Selecting granularity of parallelism for tasks executing m
dynamically reconfigurable architectures

Sudarshan Banerjee Elaheh Bozorgzadeh Nikil Dutt
Center for Embedded Computer Systems
University of California, Irvine, CA, USA
Irvine, CA 92697-3425,USA

{banerjee,eli,du}@ics.uci.edu

CECS Technical Report #06-#14

Dec, 2006

Abstract

Partial dynamic reconfiguration, often called RTR (run<imeconfiguration) is a key feature in
modern reconfigurable platforms. While partial RTR enabl@gitional application performance,
it imposes physical constraints necessitating simultasestheduling and placement while map-
ping application task graphs onto such architectures. s tBport we present PARLGRAN, an ap-
proach that maximizes performance of application taskhly selecting a suitable granularity
of data-parallelism for individual data parallel tasks. ©approach focusses on reconfiguration
delay overhead and placement-related issues (such as éaigitnion) while selecting individual
data-parallelism granularity as an integral part of simaiteous scheduling and placement. As a
key step to validating our proposed heuristic, we have &althily formulated (and implemented)
an exact strategy (ILP). We demonstrate that our heurisgtiitegates high-quality schedules by: (a)
comparing our heuristic with the exact strategy on smalidases (b) a very large set of synthetic
experiments with over a thousand data-points where we commua results with a simpler strategy
that tries to statically maximize data-parallelism, i.dges not consider the overheads and con-
straints associated with partial RTR (c) a detailed appiica case study of JPEG encoding. The
detailed case-study confirms that blindly maximizing dadgallelism can result in schedules even
worse than that generated by a simple (but RTR-aware) agpro#livious to data-parallelism.
Last, but very important, we demonstrate that our approackell-suited for true on-demand
computing — detailed execution time estimates of our hiciriglicate that the heuristic execution
time is comparable to hardware task execution time makifepsible to integrate our heuristic in

a run-time scheduling approach.

Keywords: Partial dynamic reconfiguration, data-parallelism, gtanty selection, linear place-
ment, scheduling

Contents

1 Introduction
2 Related work

3 Problem overview
3.1 Targetarchitecture e
3.2 Application specification e e
3.3 ProblemObjective e

4 Detailed problem specification and Exact mathematical famulation (ILP)

4.1 Motivation and Detailed problem specification
4.1.1 Significant Reconfiguration overhead e e e
4.1.2 PrecedenceConstraints e

4.2 Mathematical (ILP) formulation of problem
4.2.1 Coreprinciples e
422 ILPvariables
423 Constraints e

5 Heuristic Approaches
5.1 MFF (Modified FirstFit)
5.2 PARLGRAN e
5.2.1 Staticpruning e e e e
5.2.2 Dynamic granularity selection

6 Experiments
6.1 Experimentalsetup
6.2 Schedule quality on synthetic experiments
6.2.1 Schedule quality of MFF (compared to FF) . .. e
6.2.2 Comparing PARLGRAN schedule length with ILP for snueﬂts
6.2.3 Overall schedule quality of PARLGRAN
6.3 Detailed Application Case Study: JPEGencoding o o oo ..
6.4 Applicability in semi-onlinescenario,

7 Conclusion

8 Acknowledgements

List of Figures

1 Granularity of individual data-paralleltasks

O©Coo~NOUIThWwWN

Target dynamic architecture e 8
Effect of significant reconfiguration overhead °)
Parallelism degree determined by reconfiguration overhea 11
Problem space explosion with Precedence constraints 12
Simple chain- right placementoftask2 18
Exploiting slack in reconfiguration controller 18
Static pruning basedontiming e 19
Unevenfinishtimes 20
Left placement for copies of firsttask 20
JPEG encodertaskgraph 25
Transformed JPEG task graph: Image size: 256 X@&p3s=5. 26
Transformed JPEG task graph: Image size: 256X2&Bs=8 26
Transformed JPEG task graph: Image size: 512X6d2s=8 27
JPEG task graph with maximum parallelizati®ens=8 27
Schedule length + heuristic execution time: JPEG enga2h® X256 28
Schedule length + heuristic execution time: JPEG engog84X384 28
Schedule length + heuristic execution time: JPEG engdsll2X512 28

Schedule length + heuristic execution time: JPEG engpttiose area constraint . 28

1 Introduction

Reconfigurable architectures are popular for applicatiatisintensive computation such as im-
age processing, since a limited amount of logic can be cuztzhto set up deep pipelines, and/or
exploit more coarse-grain parallelism, etc. Partial dyicaraconfiguration, or, run-time recon-
figuration (RTR) allows additional customization duringpfpation execution, making it possible
to obtain increased performance [15]. Our overall goal immximize performance of applica-
tions represented as precedence-constrained task DA@stétl acyclic graphs) aingle-context
architectures with partial RTR (Xilinx Virtex-1l is a commmzal instance of such architectures).
Some key issues in mapping applications onto such devieeshar significant reconfiguration
delay overhead, physical (placement) constraints, etc.

In this report, we focus on precedence-constraitaestt chainscommon in image-processing
applications [10], [6]. In such applications, area-exemutime characteristics of key tasks such as
IDCT, Quantize, etc, are predictable because of complptdiping. Additionally, many computation-
intensive tasks such as DCT are completidya-parallel i.e., results of task execution on a block
of data are identical irrespective of whether the task meee any other (disjoint) block of data
before or after the current block. On an architecture witti@laRTR, it is possible to improve
application execution time bgynamicallyadjusting the parallelism granularity of such tasks, i.e.,
reconfiguring the architecture to instantiate multipleiespf such taskduring application exe-
cution— each copy (instance) uses an identical amount of HW regesubtit processes only part
of the data. Due to complete pipelining, execution time afhstasks is directly proportional to
the volume of data processed, and thus, reducing the datanegbroportionately improves (re-
duces) the application execution time. Note that on arctutes with no partial RTR, the scope
of exploiting such data-parallelism is much more limitedart@l RTR enables resource reuse,
significantly expanding the potential of exploiting data-gdlelism.

o nm®
@ (a) @ (b) @ @ (c)

Figure 1. Granularity of individual data-parallel tasks

As an example, we consider a simple chain with two tasks, a&stin Figure 1. Assuming
that there are enough resources to simultaneously exeadpi@s of taskl; or 2 copies of task
T, (b) and (c) show some possible task graph configuratioes aftch a transformation. How-
ever, such a transformation can be quite costly on architestwith partial RTR— each new task
instance (copy) adds a significant reconfiguration overh&adrefore the transformations need to

5

be guided by selecting the right granularity of paralleligrat masks the reconfiguration overhead
and maximizes performance. One important issue is thatulseaaf the reconfiguration overhead,
multiple instances of a task are typically unable to stadgcexion at the same time— therefore,
individual execution time (workloads) of the multiple iaates may vary.

One key additional goal of any proposed approach is thatatisé¢o be applicable in semi-
onlinescenario. We define gemi-onlinescenario as follows:

(a) The application chain structure is known in advance, peedecessor and successor of each
individual task is known statically ardbes nothange during application execution. This property
is satisfied by many common image-processing applicationh as Sobel filtering [2], JPEG
decoding, etc. Additionally, characteristics such asdagguirement of each individual task are
also available statically.

(b) When such an application is invoked dynamically on a ceewith partial RTR capability, it

is allocated a set of logic resources depending upon sysapaciy and resource requirement of
other applications concurrently active on the same device.

(c) A run-timescheduling approach generates a schedule based on tkerdtatnation and two
run-timeparameters: (i) allocated logic resources (b) image size.

(d) The scheduled application starts execution.

That is,semi-onlineness property allows an application to adapt to key chamgigs runtime
environment — change in available logic resources and &angput image size directly affect
the potential for performance improvement (compared taciyssequential schedule). An ap-
proach qualifies as semi-online if execution-time of apphaa suitable for inclusion in a run-time
scheduler, i.e., the measure of viabilitycismulative execution time (schedule length generated
by approach + execution time of approach on a typical emlukdoxessor).

We propose such an approach, PARLGRAN, that attempts tomzeiapplication performance
on architectures with partial RTR by choosing the right paliam granularity for each individual
data-parallel task. By granularity we mean both thenber of instances(copies) of that task,
and, theworkload (execution time) of each copy. Our approach considers paly§placement)
constraints, and utilizes configuration prefetch [14] tduee the latency. The key constraints of
such architectures necessitate joint scheduling and ipkaice[12], [1]. Our approach therefore,
incorporates granularity selection as an integral parirafikaneous scheduling and placement.
To the best of our knowledge, ours is the first effort to sohis problem.

To validate our approach, we have formulated (and impleethran exact strategy as well
as a simpler heuristic that tries to statically maximizef@@nance gain from data parallelism
without considering the constraints and overheads duert@pBTR. Experiments on smaller test
cases demonstrate that our proposed approach generatlts césse to that of the exact (ILP).
Since the exact strategy is very time-consuming, we aduitlp evaluate the quality of schedules
generated by our proposed approach on a very large set oadiieusand synthetic experiments
by comparing results with that of the simpler heuristic —rage improvement in schedule length
is over 20%.

Next, we conduct a detailed case study of JPEG encoding—x{teriments demonstrate that
the static parallelization approach can end up generatingdsiles much worse than a simple (but
RTR-aware) approach oblivious to data-parallelism. Fynate have obtained detailed execution

time estimates of our approach on a typical embedded procese PPC405 processor at a clock
frequency of 400 MHz. The data indicates that execution theur approach is comparable to
that of task execution time. Equally importantly, for ouseatudy, cumulative performanceno-
tonically improves In other words, for a given image size, as available are@ases, (heuristic
execution time + schedule length) monotonically decreashas, PARLGRAN is well-qualified
for a semi-online scenario, allowing inclusion in a rungistheduler.

2 Related work

While there exists a large body of work in mapping task chaipgal in image processing to
reconfigurable architectures, a significant amount of wadhsas [10] does not consider dynamic
reconfiguration. More recently, there has been a spurt ik famussed on exploiting the powerful
capabilities of partial dynamic reconfiguration for imgg@cessing/ multimedia applications [2],
[3], [9], etc. Our work is closely related to work such as [[B] etc that focus on task graph
scheduling with RTR-related constraints.

Recent work on scheduling application task graphs with R&IRted constraints [3], [2], often
do not focus on the critical role played by placement on suchitectures. Our work focusses
on joint scheduling and placement required on architestwith partial RTR, similar to [5], [12].
However, prior work in joint scheduling and placement tgliig ignore key architectural con-
straints such as the resource contention due to a singlafrgaation controller, configuration
prefetch to reduce the reconfiguration latency, etc. Igmpthese key issues makes the problem
closer to the rectangle packing problem [17] and does ndistieally exploit RTR. Other recent
work such as [4] focus on the problem of configuration reusaraalternative strategy to reduce
the reconfiguration overhead, an aspect we do not addresis mwark.

Additionally, work on task-graph scheduling for such atebiures [3], [1] typically does not
include application restructuring considerations. W2presents some application restructur-
ing considerations, their work is completely oblivious tagement concerns. Also, their target
device is amulticontextarchitecture with multiple concurrently active reconfigtion processes.
Commercially available devices with partial RTR aiegle contexarchitectures where only a
single reconfiguration process is active at any instantugTmulticontext architectures such as
Morphosys [13] incur a significant area overhead.) To thé desur knowledge, this work is the
first effort that focuses specifically on techniques for $farming applications osingle-context
architectures and includes very detailed consideratiaalgfartial RTR related constraints such
as placement, resource contention due to the sequentalfrgaration mechanism, etc.

There is of course a vast body of knowledge in the compileraloran extracting parallelism
from programs at different levels of granularity [19]. Swzmpile-timetechniques [11] are typ-
ically unaware of partial RTR constraints — equally impothkg they also incur a high execution
overhead, since they are not intended for execution in areddéd environment. In our work,
we explicitly focus on low execution-complexity of our appch such that it can be applied in a
run-time scheduling environment.

Off-chip memory

mm ‘ﬂ I [[% ‘DDDW[}!D_!_._
| crmgpreseney |
- BN DOM0DEOCDd Oe

= A e

Al T e

gﬁ@L%%DDDﬁDJHDE

| A

AL DOOOOO0n 1ioe

[0 {0 07 fE i 00 0D FD Yy EO
Width ------------ - “frame

Figure 2. Target dynamic architecture
3 Problem overview

3.1 Target architecture

Our target dynamically reconfigurable device as shown imfeéi@ consists of a set of config-
urable logic blocks (CLB) arranged in a two-dimensionalnmatThe basic unit of configuration
for such a device is a frame spanning the height of the deiamlumn of resources consists of
multiple frames. A task occupies a contiguous set of colurhhe reconfiguration time of a task is
directly proportional to the number of columns (frames)ugmed by the task implementation. One
key constraint is that only one task reconfiguration can bieeaat any time instant. An example of
our target device is the Xilinx Virtex-ll series where camasgtts such as dynamic tasks occupying
a contiguous set of columns are critical for realization aftial run-time reconfiguration.

3.2 Application specification

A taskT; executing on such a system can be represented as a 3-¢ypier() whereg; is the
number of resource columns occupied by the tgskndr; are the execution time and reconfigu-
ration overhead respectively. Each task needs to be recoedidgpefore its execution is scheduled.
The physical constraints on such a device necessitatésirduling and placement [12], [1].

In image processing applications, we often find chains glirsequences) of such tasks. For a
chain ofn tasks, {1..Tn), each task in the chain has exactly one predecessor andiooessor.
Of course, the first task;;, has no predecessor, and the last tdgkhas no successor. A prede-
cessor task utilizes a shared memory mechanism to comntemeaessary data to its successor—
this shared memory can be physically mapped to local on4ti@mory and/or off-chip memory
depending upon memory requirements of the application.

3.3 Problem Objective

Our overall goal is to maximize performance (minimize seitedength) under physical and
architectural constraints, given a resource constraiBGtgfcolumns available for the application,
whre Cconsis less than that required to map the entire application,Ggns < Zi”:l(ci) 1 An
additional key goal is that our approach should have a lowptdational overhead suitable for
implementation on a typical embedded processor.

4 Detailed problem specification and Exact mathematical famulation (ILP)

In this section we first motivate our problem and follow-uplva detailed problem specification.
Next, we provide an exact mathematical (ILP) formulation.

4.1 Motivation and Detailed problem specification

o = B E =) R
3 3 3 B
El @ (0] é
Latency improvement Latenc{f improvemen
(ideal) (actual)
Wwidth ———~ width ———~ Width
(a) Sequential (b) Ideal Parallel (c) Actual Parallel

Figure 3. Effect of significant reconfiguration overhead

Ideally, the degree of parallelism for a data-parallel iasknited only by the availability of HW
resources. Let us consider a chain with only a single datalipbtaskT; that executes in timg
usingcy columns, as shown in Figure 3 (a). Given aresource constfligonscolumns, we expect
performance to be maximized (schedule length minimizedmiis task is instantiate[o%mj
times, as in Figure 3 (b). In these figures, ¥axis represents the columnar area const@Gigits
and theY-axis represents the schedule length. For sequential dslegree of data-parallelism),
the execution of tasK; is represented as; as in Figure 3 (a). Each individual ta3krequires
reconfiguration before execution — however, for ease okesgmtation, we show all our schedules
as starting from execution of the first taskin the chain. For data-parallel tasks, we additionally
denote the execution gfth instance (copy) of the task E;% as in Figure 3 (b).

Unfortunately, as we discuss next, tieeal performance gain in Figure 3 (b) is typically not
achievable while considering realistic issues on suchit@atiares.

lwe assume of course that the largest task fits into the al@iaba, i.e.Coons > maxc;)

4.1.1 Significant Reconfiguration overhead

For moderrsingle-contexarchitectures that support partial RTR, the large recordigun delay is
a key bottleneck in achievindeal parallelism. To illustrate this, we consider Figure 3 (c)tHis
figure, reconfiguration fog-th instance (copy) o s denoted aﬁeij. Similar to our convention
of not explicitly showing reconfiguratioR; for taskT; in Figure 3(a), we do not explicitly show
reconfiguratiorR% for the first data-parallel instandi—;l in Figure 3 (c). We simply assume that
the reconfiguration controller is available at the begigrohthe execution of the first instandg.
Next we attempt to maximize performance by instantiatingdditional copyT? and distributing
the workload (execution time) equally between the two instsT! andT?2. However, execution
of the second instandéf can start only after the reconfiguration overhead, Thus, instead of
the ideal workload 01%, the workload of the second task instance is oﬁ%ﬁ leading to less
performance improvement than expected. The actual sohéshdth ist1+Trl instead of thedeal
schedule length o%.

For a single task, a simple equation suffices to computepiienal workloadeading to maxi-
mum performance improvement, as shown in the following lemm

Lemma 1 For parallelizing atask ilinto j instances, and given that the reconfiguration corigol
is available at the beginning of execution of the first ins&grihe best performance (least execution
time) is obtained when the workload (execution time) of thieipstance is:

ti—rixjx ';21

— =

Proof:

The proof follows directly from the simple example of paetilting taskT; into two task in-
stances | = 2). _

When thej-th task instance is ready for execution (reconfigurati(ufrifds complete), workload
completed byT! is (j — 1) x r1, workload completed by2 is (j —2) x rg, ---,---, workload
completed bWi‘_l isr1. The aggregate workload completeefore T starts is:

(=D +(j=2) 41 =rixjx 17

To maximize performance (minimize schedule length), tmeaiaing workload is distributed

equally between alj task instances, i.e., workload assigned to insta'ﬁde:
ti—ri><j><j;2l
j

Lemma 1 clearly demonstrates that maximizing performaneelvesunequalworkload (exe-
cution time) distribution between multiple copies of a taskompensate for the significant recon-
figuration overhead and the sequentiality constraint ome¢benfiguration controller.

Along with reducing expected performance, the large regandition delay also potentially pre-
vents performance improvement if more than a few copies ath are instantiated, as shown in
Figure 4. Even though enough resources are available @nitiste four copies of task, instan-
tiating the fourth copy does not improve the schedule leragih further. In fact, assigning any
non-zero workload to the fourth instance leads to a longeeduale than a schedule with only three

O

10

S L, K
i 58 g R
£

Width

Figure 4. Parallelism degree determined by reconfiguratioroverhead

instances. Similar to the previous Lemma for computipgmal workload a simple equation suf-
fices to compute theptimal number of instancdésading to maximum performance improvement,
as shown below.

Lemma 2 For parallelizing a task Tand given that the reconfiguration controller is available
at the beginning of execution of the first instance, the bedbpnance (least execution time) is
obtained when there are exactli}pﬁinstances,

t ons 1+\/1+8X:_ii
neP = MIN (| Seoms), [——17 - 1)

Proof:The first termLCCO“SJ states that one trivial bound on the number of instancesmplgi
the maximum number of task copies that fit in the availabla.aiighe second term follows from
Lemma 1 as shown below:
If the jw-th instancedoes noimprove performance, the aggregate workload complbeddre
T." starts execution igreater tharthe task workload, i.e.,
ri X jw X % > tj,
or, jwx (jw—1)>2x ¢
Solving the above quadratic equation, performashmes noimprove if:
. 1++/148xti/ri
Jw=> {fw
Thus, the maximum number of instamcré?gt such that performanagefinitely improvess given
by: n°" = j,,— 1, leading to the second term in the lemma.

Thus, the granularity of data-parallelism, that includetednining the number of instances is
determined by two factors: along with the very obvious factibthe number of instances that fit
in the given space, the other key factor is the ratio of tagicetion time to task reconfiguration
time. In the experimental section, we have conducted exy@ris on images with different sizes
— for such experiments, the reconfiguration time for indirgdtasks is invariant, while the task
execution time is proportional to the image size. The expenital results validate this lemma,
i.e., there is more performance improvement with increpsimage size (resulting from potentially
more instances for each data-parallel task)

11

Unfortunately, the simple equations in Lemma 1 and Lemma 2 at sufficient to compute the
schedule length for a precedence-constraas#l chain We next consider the additional compli-
cations introduced by precedence constraints.

4.1.2 Precedence Constraints

® ®® @
®

Columns— Columns— Columns—
R R
R 3
= ‘ A= R A= R
5| & 3 5 5 = 3 15% =
[¢>] t1 @D RE @D
| IR
= 2 2 =3
L+y

@ () (©)

Figure 5. Problem space explosion with Precedence constrds

For precedence-constrained application task chains th@nteraction of the resource demands
of parent and child tasks, as shown in Figure 5 for a simpléoéh two tasksT; andT,. The
HW resource constraint allows three copies (instance$),ar, two copies ofT> to be executing
simultaneously. One possible approach is to exactly folemma 1 and Lemma 2, i.e., instantiate
all three copies off; to maximize performance of;, and then instantiate two copies ©f, as
in Figure 5 (c). However, it is potentially possible to impeothe schedule length further by
instantiating only two copies df; and using the remaining space to reconfigure (instantiaite) o
copy of T, — once the two copies dff; end, the first instanc@z1 of T, is able to start execution
immeditely, as in Figure 5 (b). Note that in our execution elpdll instances of a parent task
must finish execution before any instance of a child taskssexecution

As is obvious, the problem space explodes with the intradnaif precedence constraints. Ef-
fectively for a chain witim tasks, we want to determine the best possible performaaoe fr

|C/co| x [C/c1] x...|C/cn]

candidate transformed task graphs. Also, configuratiofefuie [14] starts playing a critical role —
in Figure 5 (b), thegapintroduced between completion of reconfiguration for tagkand start of
execution of intsnac&}' is crucial to improving latency in the presence of signiftos@eonfigura-
tion delay.

Thus our detailed problem specification is:

Problem Inputs
¢ Precedence-constrained application task cfigin> To-> ----> Ty) wheresometasksT; have

data-parallelism property.

12

e Strict boundC¢onson the number of contiguous columns available for mappiegadbkk chain.

Problem Output

e Number of copies for each data-parallel task _

e Workload (execution time)iJ of each (-th) copy of a data-parallel tasg(j (ti‘) =t).

¢ Placed task schedulavhere every task instance) is assigned an execstamtime, and an
executionstart column.

Problem Objective
e Minimize schedule length (maximize performance).

As mentioned previously, we have an additional key objedtnat any proposed approach should
have low execution complexity suitable for implementatartypical embedded processors. How-
ever, for the sake of completeness (and as a key tool to ¢eahmquality of our proposed heuris-
tics), we next present an exact mathematical (ILP) fornnutetb the above problem.

4.2 Mathematical (ILP) formulation of problem

In this subsection, we present an ILP (integer linear pnogthat provides an exact solution to
our problem. Our underlying model is a two-dimensional gvitere task placement is modelled
along one axis while time is represented on the other axigvidus work [1] has addressed the
problem of exact scheduling (and placement) for a task gragsthpartial RTR related constraints
(including configuration prefetch) based on such a gridesgntation. Unlike [1], our objective is
to determine the structure of a task graph that maximizdsimeance— attempting to determine the
number of task instancesmdexecution time of an instaneehile satisfying all constraints related
to columnar partial RTR makes the ILP formulation additibnehallenging.

4.2.1 Core principles

To formulate such an ILP, we essentially start with an expdrs@ries-parallelgraph. For each
data-parallel tasK;, we implicitly instantiate as many task copl‘ﬁé as possible subject to the
resource constrairicons FOr each such task instance we add precedence edges taltheask
Ti+1 of T; (or, toeveryinstance of tasKj. 1, if Tiy1 is data-parallel).

Next, we introduce a Boolean (0-1) varialle (InvaliD) for every task instance in the ex-
panded graph — a non-zero value of this variable denoteghbatorresponding task instance is
not required for maximizing performance. To determine taskainse execution time along with
task instance start time, we introduce two sets of variabdas(start execution) variable for a
task instance denotes the execution start time of the tas&noe, while x (is)ecuting) variable
denotes that a task instance is processing data in a giverstiep.

The following indices are key to properly specifying the N&riables:

i € (1 .. number of tasks in the chain)

i” € (1 .. number of task instances in the expanded graph)
li € (1 .. number of instances of ta3j

j € (1 .. upper bound on schedule length)

k €(1..Ccony

13

4.2.2 ILP variables

The complete set of 0-1 (decision) variables is:

Xy jk =1, if task instancd; is executingon FPGA at time-step,
andk is leftmost column occupied bi.
=0, otherwise
sX: j k = 1, if task instancd; starts executionon FPGA at time-step,
andk is leftmost column occupied biy.

=0, otherwise
fx: j = 1, if task instancd finishes execution in time-stegp
=0, otherwise
IDj» = 1, if task instancdj: is not required in an optimal solution
=0, otherwise

rir jx = 1, if reconfiguration for task instandg starts at time-step,
andk is leftmost column occupied bi.
= 0, otherwise
Some of the constraints necessitate introduction of amditibinary variables to represent logi-
cal conditions. All such variables are represented.as

4.2.3 Constraints

1. Simple task execution constraints

(a) Each valid task instance is executed exactly once.

Vil, Zij(SX’,j,k)+lDi’:1i Zl(f)(l',])+|Dl’:l (1)

(b) Task instance execution-time is non-negative, i.e¢aion finish time for a task instance is
greater than or equal to execution start time.

Vi/, Zj(j*in/J— Zk(j*S)@’Lk)) >0, (2)

Note that this is trudor all task instances. If a task instance is not required, its spaeding
sx (start execution) and fx (finish execution) variablesakrassigned a value of zero.

2. Core data-parallelism constraints

(a) Execution time for a task equals the aggregate exectitienof all instantiated copies.

Vi, DD D k(jk) =ti, 3

This equation holds trivially for all non-data-parallesks that have a single instance each.

(b) Precedence constraints between task instances: Ebghngtance of task; (i > 1) starts
execution after any instance @f 1 finishes execution.

14

Vi> 1, Vi, Vi1, (ID), =0) = zj (zk(j*S)th’k)—j*fX|i71’j) >1 4)

We can rewrite the equation in the following form:
Vi> 1, Vi, Vi1, if (1—1Dy,) >0)
then > j (O k(j*s%;jk) — j* fx_pj)—1>0

This enables us to apply tliflethentransformation as in [18F

3. Core column-based partial RTR constraints

(a) Each valid task instance needs to be reconfigured— aksagtart column for reconfiguration
is same as start column for execution.

Vi, vk Y (r k=% jx) =0 (5)

(b) Each valid task instance can start processing data didy the task is reconfigured, i.e
reconfiguration delayime-steps after start of reconfiguration.

Wi Dy =0)= 3 Fui it 2 (©)

We can apply th&-thentransform similar to Equation (4).

(c) Resource constraints on FPGA: total number of columirgghesed for task instance execu-
tions and number of columns being reconfigured is limitedhgytotal number of FPGA columns.
vi, Z" Zk Zn k g410%jn + Z mej] +1(irmn)) < Ceons (7)

(d) At every time-step , at most single task instance is being reconfigured.

Vi, D Zm it +1Zk(ri’7m,k) <1 (8)

(e) At every time-step, mutual exclusion of execution and reconfiguration for gwaiumn

Vi, vk, ZI' Zn k—ci+1 (Xir,j,n + Zm:J Y —I—l lrimn)) <1 9)

(f) For every column, at every time-step, total number obrdigurations is at most 1 less than
the number of executions started using that column.
2

if-then transform for the constraint if (X) > 0) theng(X) > 0
—g(X) <Mb

f(X) <M(1-b)

be (0,1)

where M is a large number such thgX) < M, —g(X) < M for X satisfying
all other constraints.

15

Vj,Vk, ZI’ Zﬁ:k—cir-l—l zl!:n:l(ri’7man_ Sx’7man) S 1 (10)

(g) Simple placement constraint: a task can start execotbnif there are sufficient available
columns to the right.

Vi,Vj,VK € (Ceons— Gi + 1..Ccons),
X,k = Tirje=0 (11)

4. Equations relating task execution variables

(a) For each task instance, if starts executionn time-stepj (sx variable is '1’), variables
denoting tasks executingare zero in prior time-steps and "1’ in time-stgp

virvi >l Q%=1 = Sk Ymi ‘(Xmk =0, (12a)
Dk =1 (12b)

(b) For each task instance, ifig executingn column k, the correspondingtarts execution
variable is true for this column.

Vi/,Vk, (Zk(xi’,j,k) > 1) - zk(S)q’,j,k) =1 (12¢)

(c) For each valid task instance, the task instance exetctitiee equals the number of non-zero
is executingrariables.

Vil vk, (IDp=0)= > ;> k(X jk) = D i(D k(i*S% i) — X j)+1 (12d)

All the above equations can be simplified usingitientransform described previously.

5. Objective function to minimize schedule length

This is equivalent to minimizing the end time for any instamé the last task in the chaif,.
By introducing a new sink tasKsjnk and precedence edges from all instances of the last task in
the chainT,, the objective function is simply the execution start tire this new tasKlgj. If
we additionally assign a width &¢onscolumns to this new task, the objective function is further
simplified to:

minimize (j * $X sink1)

6. Additional constraints

Along with the necessary constraints, we also introdagi@itional constraints such as simple
timing ASAP/ALAP constraints to help reduce the search saad correspondingly reduce the
time required by the ILP solver to find a solution).

16

5 Heuristic Approaches

In this section, we first present MFF, a heuristic for schiedudimple task chains. While MFF is
oblivious to data-parallelism, it provides the core cornsemderlying PARLGRAN, our proposed
approach for chains witkomedata-parallel tasks.

5.1 MFF (Modified First Fit)

For architectures with partial RTR, the physical (placetpeanstraints and, the architectural
constraint of the single reconfiguration mechanism, ma#éficult to achieve the ideal schedule
lengthLigeas = >4 (ti). In fact, thissimpleproblem of minimizing schedule length for a chain,
under constraints related to partial RTR, is actually NRwlete, as proved in [20]. MFF, our
proposed heuristic to solve this problem, essentially tieesatisfy task resource constraints, and,
attempts simple local optimizationsteduce fragmentatigrand, hence, the schedule length.

Approach:MFF (Modified First Fit)
Place task starting from leftmost column
for each taskT, i > 1)
FiS = earliest time-slot enough space is available (last-fit)
F.R = earliest time-slot reconfiguration controller is avaitab
RiStart = MAX (Fis’ FiR)
Eistart = MAX (Ristart +ri, Eiej]l
if (T; aligned with rightmost column)
local optimization: Adjust immediate ancestor placement
(and start time) if possible to improve start timeTpf
endfor

MFF is based on a first-fit approach. To get intuition behind/ &rfirst-fit approach works
well in practical scenarios, we take a look at Figure 6 (a)e Tdsks are essentially laid out in
the form of diagonals running from the top-right of the pldsehedule towards the bottom-left.
As long as a task does not "fall off” the diagonal, it is possito overlap at least part of the
reconfiguration overhead with the execution of its immeslaicestor. Once a task "falls off” the
diagonal and is placed at the rightmost coluBGyg,s it is essentially trying to reuse the area of
ancestor tasks higher up in the chain. Given that for tasashain the execution components have
to be in sequence, a more distant ancestor is guaranteedtodarlier than a closer ancestor. This
increases significantly the possibility of being able tortayge reconfiguration of this task with the
execution of ancestors that are closer to it in the chainedgffely the chain property causes a
"window” of tasks: tasks within a window affect each othereghumore strongly than tasks outside
the window.

Simple fragmentation reduction. One minor modification for reducing fragmention in MFF com-
pared to pure first-fit is shown in Figure 6. Our observationBdate that in tightly-constrained
scenarios (few columns available for task mapping), p@atie second task, adjacent to task
Ty, as in Figure 6 (b), often leads to immediate fragmentatiboagh enough area is available to

17

awiL
&

Latency reduction

Width

Width

L

(a) Less Fragmentation (b) More Fragmentation

Figure 6. Simple chain- right placement of task 2

reconfigure tasK3 in parallel with execution of task, this area is not contiguous, and thus task
T3 gets delayed. MFF takes care of this by placiagat the right-hand corner. Of course, this
simple modification is not applicable to all scenarios.

Local optimization: Exploiting slack in reconfiguration controller : A more interesting local
optimization to reduce fragmentation is shown in Figure)7 \(ghile scheduling tasks, we notice
that it is possible to exploit slack in the reconfigurationcimenism tgostponehe reconfiguration
Rs of task T3 without delaying the actual executi@i of taskTs. We can thus make better use of
the available area (HW resources) to reschedule (and ch@dagement of) taskz — as a result,
reconfiguratiorR, of taskT, can now execute in parallel witks, leading to a reduction in schedule
length, as shown in Figure 7 (b).

Before proceeding to PARLGRAN, itis important to undersittrat the fragmentation problems
we try to address in MFF (and PARLGRAN) are because we aragro jointly schedule and
place while satisfying a host of other constraints— thuseotree space coalescing techniques for
partially reconfigurable architectures, such as [8], atedivectly applicable.

awiL
awiL

E

Re

Latency reduction

Width

Width

(&) More Fragmentation (b) Less Fragmentation

Figure 7. Exploiting slack in reconfiguration controller

18

5.2 PARLGRAN

We use the insights obtained from the chain-schedulinglpnolas the basis for our granularity
selection approach. Detailed analysis of chain-scheduslmows that applying local optimizations
can improve the performance. We additionally want to deaigapproach such that the algorithm
execution time is comparable to the execution time of thksta$o, our proposed algorithm is
simple and greedy, but, uses specific problem propertiegg tmtd improve the solution quality.

Our approach consists of two steps:

e Static pruning

e Dynamic granularity selection

5.2.1 Static pruning

First, we utilize some simple facts to statically prune oegi of the search space. As an example
of pruning, consider Figure 8. If we schedule exactly oneyazgch for task3; andT,, then task

T, can start as soon ds ends, i.e., aty, as in Figure 8 (a). If we schedule another copy of task
T1, the execution time of; improves. However, now the reconfiguration controller lmees the
bottleneck, as shown in Figure 8 (b). Now, taBkcan start only atfr; + r2), which is greater
thant;. In general, the number of copies of a task is limited by thpaot of its reconfiguration
overhead on its successors.

- El I% = E% F%
3 1 3 =
delayed start
1
E B
Width ——————— Width

(@) (b)

Figure 8. Static pruning based on timing

5.2.2 Dynamic granularity selection

We next consider work distribution (load balancing) issieeshe multiple task copies.

Uneven finish times From our initial discussion on data-parallelism (as sheantier in Figure 4),

it seems that it is a good idea to always generate as manyscap@ossible subject to performance
improvement and get them to finish at the same time instantveider, with the introduction of
task dependencies, it is possible to modify this approadeitain cases to improve performance,
as shown in Figure 9. In Figure 9 (a) Iléﬂ'l1 denote the time instant the earlier copy of tagk

19

)] j]
3 & 3 B
g g
R
% ~ delayed statt
B e
Width ————~ Width
(@) (b)

Figure 9. Uneven finish times

that isE} ends. TasKr, can start atST = FT! +r,. However, if both copies of; end at the
same time instant as shown in Figure 9 (b), this time-instagiven by:

FTL = FTl 4rp/2
As a result, reconfiguratioRy for taskT, gets delayed and executi@a for taskT, can only start

at
FTEM ry = FTL43x1p/2
Of course, if the area of task is greater than the area of tagk letting both copies of; end at

the same time instant would lead to a shorter schedule.

B
= % Ei =L
3 3
) 5]
1
&
1 Latency reduction
Width Width

(a) More Fragmentation (b) Less Fragmentation

Figure 10. Left placement for copies of first task

One other minor observation to improve MFF specifically fargllelism granularity selection
is shown in Figure 10. Placing multiple copies of a task asljato each other intuitively helps
reduce fragmentation.

PARLGRAN is an adaptation of MFF that essentially tries teegtily add multiple copies of
data parallel tasks as long as it estimates that adding a apyis beneficial for performance
(shorter schedule length). The concepts of dynamicallysdoljg the workload combined with
local optimizations makes it effective. We summarize ouRR&RAN approach below.

20

Approach:PARLGRAN (Parallelism Granularity Selection)
Place first copy of task; starting from leftmost column
for each taskT, i > 1)
Compute earliest execution start of task (space searclsbyitla
if (parent task is data-parallel)
while (no degradation in start time @)
add new copy of parent (assign start time, physical location
adjust workload of existing scheduled copies of parent
Schedule (and placé)
apply local optimizations from MFF for improving schedule
endfor

While this approach appears to be simplistic, experimegtallts in the following section show
it typically does better than statically deciding to paghile each task to its maximum degree.
For applications like JPEG encoding, blind parallelizatban lead tsignificantly inferiorresults,
even worse than RTR-aware first-fit, because of the recomfigur overhead and the physical
(placement) constraints.

6 Experiments

We conducted a wide variety of experiments to validate ooppsed approach. We demonstrate
the quality of schedules generated by our heuristics witbrg karge set of synthetic experiments
(consisting of over a thousand data-points) along with aitket application case study. Addi-
tionally, we demonstrate the practical applicability off guoposed PARLGRAN heuristic with
detailed analysis of estimated execution time on a typicddedded processor, the PPC405 (Pow-
erPC) processor with an operating frequency of 400 MHz.

Itis important to remember that our goal is to maximize penf@ance (minimize schedule length)
for an application task chain, given a hard constraint oretlalable area. Therefore, while it is
possible to fit our applications onto suitably sized targetices, we assume for experimental pur-
poses that the resource constraint is less than the aggrggatof all tasks. Thus our approach is
well-suited for true on-demand computing, where an apptinanvoked dynamically is assigned
logic resources (area for mapping application task grappedding on the number and resource
requirement of other applications simultaneously exaegubin the reconfigurable device.

6.1 Experimental setup

We assumed a target device organized as a CLB matrix of 56 &8xlumns, similar to Xilinx
XC2V2000. From the XC2V2000 data sheet, we estimate thatttenfiguration overhead for the
smallest task occupying one column on our architecturel9 tns at the maximum suggested
reconfiguration frequency of 66 MHz. We obtained area andhgndata for well-known tasks
such as Huffman encoding, DCT, etc., by synthesizing thetin galumnar placement and routing

21

constraints on the XC2Vv2000, similar to the Xilinx methaalyy} suggested foreconfigurable
modules

We explored a large set of scenarios with the following stygt
(1) We generated task chains of varying chain length, ranfyjom 4 to 15 tasks in the chain.

(2) For a task chain of given chain length, each individugsktaas assigned a set of parameters
(execution time, reconfiguration delay, number of coluntaggomly selected from our database
of synthesized tasks. Thus, we generated multiple tasksliai a given chain length.

(3) Finally, for each individual task chain, we conductedtipie experiments by varying the area
constraint across a wide range, to represent situatiortslests area, as well as situations with
more area available for mapping the application..

Our overall strategy resulted in a set of over a thousandidhgial experiments. Note that the
database of task parameters included information correipg to images of various sizes- since
each individual task is completely pipelined, the reconfajon delay and number of columns
occupied by the task is independent of the image size, beteution time is directly proportional
to the image size.

In subsequent discussions, the following notation dersxthedule length generated by various
approaches, including our proposed approach, the exanufation, and other heuristics imple-
mented to evaluate the quality of schedules generates bgppuoach.

e Lexact COrresponds to our exact (ILP) formulation.

e Lnhi: corresponds to our MFF (Modified First-Fit) approach fohestuling chains with no
data-parallelism considerations.

e Lpgran: corresponds to our proposed PARLGRAN (PARaLlelism GRAdNtY selection) ap-
proach.

e L;¢: corresponds to a simple FF (first-fit) approach [1] for schieg chains with no data-
parallelism considerations.

® Lmaxp corresponds to MAXPARL (MAXimum PARalLlelization) appcia

Along with our implementation of MFF, PARLGRAN, and the ILWe additionally imple-
mented MAXPARL to evaluate the quality of our schedules. MPRRL attempts to maximize
parallelization by statically selecting the maximum numdiecopies possible for each task sub-
ject to resource constraints only, and assigning equal iwvatkto each such task instance. Note
that MAXPARL includes detailed configuration prefetch colesations. Because of equal work-
load distribution, multiple instances of a task finish afetiént time-instants, unlike Lemma 1—
however, the freed-up area is utilized to instantiate rpldtcopies of any data-parallel child task.
Thus, the schedules generated by MAXPARL are of reasonalagty) and significantly better
than an approach with no configuration prefetch considerati

6.2 Schedule quality on synthetic experiments

6.2.1 Schedule quality of MFF (compared to FF)

Our first set of experiments consisted of comparing schddualgths generated by MFF with that
of first-fit, on the set of experiments as described above.

22

The experimental data confirmed that schedules generatiliFBywere almost always equal to
or better than first-fit. The schedule lengths generated bly WMé&re better in 207 out of 1096 tests,
i.e., approximately 19% of the tests, worse in 6 out of 1086steln 114 tests, around 10% of the
total, MFF was better by at least 3%. In the worst experimen¥FF, first-fit generated a schedule
longer by 0.44%. Overall, on longer chains (more tasks) anddr constraints (more columns),
both algorithms were almost equally able to hide the recanditgon overhead. However, on more
constrained problems with shorter chains and tighter avestraints, MFF tends to generate better
schedules.

6.2.2 Comparing PARLGRAN schedule length with ILP for smalltests

Our next set of experiments consisted of comparing the stbéehgth generated by PARLGRAN
with that generated by the exact formulation. The implemgon of the ILP using the commer-
cial solver CPLEX ([21]) requires hours for even small tastes on our implementation platform
(SunOS 5.9 with a 502 MHz Sparcv9 processor). Thus, for ex@ats involving the exact for-
mulation, we report results on a very small set of syntheteements with short chains (chain
length varying between 3 to 5 tasks).

Testcasg Lexact | Lpgran
test?2 25 25
test3 23 23
tests 19 22
test7 25 27
test8 23 24

Table 1. PARLGRAN Vs ILP for small tests

In Table 1, the second column represents schedule lengtiesaged by the ILP, while the third
colum represents schedule lengths generated by PARLGRANtHis set of experiments, the
schedule length is reported in time-steps where one tie@-&irresponds to the reconfiguration
delay for a single CLB column.

As the table shows, the schedules generated by PARLGRANall £xperiments (short
chains) are reasonably close to that of the exact approach.

6.2.3 Overall schedule quality of PARLGRAN

Next, in Table 2, we present a summary of results coveringthiee set of synthetic experiments.
The data in each row of the table corresponds to experimentbains of corresponding length—
as an example, data in the second row (chain length 7-9) waset from experiments on chains
with at least 7 tasks and at most 9 tasks. Note that this s&pefenents is identical to that we used
to validate MFF— we additionally assume that each task irchi@n is completely data-parallel.
For comparison with MAXPARL and FF, our quality measure @y the percentage increase
in schedule length generated by the other approach compaRXRLGRAN. As an example, for

23

comparison with MAXPARL, the quality measure is simply:
((Lmaxp— Lpgran)/l—pgran) * 100

Chain PARLGRAN Vs FF| PARLGRAN Vs MAXPARL
length Avg Avg Best Worst

4-6 44% 7.1% | 93.1% | -49.6%
7-9 55% 20.5% 139.2%| -31.2%
10-12 63% 31.8%| 142.7%| -27.3%
13-16 71% 38.9%| 125% -7.1%

Avg gain >50% >20%

Table 2. Reduction in schedule length for completely data pallel chains with PARLGRAN

The second column in Table 2 representsAlieragepercentage improvement of PARLGRAN
as compared to FF. Each entry in the second column is an a&/efadarge number of experiments
conducted on chains of corresponding length. The thirdtficand fifth columns respectively rep-
resent theAverage theBestand theWorstperformance of our approach compared to MAXPARL.
As an example, the data in the second row, third column, state on a large number of ex-
periments with chain length between 7 and 9 tasks, the besttrgenerated by our approach
corresponds to an experiment where MAXPARL generated adsitéd39% longer.

Expectedly, there is significant improvement in schedutgtle with PARLGRAN compared
to the sequential (first-fit) approach, as shown in the se€@wldmn of the table. More impor-
tantly, the data in the third column clearly shows that owpmsedyranularity selectiorheuristic,
PARLGRAN, generates increasingly better results compar@ddAXPARL when more space is
available. Intuitively, with more available area, it is pise to make more instances of the data-
parallel tasks. However, with each additional instanaeyibrkload (execution time) decreases per
instance, resulting in execution time comparable to thereguration overhead — PARLGRAN is
better capable of deciding when to stop instantiating rpldtcopies, as opposed to MAXPARL.
The local optimizations in PARLGRAN play an active role irchicircumstances to help improve
the schedule length.

One key aspect of the data in Table 2 is that for smaller chaurspresented results cover a very
large range of varying area constraints— for longer chaespresented results cover the scenarios
where the available HW area is at most 40-45% of the aggrétatarea of the tasks. For chains
with more than 9-10 tasks, a loose area constraint resulgen more significant improvement
with PARLGRAN compared to other approaches.

6.3 Detailed Application Case Study: JPEG encoding

After conducting a wide range of experiments on synthetaphgs, we conducted a detailed
application case study on the JPEG encoding algorithmesepted as a chain of four key tasks
(RGB2YCbCr=>DCT->Quantize->Huffman), shown in Figure 11. Note that Huffman is a se-
guential task (no data-parallelism) while the remainingsks are data-parallel. Table 3 presents
some results from our case study. Entries in the first colU@&SE, denote the image size —

24

Colour image

‘ RGBZYCbCr‘

l

‘ DCT ‘

l

‘ Quantize ‘

l

‘ Huffman ‘

Compressed image

Figure 11. JPEG encoder task graph

256X256 denotes experiments on a X&56 colour image. For each case, we varied the num-
ber of columns and observed the resulting schedule lengtksaggregate area requirement of
all tasks in the chain is 11 columns). The second col@yps represents the area constraint in
columns. The third, fourth and fifth columns correspond teesitile lengths (in ms) generated by
FF, MAXPARL, and PARLGRAN respectively.

Case Ceons| L#f | Lmaxp| Lpgran
(ms) | (ms) | (ms)
12.71| 12.73| 12.36
11.24| 12.52| 10.81
11.24| 11.38| 10.05
11.24| 12.11| 9.08
10.10| 12.79| 9.08
42.86| 40.68| 40.30
41.34| 35.32| 35.13
41.34| 34.18| 34.37
41.34| 29.08| 28.60
40.20| 28.38| 27.71

256X256 JPG

512X512 JPG

© 00 ~NO 0110 00~ O O

Table 3. Case study of JPEG encoding: Schedule Length with fiérent image size and area
constraints

The data in Table 3 demonstrates that as available areaseseour proposed approach PARL-
GRAN consistently generates shorter schedules. As an dgaiigp the 25&256 image, we
consider the data correspondingd@ns= 5, and the data correspondingGgyns= 8. The corre-
sponding transformed task graphs are shown in Figure 12igndeFL3 respectively. The DCT task
is the most computation-intensive task in the chain (maxrmaxecution time). However, a tighter
area constrainQ.ons= 5) does not allow multiple instances of the DCT task. ThuRRPARAN
improves performance by adding one instance of the RGB2YE RSk, as shown in Figure 12.

25

However, with more ared{,ns= 8), PARLGRAN is capable of deciding that it is more beneficial
to instantiate two copies of the DCT and only have a singleam=e of the RGB2YCRCB task.
For comparison, we note that an approach oblivious to p&TiR constraints would generate four
instances of the RGB2YCRCB task witlions= 8, as shown in Figure 15.

Next, we observe how our approach adapts to varying datansihe=igure 13 and Figure 14.
For the same area constraiBt{,s= 8), the transformed task graph for the 2&56 image hasix
tasks while that for the 5512 image haseverntasks. For the larger image, the task execution
time is significantly higher than the task reconfiguratiomgj resulting in more scope for exploiting
data-parallelism.

COlOL‘JI’ image Colour image
I]
‘RGBZYCbCr_# ’ RGB2YCDbCr |2 ‘ RGB2YCbCr ‘
i ‘ ;)
‘ DCT ‘ ‘ DCT_1 ‘ ’ DCT_2 ‘
i ;]
‘ Quantize ‘ ‘ Quantize_1 ‘ ’ Quantize_2 ‘
l ; J
‘ Huffman ‘ ‘ Huffman ‘
Compressed image Compressed image
Figure 12. Transformed JPEG task Figure 13. Transformed JPEG task
graph: Image size: 256X256C:ons=5 graph: Image size: 256X256C:qns= 8

Next we focus on the data corresponding to theX2ZH%6 image. For this set of experiments,
where the reconfiguration overheads are comparable to $ieetaecution times, our approach
frequently does much better than statically parallelizagrything (MAXPARL). Additionally, the
data demonstrates that such blind parallelization canteegsults worse than a simple sequential
scheduling approach. For an area constraint of 8 columhgdside length of FF is longer than
PARLGRAN by (11.24-9.08)/9.08 = 23.5%. Blind (static) pégkzation leads to significantly
worse schedule longer by (12.11-9.08)/9.08 = 33.3%. This $pite of the fact that the effective
transformed graph from MAXPARL consists of 9 tasks with app#dy more parallelism, while
the transformed graph from PARLGRAN consists of 6 tasks.only

For the 51X512 image, each task execution time is significantly grehger the reconfiguration
overhead. In such a scenario, where, additionally, thendeaggth is short, MAXPARL generates
good results — of course, PARLGRAN typically does somewtlsdteln. But, both parallelizing
approaches result in significant speedups.

6.4 Applicability in semi-online scenario

The experimental data clearly demonstrates that PARLGR&MNeates high-quality schedules.
However, our objective is for PARLGRAN to be applicable ise@mi-onlinescenario where the

26

COlOL‘JI’ image Colour image
[1
‘RGBZYCbCr_# ’RGBZYCbCr_Z# ‘RGBZYCbCr_# ‘RGBZYCbCr_.l ‘RGBZYCbCr_# ‘RGBZYCbCr_*l
: i | | | |
‘ DCT_1 ‘ ’ DCT_2 ‘ ‘ DCT_1 ‘ ‘ DCT_2 ‘
})
‘ Quantize_l‘ ’ Quantize_2 ‘ ‘ Quantize_l‘ ‘ Quantize_z‘
\]
[
| umman |
Compressed image Compressed image
Figure 14. Transformed JPEG task Figure 15. JPEG task graph with maxi-
graph: Image size: 512X512C.ons= 8 mum parallelization: Cgons= 8

task precedence relations, and the task area-timing deasdics are available at compile-time,
while the available HW area for mapping the application iswkn only at run-time. Task man-
agement under such dynamic resource availability is a kgyeign modern operating systems for
reconfigurable architectures [7]. So, we next obtainedil@etaxecution time estimates for MFF,
PARLGRAN, and MAXPARL on the PPC405 operating at 400 MHz-fsaiprocessor is available
in the Xilinx Virtex-1I Pro platform.

We obtained heuristic execution time estimates for the JBE€dding application with three
different image sizes: 25&56, 384384, 51X512. For each image size, we varied the area
constraint and obtaineclimulativeexecution time as shown in Figure 16, Figure 17, Figure 18.
In each of these figures, the X-axis represents the arearaomsis a percentage of the aggregate
area required by all tasks. The Y-axis represents the cuivelkaxecution time (schedule length
computed by heuristic + execution time of heuristic).

MFF of course has the least execution time overhead. Thushfart chains with a very tight
area constraint, cumulative execution time with MFF is camaple to other heuristics, as in Fig-
ure 16. However, as available area increases or, imagersigeases, scope for exploiting data-
parallelism increases. In such scenarios, PARLGRAN and MARL generate shorter schedules
that more than compensate for the increased heuristic sgadime.

This is explicitly demonstrated in Figure 19 where we prédata for three different image sizes
scheduled with the same (very relaxed) area constrainte Nhatt increase in image size results
in increased ratio of task execution time to reconfigurateaerhead, making more data-parallel
instances feasible (as in Lemma 2). As image size increasesjlative execution time with MFF
increases almost linearly, i.e., cumulative executioretior a 51X512 image is almost 4 times
that of the 25&256 image. However, with approaches that attempt to exgéaé-parallelism, the
cumulative execution time increases at a slower rate — f6IARAN, the cumulative execution
time for the 51X512 image is only aroun®.5 timesthat for the 25&256 image.

Heuristic execution time for all approaches increase asrawga is available for mapping the
application. However, MAXPARL is significantly more semg#, as shown in Figure 16, Fig-

27

15 T T Mr:':

PARLGRAN
MAXPARL

14.5

14

13.5

13

12.5

12

11.5

11

10.5

Cumulative time (execution + scheduling) in ms
Cumulative time (execution + scheduling) in ms

10

9.5 1 1 1 1 1 1
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Area Constraint (26 of aggregate area)

Figure 16. Schedule length + heuris-
tic execution time: JPEG encoding

27 T T

MFF ——

PARLGRAN
MAXPARL

26

25

24

N
N

N
[y

20

19

18 1 1 1 1
0.3 0.4 0.5 0.6 0.9 i

Area Constraint (26 of aggregate area)

Figure 17. Schedule length + heuris-
tic execution time:

JPEG encoding

256X256 384X384
44 T T MEE 45 T T T MFF T
PARLGRAN - PARLGRAN -
MAXPARL ----- MAXPARL ------

42

40

38 — W

36 — iR

34

32 — \

Cumulative time (execution + scheduling) in ms
Cumulative time (execution + scheduling) in ms

30

>8 | | | | Ly
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Area Constraint (26 of aggregate area)

Figure 18. Schedule length + heuris-
tic execution time: JPEG encoding
512X512

28

1 1
384X
384
Image size

512X
512

Figure 19. Schedule length + heuristic
execution time: JPEG encoding, loose
area constraint

ure 17. This is because MAXPARL attempts to maximize pdisiteby scheduling a graph with
the maximum number of tasks possible in the given area.

Comparing the data in Table 3 with that in Figure 16 shows BARLGRAN execution time
overhead is approximately (9.85 - 9.08) = 0.77 ms for theXZ&®H image withCeqons = 8. This
is quite low compared to the schedule lengtfyran = 9.08 ms. Much more importantly, for all
experiments on the JPEG applicaticamulative executioime for PARLGRANmonotonically
decreasesonfirming its viability in a semi-online environment.

Our wide range of experiments and case studies confirm thRLEARAN generates high-
guality schedules in all situations—tightly constraineoljpems with shorter chains, fewer columns,
as well as problems with more degrees of freedom, i.e., loctggans, more available columns. Ad-
ditionally, the estimated run-time of our approach on adgpembedded processor is comparable
to the HW task execution times.

7 Conclusion

In this report, we proposed PARLGRAN, an approach that setganularity of data-parallelism
to maximize performance of applicatitesk chaingexecuting on an architecture with partial RTR
(run-time reconfiguration). Our approach selects both tiraber of instances of a data-parallel
task, and, the execution time of each such instance — itagiiated in a joint scheduling and place-
ment formulation, necessitated by the underlying physacal architectural constraints imposed
by partial RTR.

To evaluate our proposed heuristic, we have implementedact @LP) approach, and a sim-
pler strategy that attempts statically maximize data-parallelism. For smaller experiments, our
heuristic generates schedules that are reasonably clgselity to that of the exact approach. Ex-
perimental results on a very large space with over a thousgmnithetic experiments confirm that
our heuristic generates schedules that are on an average Inet20% compared to the simpler
strategy that tries tetaticallymaximize data-parallelism.

A detailed case study on JPEG encoding confirms that in teafisenarios, the simpler ap-
proach that tries to maximize data parallelism without actimg for the underlying constraints
can end up generating schedutaach worsehan even a data-parallelism-oblivious (but RTR-
aware) approach. Finally, detailed execution-time edesiandicate that our approach is suitable
for integration in asemi-onlinescheduling methodology where the goal is to maximize perfor
mance of an application given an area constraint and inpariackeristics (image size) available
only at run-time.

While our approach demonstrates the potential for sigmfiparformance improvement, there
are some key aspects that we want to address in our future Wbkt importantly, we have as-
sumed in this work that we are not constrained by memory/comecation bandwidth. Our initial
estimates indicate that even with increased paralleliematiditional bandwidth requirement for
realistic applications (including the JPEG applicatioap e satisfied by a typical memory-bus
configuration such as a PC3200 DDR memory integrated withtalde bus. However, we agree
that with increased task granularity (more instances) ared-ieacreasing device sizes, the data
transfer to and from memory, both on-chip and off-chip, lnesgotential to become a bottleneck,

29

and will be considered in future work.

8

Acknowledgements

This work was partially supported by NSF Grants CCR-0203818CCR-0205712.

References

[1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

S. Banerjee, E. Bozorgzadeh, N. Dutt, "Integrating pbgkconstraints in HW-SW partitioning for architectures
with partial dynamic reconfiguration”, IEEE. Trans. VLSI-3, 11, Nov 2006, pp 1189-1202.

J. Noguera, R. M. Badia, "Performance and energy analgbtask-level graph transformation techniques on
dynamically reconfigurable architectures”, Proc. Intéioreal Conference on Field Programmable Logic and
Applications, 2005, pp 563-567.

J. Resano, D. Mozos, F. Catthoor, "A hybrid prefetch stthimg heuristic to minimize at run-time the recon-
figuration overhead of dynamically reconfigurable architezs”, Proc. Design Automation and Test in Europe,
2005, pp 106-111.

J. Harkin, T. M. Mcginnity, L. P. Maguire, "Modeling and@@imizing Run-Time reconfiguration using evolu-
tionary computation”, ACM Trans. Embedded Computing SysteV-3, 4, Nov 2004, pp 661-685.

P-H. Yuh, C-L. Yang, Y-W. Chang, H-L. Chen, "Temporal fiptanning using the T-tree formulation”, Proc.
International Conference on Computer-Aided Design, 209400-305.

J. Noguera, R. M. Badia, "Power-Performance trade-mifseconfigurable computing”, Proc. IEEE/ACM/IFIP
International Conference on Hardware-Software CodesighSystem Synthesis, 2004, pp 116-121.

C. Steiger, H. Walder, M. Platzner, "Operating systeorséconfigurable embedded platforms: Online Schedul-
ing of Real-Time Tasks”, IEEE Trans. Computers, V-53, 11y 18604, pp 1393-1407.

M. Handa, R. Vemuri, "An efficient algorithm for finding guty space for online FPGA placement”, Proc. Design
Automation Conference, 2004, pp 960-965.

N. P. Sedcole, P. Y. K. Cheung, G. A. Constantinides, WK,L'lA Reconfigurable platform for Real-Time
Embedded Video Image Processing”, Proc. Field Programeraigic and Application, 2003, pp 606-615

H. Quinn, L. A. Smith King, M. Leeser, W. Meleis, "RuntenAssignment of Reconfigurable Hardware Com-
ponents for Image Processing Pipelines”, Proc. IEEE Symposen Field Programmable Custom Computing
Machines, 2003, pp 173-182.

T. Stefanov, B. Kienhuis, E. Deprettere, "Algorithmi@nsformation techniques for efficient exploration of
alternative application instances”, Proc. InternatioBgiposium on Hardware/Software Codesign, 2002, pp
7-12.

S. P. Fekete, E. Kohler, J. Teich, "Optimal FPGA modulegcpment with temporal precedence constraints”,
Proc. Design Automation and Test in Europe, 2001, pp 658-667

H. Singh, G. Lu, E. M. C. Filho, R. Maestre, M-H. Lee, FKiirdahi, N. Bagherzadeh, "MorphoSys: case study
of a reconfigurable computing system targeting multimeggliaations”, Proc. Design Automation Conference,
2000, pp 573-578.

S. Hauck, "Configuration pre-fetch for single contegtonfigurable processors”, Proc. ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays, 19p&574.

M. J. Wirthlin, "Improving functional density througRun-time Circuit Reconfiguration”, PhD Thesis, Electrical
and Computer Engineering Dept, Brigham Young Universi®g i

30

[16] G. Brebner, "A virtual hardware operating system foe ilinx XC6200", Proc. International Workshop on
Field-Programmable Logic, 1996, pp 327-336.

[17] H. Murata, K. Fujiyoshi, S. Nakatake, Y. Kajitani, "Rangle-packing based module placement”, Proc. Interna-
tional Conference on Computer-Aided Design, 1995, pp 472-4

[18] W. L. Winston, M. Venkataraman, "Introduction to Mathatical Programming”, 4'th Ed. Boston, MA: Thom-
son Brooks Cole Publishers, 2003.

[19] S. Muchnick, "Advanced Compiler design and impleméotd, San Francisco: Morgan Kaufmann, 1997.
[20] J. Augustine, Personal communication.

[21] http://www.ilog.com/products/cplex

31

