraints
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Figure 5. Problem space explosion with Precedence constraints

For precedence-constrained application task chains, there is interaction of the resource demands
of parent and child tasks, as shown in Figure 5 for a simple chain with two tasksT1 andT2. The
HW resource constraint allows three copies (instances) ofT1, or, two copies ofT2 to be executing
simultaneously. One possible approach is to exactly followLemma 1 and Lemma 2, i.e., instantiate
all three copies ofT1 to maximize performance ofT1, and then instantiate two copies ofT2, as
in Figure 5 (c). However, it is potentially possible to improve the schedule length further by
instantiating only two copies ofT1 and using the remaining space to reconfigure (instantiate) one
copy of T2 – once the two copies ofT1 end, the first instanceT1

2 of T2 is able to start execution
immeditely, as in Figure 5 (b). Note that in our execution model, all instances of a parent task
must finish execution before any instance of a child task starts execution.

As is obvious, the problem space explodes with the introduction of precedence constraints. Ef-
fectively for a chain withn tasks, we want to determine the best possible performance from:bC=c0�bC=c1� : : :bC=cn
candidate transformed task graphs. Also, configuration prefetch [14] starts playing a critical role –
in Figure 5 (b), thegap introduced between completion of reconfiguration for taskT1

2 and start of
execution of intsnaceT1

2 is crucial to improving latency in the presence of significant reconfigura-
tion delay.

Thus our detailed problem specification is:

Problem Inputs� Precedence-constrained application task chain(T1-> T2-> � � �-> Tn) wheresometasksTi have
data-parallelism property.
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� Strict boundCconson the number of contiguous columns available for mapping the task chain.

Problem Output� Number of copies for each data-parallel task� Workload (execution time)t j
i of each (j-th) copy of a data-parallel task (∑ j(t j

i ) = ti).� Placed task schedulewhere every task instance) is assigned an executionstart time, and an
executionstart column.

Problem Objective� Minimize schedule length (maximize performance).

As mentioned previously, we have an additional key objective that any proposed approach should
have low execution complexity suitable for implementationon typical embedded processors. How-
ever, for the sake of completeness (and as a key tool to evaluate the quality of our proposed heuris-
tics), we next present an exact mathematical (ILP) formulation to the above problem.

4.2 Mathematical (ILP) formulation of problem

In this subsection, we present an ILP (integer linear program) that provides an exact solution to
our problem. Our underlying model is a two-dimensional gridwhere task placement is modelled
along one axis while time is represented on the other axis. Previous work [1] has addressed the
problem of exact scheduling (and placement) for a task graphwith partial RTR related constraints
(including configuration prefetch) based on such a grid representation. Unlike [1], our objective is
to determine the structure of a task graph that maximizes performance– attempting to determine the
number of task instancesandexecution time of an instancewhile satisfying all constraints related
to columnar partial RTR makes the ILP formulation additionally challenging.

4.2.1 Core principles

To formulate such an ILP, we essentially start with an expanded series-parallelgraph. For each
data-parallel taskTi , we implicitly instantiate as many task copiesT j

i as possible subject to the
resource constraintCcons. For each such task instance we add precedence edges to the child task
Ti+1 of Ti (or, toeveryinstance of taskTi+1, if Ti+1 is data-parallel).

Next, we introduce a Boolean (0-1) variableID (InvaliD) for every task instance in the ex-
panded graph – a non-zero value of this variable denotes thatthe corresponding task instance is
not required for maximizing performance. To determine task instance execution time along with
task instance start time, we introduce two sets of variables: sx (start execution) variable for a
task instance denotes the execution start time of the task instance, while x (is executing) variable
denotes that a task instance is processing data in a given time-step.

The following indices are key to properly specifying the ILPvariables:
i 2 (1 .. number of tasks in the chain)
i0 2 (1 .. number of task instances in the expanded graph)
l i 2 (1 .. number of instances of taskTi)
j 2 (1 .. upper bound on schedule length)
k 2 (1 .. Ccons)

13



4.2.2 ILP variables

The complete set of 0-1 (decision) variables is:

xi0; j ;k = 1, if task instanceTi0 is executingon FPGA at time-stepj,
andk is leftmost column occupied byTi0.

= 0, otherwise
sxi0; j ;k = 1, if task instanceTi0 starts executionon FPGA at time-stepj,

andk is leftmost column occupied byTi0.
= 0, otherwise

f xi0; j = 1, if task instanceTi0 finishes execution in time-stepj
= 0, otherwise

ID i0 = 1, if task instanceTi0 is not required in an optimal solution
= 0, otherwise

r i0; j ;k = 1, if reconfiguration for task instanceTi0 starts at time-stepj,
andk is leftmost column occupied byTi0.

= 0, otherwise
Some of the constraints necessitate introduction of additional binary variables to represent logi-

cal conditions. All such variables are represented asb.

4.2.3 Constraints

1. Simple task execution constraints

(a) Each valid task instance is executed exactly once.8i0; ∑k∑ j(sxi0; j ;k)+ ID i0 = 1, ∑ j( f xi0; j)+ ID i0 = 1 (1)

(b) Task instance execution-time is non-negative, i.e., execution finish time for a task instance is
greater than or equal to execution start time.8i0; ∑ j( j � f xi0; j� ∑k( j �sxi0; j ;k))� 0, (2)

Note that this is truefor all task instances. If a task instance is not required, its corresponding
sx (start execution) and fx (finish execution) variables areall assigned a value of zero.

2. Core data-parallelism constraints

(a) Execution time for a task equals the aggregate executiontime of all instantiated copies.8i; ∑l i ∑ j ∑k(xl i ; j ;k) = ti , (3)

This equation holds trivially for all non-data-parallel tasks that have a single instance each.

(b) Precedence constraints between task instances: Each valid instance of taskTi (i > 1) starts
execution after any instance ofTi�1 finishes execution.
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8i > 1; 8l i; 8l i�1; (ID l i = 0) =) ∑ j (∑k( j �sxl i; j ;k)� j � f xl i�1; j)� 1 (4)

We can rewrite the equation in the following form:8i > 1; 8l i; 8l i�1; if ((1� ID l i)> 0)
then ∑ j (∑k( j �sxl i; j ;k)� j � f xl i�1; j)�1� 0

This enables us to apply theif-thentransformation as in [18].2

3. Core column-based partial RTR constraints

(a) Each valid task instance needs to be reconfigured– also, the start column for reconfiguration
is same as start column for execution.8i0;8k; ∑ j(r i0; j ;k�sxi0; j ;k) = 0 (5)

(b) Each valid task instance can start processing data only after the task is reconfigured, i.e.,
reconfiguration delaytime-steps after start of reconfiguration.8i0; (ID i0 = 0) =) ∑ j ∑k( j �sxi0; j ;k� j � r i0; j ;k)� tr f

i (6)

We can apply theif-thentransform similar to Equation (4).
(c) Resource constraints on FPGA: total number of columns being used for task instance execu-

tions and number of columns being reconfigured is limited by the total number of FPGA columns.8 j; ∑i0 ∑k ∑k
n=k�ci+1(xi0; j ;n + ∑ j

m= j�tr f
i0 +1

(r i0;m;n))�Ccons (7)

(d) At every time-stepj , at most single task instance is being reconfigured.8 j; ∑i0 ∑ j

m= j�tr f
i0 +1

∑k(r i0;m;k)� 1 (8)

(e) At every time-stepj, mutual exclusion of execution and reconfiguration for every column.8 j;8k; ∑i0 ∑k
n=k�ci0+1(xi0; j ;n + ∑ j

m= j�tr f
i0 +1

(r i0;m;n))� 1 (9)

(f) For every column, at every time-step, total number of reconfigurations is at most 1 less than
the number of executions started using that column.

2 if-then transform for the constraint if (f (X)> 0) theng(X)� 0�g(X)�Mb
f (X)�M(1�b)
b2 (0;1)

where M is a large number such thatf (X)�M;�g(X)�M for X satisfying
all other constraints.
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8 j;8k; ∑i0 ∑k
n=k�ci0+1 ∑ j

m=1(r i0;m;n�sxi0;m;n)� 1 (10)

(g) Simple placement constraint: a task can start executiononly if there are sufficient available
columns to the right.8i;8 j;8k2 (Ccons�ci +1::Ccons);

xi0; j ;k = r i0; j ;k = 0 (11)

4. Equations relating task execution variables

(a) For each task instance, if itstarts executionin time-step j (sx variable is ’1’), variables
denoting taskis executingare zero in prior time-steps and ’1’ in time-stepj.8i0;8 j > 1; (∑k(sxi0; j ;k) = 1) =) ∑k ∑m= j�1

m=1 (xi0;m;k) = 0, (12a)

∑k(xi0; j ;k) = 1 (12b)

(b) For each task instance, if itis executingin column k, the correspondingstarts execution
variable is true for this column.8i0;8k; (∑k(xi0; j ;k)� 1) =) ∑k(sxi0; j ;k) = 1 (12c)

(c) For each valid task instance, the task instance execution time equals the number of non-zero
is executingvariables.8i0;8k; (ID i0 = 0)=)∑ j∑k(xi0; j ;k)=∑ j(∑k( j �sxi0; j ;k)� j � f xi0; j)+1 (12d)

All the above equations can be simplified using theif-thentransform described previously.

5. Objective function to minimize schedule length

This is equivalent to minimizing the end time for any instance of the last task in the chainTn.
By introducing a new sink taskTsink and precedence edges from all instances of the last task in
the chainTn, the objective function is simply the execution start time for this new taskTsink. If
we additionally assign a width ofCconscolumns to this new task, the objective function is further
simplified to:

minimize∑ j( j �sx1;sink;1)
6. Additional constraints

Along with the necessary constraints, we also introduceadditional constraints such as simple
timing ASAP/ALAP constraints to help reduce the search space (and correspondingly reduce the
time required by the ILP solver to find a solution).
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5 Heuristic Approaches

In this section, we first present MFF, a heuristic for scheduling simple task chains. While MFF is
oblivious to data-parallelism, it provides the core concepts underlying PARLGRAN, our proposed
approach for chains withsomedata-parallel tasks.

5.1 MFF (Modified First Fit)

For architectures with partial RTR, the physical (placement) constraints and, the architectural
constraint of the single reconfiguration mechanism, make itdifficult to achieve the ideal schedule
lengthLideal = ∑n

i=1(ti). In fact, thissimpleproblem of minimizing schedule length for a chain,
under constraints related to partial RTR, is actually NP-complete, as proved in [20]. MFF, our
proposed heuristic to solve this problem, essentially tries to satisfy task resource constraints, and,
attempts simple local optimizations toreduce fragmentation, and, hence, the schedule length.
—————————————————————
Approach:MFF (Modified First Fit)
Place taskT1 starting from leftmost column
for each task (Ti , i > 1)

FS
i = earliest time-slot enough space is available (last-fit)

FR
i = earliest time-slot reconfiguration controller is available

Rstart
i = MAX ( FS

i , FR
i )

Estart
i = MAX ( Rstart

i + r i , Eend
i�1)

if (Ti aligned with rightmost column)
local optimization: Adjust immediate ancestor placement
(and start time) if possible to improve start time ofTi

endfor
—————————————————————

MFF is based on a first-fit approach. To get intuition behind why a first-fit approach works
well in practical scenarios, we take a look at Figure 6 (a). The tasks are essentially laid out in
the form of diagonals running from the top-right of the placed schedule towards the bottom-left.
As long as a task does not ”fall off” the diagonal, it is possible to overlap at least part of the
reconfiguration overhead with the execution of its immediate ancestor. Once a task ”falls off” the
diagonal and is placed at the rightmost columnCcons, it is essentially trying to reuse the area of
ancestor tasks higher up in the chain. Given that for tasks ina chain the execution components have
to be in sequence, a more distant ancestor is guaranteed to finish earlier than a closer ancestor. This
increases significantly the possibility of being able to overlap reconfiguration of this task with the
execution of ancestors that are closer to it in the chain. Effectively the chain property causes a
”window” of tasks: tasks within a window affect each other much more strongly than tasks outside
the window.
Simple fragmentation reduction: One minor modification for reducing fragmention in MFF com-
pared to pure first-fit is shown in Figure 6. Our observations indicate that in tightly-constrained
scenarios (few columns available for task mapping), placing the second taskT2 adjacent to task
T1, as in Figure 6 (b), often leads to immediate fragmentation–though enough area is available to
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Figure 6. Simple chain- right placement of task 2

reconfigure taskT3 in parallel with execution of taskT2, this area is not contiguous, and thus task
T3 gets delayed. MFF takes care of this by placingT2 at the right-hand corner. Of course, this
simple modification is not applicable to all scenarios.
Local optimization: Exploiting slack in reconfiguration controller : A more interesting local
optimization to reduce fragmentation is shown in Figure 7 (a). While scheduling taskT4, we notice
that it is possible to exploit slack in the reconfiguration mechanism topostponethe reconfiguration
R3 of taskT3 without delaying the actual executionE3 of taskT3. We can thus make better use of
the available area (HW resources) to reschedule (and changeplacement of) taskT3 – as a result,
reconfigurationR4 of taskT4 can now execute in parallel withE3, leading to a reduction in schedule
length, as shown in Figure 7 (b).

Before proceeding to PARLGRAN, it is important to understand that the fragmentation problems
we try to address in MFF (and PARLGRAN) are because we are trying to jointly schedule and
place while satisfying a host of other constraints– thus, other free space coalescing techniques for
partially reconfigurable architectures, such as [8], are not directly applicable.
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5.2 PARLGRAN

We use the insights obtained from the chain-scheduling problem as the basis for our granularity
selection approach. Detailed analysis of chain-scheduling shows that applying local optimizations
can improve the performance. We additionally want to designan approach such that the algorithm
execution time is comparable to the execution time of the tasks. So, our proposed algorithm is
simple and greedy, but, uses specific problem properties to try and improve the solution quality.

Our approach consists of two steps:� Static pruning� Dynamic granularity selection

5.2.1 Static pruning

First, we utilize some simple facts to statically prune regions of the search space. As an example
of pruning, consider Figure 8. If we schedule exactly one copy each for tasksT1 andT2, then task
T2 can start as soon asT1 ends, i.e., att1, as in Figure 8 (a). If we schedule another copy of task
T1, the execution time ofT1 improves. However, now the reconfiguration controller becomes the
bottleneck, as shown in Figure 8 (b). Now, taskT2 can start only at(r1+ r2), which is greater
thant1. In general, the number of copies of a task is limited by the impact of its reconfiguration
overhead on its successors.
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Figure 8. Static pruning based on timing

5.2.2 Dynamic granularity selection

We next consider work distribution (load balancing) issuesfor the multiple task copies.
Uneven finish times: From our initial discussion on data-parallelism (as shownearlier in Figure 4),
it seems that it is a good idea to always generate as many copies as possible subject to performance
improvement and get them to finish at the same time instant. However, with the introduction of
task dependencies, it is possible to modify this approach incertain cases to improve performance,
as shown in Figure 9. In Figure 9 (a) letFT1

1 denote the time instant the earlier copy of taskT1,
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that isE1
1 ends. TaskT2 can start at:ST1

2 = FT1
1 + r2. However, if both copies ofT1 end at the

same time instant as shown in Figure 9 (b), this time-instantis given by:
FTequal

1 = FT1
1 + r2=2

As a result, reconfigurationR2 for taskT2 gets delayed and executionE2 for taskT2 can only start
at

FTequal
1 + r2 = FT1

1 +3� r2=2
Of course, if the area of taskT2 is greater than the area of taskT1, letting both copies ofT1 end at
the same time instant would lead to a shorter schedule.
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Figure 10. Left placement for copies of first task

One other minor observation to improve MFF specifically for parallelism granularity selection
is shown in Figure 10. Placing multiple copies of a task adjacent to each other intuitively helps
reduce fragmentation.

PARLGRAN is an adaptation of MFF that essentially tries to greedily add multiple copies of
data parallel tasks as long as it estimates that adding a new copy is beneficial for performance
(shorter schedule length). The concepts of dynamically adjusting the workload combined with
local optimizations makes it effective. We summarize our PARLGRAN approach below.
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—————————————————————
Approach:PARLGRAN (Parallelism Granularity Selection)
Place first copy of taskT1 starting from leftmost column
for each task (Ti , i > 1)

Compute earliest execution start of task (space search by last-fit)
if (parent task is data-parallel)

while (no degradation in start time ofTi)
add new copy of parent (assign start time, physical location)
adjust workload of existing scheduled copies of parent

Schedule (and place)Ti

apply local optimizations from MFF for improving schedule
endfor
—————————————————————

While this approach appears to be simplistic, experimentalresults in the following section show
it typically does better than statically deciding to parallelize each task to its maximum degree.
For applications like JPEG encoding, blind parallelization can lead tosignificantly inferiorresults,
even worse than RTR-aware first-fit, because of the reconfiguration overhead and the physical
(placement) constraints.

6 Experiments

We conducted a wide variety of experiments to validate our proposed approach. We demonstrate
the quality of schedules generated by our heuristics with a very large set of synthetic experiments
(consisting of over a thousand data-points) along with a detailed application case study. Addi-
tionally, we demonstrate the practical applicability of our proposed PARLGRAN heuristic with
detailed analysis of estimated execution time on a typical embedded processor, the PPC405 (Pow-
erPC) processor with an operating frequency of 400 MHz.

It is important to remember that our goal is to maximize performance (minimize schedule length)
for an application task chain, given a hard constraint on theavailable area. Therefore, while it is
possible to fit our applications onto suitably sized target devices, we assume for experimental pur-
poses that the resource constraint is less than the aggregate size of all tasks. Thus our approach is
well-suited for true on-demand computing, where an application invoked dynamically is assigned
logic resources (area for mapping application task graph) depending on the number and resource
requirement of other applications simultaneously executing on the reconfigurable device.

6.1 Experimental setup

We assumed a target device organized as a CLB matrix of 56 rows, 48 columns, similar to Xilinx
XC2V2000. From the XC2V2000 data sheet, we estimate that thereconfiguration overhead for the
smallest task occupying one column on our architecture is 0.19 ms at the maximum suggested
reconfiguration frequency of 66 MHz. We obtained area and timing data for well-known tasks
such as Huffman encoding, DCT, etc., by synthesizing them with columnar placement and routing
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constraints on the XC2V2000, similar to the Xilinx methodology suggested forreconfigurable
modules.

We explored a large set of scenarios with the following strategy:
(1) We generated task chains of varying chain length, ranging from 4 to 15 tasks in the chain.
(2) For a task chain of given chain length, each individual task was assigned a set of parameters
(execution time, reconfiguration delay, number of columns)randomly selected from our database
of synthesized tasks. Thus, we generated multiple task chains for a given chain length.
(3) Finally, for each individual task chain, we conducted multiple experiments by varying the area
constraint across a wide range, to represent situations with less area, as well as situations with
more area available for mapping the application..

Our overall strategy resulted in a set of over a thousand individual experiments. Note that the
database of task parameters included information corresponding to images of various sizes- since
each individual task is completely pipelined, the reconfiguration delay and number of columns
occupied by the task is independent of the image size, but theexecution time is directly proportional
to the image size.

In subsequent discussions, the following notation denotesschedule length generated by various
approaches, including our proposed approach, the exact formulation, and other heuristics imple-
mented to evaluate the quality of schedules generates by ourapproach.� Lexact: corresponds to our exact (ILP) formulation.� Lm f f: corresponds to our MFF (Modified First-Fit) approach for scheduling chains with no
data-parallelism considerations.� Lpgran: corresponds to our proposed PARLGRAN (PARaLlelism GRANularity selection) ap-
proach.� L f f : corresponds to a simple FF (first-fit) approach [1] for scheduling chains with no data-
parallelism considerations.� Lmaxp: corresponds to MAXPARL (MAXimum PARaLlelization) approach

Along with our implementation of MFF, PARLGRAN, and the ILP,we additionally imple-
mented MAXPARL to evaluate the quality of our schedules. MAXPARL attempts to maximize
parallelization by statically selecting the maximum number of copies possible for each task sub-
ject to resource constraints only, and assigning equal workload to each such task instance. Note
that MAXPARL includes detailed configuration prefetch considerations. Because of equal work-
load distribution, multiple instances of a task finish at different time-instants, unlike Lemma 1–
however, the freed-up area is utilized to instantiate multiple copies of any data-parallel child task.
Thus, the schedules generated by MAXPARL are of reasonable quality and significantly better
than an approach with no configuration prefetch considerations.

6.2 Schedule quality on synthetic experiments

6.2.1 Schedule quality of MFF (compared to FF)

Our first set of experiments consisted of comparing schedulelengths generated by MFF with that
of first-fit, on the set of experiments as described above.
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The experimental data confirmed that schedules generated byMFF were almost always equal to
or better than first-fit. The schedule lengths generated by MFF were better in 207 out of 1096 tests,
i.e., approximately 19% of the tests, worse in 6 out of 1096 tests. In 114 tests, around 10% of the
total, MFF was better by at least 3%. In the worst experiment for MFF, first-fit generated a schedule
longer by 0.44%. Overall, on longer chains (more tasks) and looser constraints (more columns),
both algorithms were almost equally able to hide the reconfiguration overhead. However, on more
constrained problems with shorter chains and tighter area constraints, MFF tends to generate better
schedules.

6.2.2 Comparing PARLGRAN schedule length with ILP for small tests

Our next set of experiments consisted of comparing the schedule length generated by PARLGRAN
with that generated by the exact formulation. The implementation of the ILP using the commer-
cial solver CPLEX ([21]) requires hours for even small testcases on our implementation platform
(SunOS 5.9 with a 502 MHz Sparcv9 processor). Thus, for experiments involving the exact for-
mulation, we report results on a very small set of synthetic experiments with short chains (chain
length varying between 3 to 5 tasks).

Testcase Lexact Lpgran

test2 25 25
test3 23 23
test5 19 22
test7 25 27
test8 23 24

Table 1. PARLGRAN Vs ILP for small tests

In Table 1, the second column represents schedule lengths generated by the ILP, while the third
colum represents schedule lengths generated by PARLGRAN. For this set of experiments, the
schedule length is reported in time-steps where one time-step corresponds to the reconfiguration
delay for a single CLB column.

As the table shows, the schedules generated by PARLGRAN for small experiments (short
chains) are reasonably close to that of the exact approach.

6.2.3 Overall schedule quality of PARLGRAN

Next, in Table 2, we present a summary of results covering theentire set of synthetic experiments.
The data in each row of the table corresponds to experiments on chains of corresponding length–
as an example, data in the second row (chain length 7–9) was obtained from experiments on chains
with at least 7 tasks and at most 9 tasks. Note that this set of experiments is identical to that we used
to validate MFF– we additionally assume that each task in thechain is completely data-parallel.
For comparison with MAXPARL and FF, our quality measure is simply the percentage increase
in schedule length generated by the other approach comparedto PARLGRAN. As an example, for
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comparison with MAXPARL, the quality measure is simply:((Lmaxp�Lpgran)=Lpgran)�100

Chain PARLGRAN Vs FF PARLGRAN Vs MAXPARL
length Avg Avg Best Worst
4-6 44% 7.1% 93.1% -49.6%
7-9 55% 20.5% 139.2% -31.2%
10-12 63% 31.8% 142.7% -27.3%
13-16 71% 38.9% 125% -7.1%
Avg gain >50% >20%

Table 2. Reduction in schedule length for completely data parallel chains with PARLGRAN

The second column in Table 2 represents theAveragepercentage improvement of PARLGRAN
as compared to FF. Each entry in the second column is an average of a large number of experiments
conducted on chains of corresponding length. The third, fourth and fifth columns respectively rep-
resent theAverage, theBestand theWorstperformance of our approach compared to MAXPARL.
As an example, the data in the second row, third column, states that on a large number of ex-
periments with chain length between 7 and 9 tasks, the best result generated by our approach
corresponds to an experiment where MAXPARL generated a schedule 139% longer.

Expectedly, there is significant improvement in schedule length with PARLGRAN compared
to the sequential (first-fit) approach, as shown in the secondColumn of the table. More impor-
tantly, the data in the third column clearly shows that our proposedgranularity selectionheuristic,
PARLGRAN, generates increasingly better results comparedto MAXPARL when more space is
available. Intuitively, with more available area, it is possible to make more instances of the data-
parallel tasks. However, with each additional instance, the workload (execution time) decreases per
instance, resulting in execution time comparable to the reconfiguration overhead – PARLGRAN is
better capable of deciding when to stop instantiating multiple copies, as opposed to MAXPARL.
The local optimizations in PARLGRAN play an active role in such circumstances to help improve
the schedule length.

One key aspect of the data in Table 2 is that for smaller chains, our presented results cover a very
large range of varying area constraints– for longer chains,the presented results cover the scenarios
where the available HW area is at most 40–45% of the aggregateHW area of the tasks. For chains
with more than 9-10 tasks, a loose area constraint results ineven more significant improvement
with PARLGRAN compared to other approaches.

6.3 Detailed Application Case Study: JPEG encoding

After conducting a wide range of experiments on synthetic graphs, we conducted a detailed
application case study on the JPEG encoding algorithm, represented as a chain of four key tasks
(RGB2YCbCr->DCT->Quantize->Huffman), shown in Figure 11. Note that Huffman is a se-
quential task (no data-parallelism) while the remaining 3 tasks are data-parallel. Table 3 presents
some results from our case study. Entries in the first column,CASE, denote the image size –
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RGB2YCbCr

 DCT

Huffman

Quantize

   Colour image 

   Compressed image 

Figure 11. JPEG encoder task graph

256X256 denotes experiments on a 256X256 colour image. For each case, we varied the num-
ber of columns and observed the resulting schedule lengths (the aggregate area requirement of
all tasks in the chain is 11 columns). The second columnCcons represents the area constraint in
columns. The third, fourth and fifth columns correspond to schedule lengths (in ms) generated by
FF, MAXPARL, and PARLGRAN respectively.

Case Ccons L f f Lmaxp Lpgran

(ms) (ms) (ms)
256X256 JPG 5 12.71 12.73 12.36

6 11.24 12.52 10.81
7 11.24 11.38 10.05
8 11.24 12.11 9.08
9 10.10 12.79 9.08

512X512 JPG 5 42.86 40.68 40.30
6 41.34 35.32 35.13
7 41.34 34.18 34.37
8 41.34 29.08 28.60
9 40.20 28.38 27.71

Table 3. Case study of JPEG encoding: Schedule Length with different image size and area
constraints

The data in Table 3 demonstrates that as available area increases, our proposed approach PARL-
GRAN consistently generates shorter schedules. As an example, for the 256X256 image, we
consider the data corresponding toCcons= 5, and the data corresponding toCcons= 8. The corre-
sponding transformed task graphs are shown in Figure 12 and Figure 13 respectively. The DCT task
is the most computation-intensive task in the chain (maximum execution time). However, a tighter
area constraint (Ccons= 5) does not allow multiple instances of the DCT task. Thus, PARLGRAN
improves performance by adding one instance of the RGB2YCRCB task, as shown in Figure 12.
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However, with more area (Ccons= 8), PARLGRAN is capable of deciding that it is more beneficial
to instantiate two copies of the DCT and only have a single instance of the RGB2YCRCB task.
For comparison, we note that an approach oblivious to partial RTR constraints would generate four
instances of the RGB2YCRCB task withCcons= 8, as shown in Figure 15.

Next, we observe how our approach adapts to varying data sizewith Figure 13 and Figure 14.
For the same area constraint (Ccons= 8), the transformed task graph for the 256X256 image hassix
tasks while that for the 512X512 image hasseventasks. For the larger image, the task execution
time is significantly higher than the task reconfiguration time, resulting in more scope for exploiting
data-parallelism.

 DCT

Huffman

Quantize

   Colour image 

   Compressed image 

RGB2YCbCr_1 RGB2YCbCr_2

Figure 12. Transformed JPEG task
graph: Image size: 256X256,Ccons= 5

Huffman

   Colour image 

   Compressed image 

 DCT_1  DCT_2
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graph: Image size: 256X256,Ccons= 8

Next we focus on the data corresponding to the 256X256 image. For this set of experiments,
where the reconfiguration overheads are comparable to the task execution times, our approach
frequently does much better than statically parallelizingeverything (MAXPARL). Additionally, the
data demonstrates that such blind parallelization can leadto results worse than a simple sequential
scheduling approach. For an area constraint of 8 columns, schedule length of FF is longer than
PARLGRAN by (11.24-9.08)/9.08 = 23.5%. Blind (static) parallelization leads to significantly
worse schedule longer by (12.11-9.08)/9.08 = 33.3%. This isin spite of the fact that the effective
transformed graph from MAXPARL consists of 9 tasks with apparently more parallelism, while
the transformed graph from PARLGRAN consists of 6 tasks only.

For the 512X512 image, each task execution time is significantly greaterthan the reconfiguration
overhead. In such a scenario, where, additionally, the chain length is short, MAXPARL generates
good results – of course, PARLGRAN typically does somewhat better. But, both parallelizing
approaches result in significant speedups.

6.4 Applicability in semi-online scenario

The experimental data clearly demonstrates that PARLGRAN generates high-quality schedules.
However, our objective is for PARLGRAN to be applicable in asemi-onlinescenario where the
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task precedence relations, and the task area-timing characteristics are available at compile-time,
while the available HW area for mapping the application is known only at run-time. Task man-
agement under such dynamic resource availability is a key issue in modern operating systems for
reconfigurable architectures [7]. So, we next obtained detailed execution time estimates for MFF,
PARLGRAN, and MAXPARL on the PPC405 operating at 400 MHz– such a processor is available
in the Xilinx Virtex-II Pro platform.

We obtained heuristic execution time estimates for the JPEGencoding application with three
different image sizes: 256X256, 384X384, 512X512. For each image size, we varied the area
constraint and obtainedcumulativeexecution time as shown in Figure 16, Figure 17, Figure 18.
In each of these figures, the X-axis represents the area constraint as a percentage of the aggregate
area required by all tasks. The Y-axis represents the cumulative execution time (schedule length
computed by heuristic + execution time of heuristic).

MFF of course has the least execution time overhead. Thus, for short chains with a very tight
area constraint, cumulative execution time with MFF is comparable to other heuristics, as in Fig-
ure 16. However, as available area increases or, image size increases, scope for exploiting data-
parallelism increases. In such scenarios, PARLGRAN and MAXPARL generate shorter schedules
that more than compensate for the increased heuristic execution time.

This is explicitly demonstrated in Figure 19 where we present data for three different image sizes
scheduled with the same (very relaxed) area constraint. Note that increase in image size results
in increased ratio of task execution time to reconfigurationoverhead, making more data-parallel
instances feasible (as in Lemma 2). As image size increases,cumulative execution time with MFF
increases almost linearly, i.e., cumulative execution time for a 512X512 image is almost 4 times
that of the 256X256 image. However, with approaches that attempt to exploitdata-parallelism, the
cumulative execution time increases at a slower rate – for PARLGRAN, the cumulative execution
time for the 512X512 image is only around2.5 timesthat for the 256X256 image.

Heuristic execution time for all approaches increase as more area is available for mapping the
application. However, MAXPARL is significantly more sensitive, as shown in Figure 16, Fig-

27



9.5

10

10.5

11

11.5

12

12.5

13

13.5

14

14.5

15

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

MFF
PARLGRAN
MAXPARL

Area Constraint (% of aggregate area)

Cu
mu

lat
ive

 tim
e (

ex
ec

uti
on

 + 
sc

he
du

lin
g) 

in 
ms

Figure 16. Schedule length + heuris-
tic execution time: JPEG encoding
256X256

18

19

20

21

22

23

24

25

26

27

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Cu
mu

lat
ive

 tim
e (

ex
ec

uti
on

 + 
sc

he
du

lin
g) 

in 
ms

MFF

Area Constraint (% of aggregate area)

MAXPARL
PARLGRAN

Figure 17. Schedule length + heuris-
tic execution time: JPEG encoding
384X384

28

30

32

34

36

38

40

42

44

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

MFF
PARLGRAN

Area Constraint (% of aggregate area)

Cu
mu

lat
ive

 tim
e (

ex
ec

uti
on

 + 
sc

he
du

lin
g) 

in 
ms MAXPARL

Figure 18. Schedule length + heuris-
tic execution time: JPEG encoding
512X512

5

10

15

25

30

35

40

45

512X384X256X

MFF

MAXPARL

256 384 512

20

PARLGRAN

Cu
mu

lat
ive

 tim
e (

ex
ec

uti
on

 + 
sch

ed
ulin

g) 
in 

ms

Image size

Figure 19. Schedule length + heuristic
execution time: JPEG encoding, loose
area constraint

28



ure 17. This is because MAXPARL attempts to maximize parallelism by scheduling a graph with
the maximum number of tasks possible in the given area.

Comparing the data in Table 3 with that in Figure 16 shows thatPARLGRAN execution time
overhead is approximately (9.85 - 9.08) = 0.77 ms for the 256X256 image withCcons = 8. This
is quite low compared to the schedule lengthLpgran = 9.08 ms. Much more importantly, for all
experiments on the JPEG application,cumulative executiontime for PARLGRANmonotonically
decreasesconfirming its viability in a semi-online environment.

Our wide range of experiments and case studies confirm that PARLGRAN generates high-
quality schedules in all situations– tightly constrained problems with shorter chains, fewer columns,
as well as problems with more degrees of freedom, i.e., longer chains, more available columns. Ad-
ditionally, the estimated run-time of our approach on a typical embedded processor is comparable
to the HW task execution times.

7 Conclusion

In this report, we proposed PARLGRAN, an approach that selects granularity of data-parallelism
to maximize performance of applicationtask chainsexecuting on an architecture with partial RTR
(run-time reconfiguration). Our approach selects both the number of instances of a data-parallel
task, and, the execution time of each such instance – it is integrated in a joint scheduling and place-
ment formulation, necessitated by the underlying physicaland architectural constraints imposed
by partial RTR.

To evaluate our proposed heuristic, we have implemented an exact (ILP) approach, and a sim-
pler strategy that attempts tostaticallymaximize data-parallelism. For smaller experiments, our
heuristic generates schedules that are reasonably close inquality to that of the exact approach. Ex-
perimental results on a very large space with over a thousandsynthetic experiments confirm that
our heuristic generates schedules that are on an average better by 20% compared to the simpler
strategy that tries tostaticallymaximize data-parallelism.

A detailed case study on JPEG encoding confirms that in realistic scenarios, the simpler ap-
proach that tries to maximize data parallelism without accounting for the underlying constraints
can end up generating schedulesmuch worsethan even a data-parallelism-oblivious (but RTR-
aware) approach. Finally, detailed execution-time estimates indicate that our approach is suitable
for integration in asemi-onlinescheduling methodology where the goal is to maximize perfor-
mance of an application given an area constraint and input characteristics (image size) available
only at run-time.

While our approach demonstrates the potential for significant performance improvement, there
are some key aspects that we want to address in our future work. Most importantly, we have as-
sumed in this work that we are not constrained by memory/communication bandwidth. Our initial
estimates indicate that even with increased parallelism, the additional bandwidth requirement for
realistic applications (including the JPEG application) can be satisfied by a typical memory-bus
configuration such as a PC3200 DDR memory integrated with a suitable bus. However, we agree
that with increased task granularity (more instances) and ever-increasing device sizes, the data
transfer to and from memory, both on-chip and off-chip, has the potential to become a bottleneck,
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and will be considered in future work.
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