
 1

NISC Double-Handshake Communication Interface
Bita Gorjiara, Mehrdad Reshadi, Daniel Gajski

Technical Report CECS-06-05

March 2006

Center for Embedded Computer Systems

University of California Irvine

Irvine, CA 92697-3425, USA

(949) 824-8059

{ bgorjiar, reshadi, gajski}@cecs.uci.edu

 2

NISC Double-Handshake Communication Interface
Bita Gorjiara, Mehrdad Reshadi, Daniel Gajski

Technical Report CECS-06-05

March 2006

Center for Embedded Computer Systems

University of California Irvine

Irvine, CA 92697-3425, USA

(949) 824-8059

{ bgorjiar, reshadi, gajski}@cecs.uci.edu

Abstract
To enable communication to a NISC component, three basic elements should be supported by NISC:
interrupt handling, the interface mechanism, and the proper software drivers. In this document, we
describe the NISC interface and the corresponding software drivers for three specific double-handshake
protocols: one-word double handshake controlled by one FSM, one-word double handshake with two
FSMs and burst-mode double-handshake protocols. The protocols are designed for communication over a
shared bus.

 3

Table of Contents

1 NISC communication basics... 4

2 One-word double-handshake NISC interface with one FSM ... 4

3 One-word double-handshake NISC interface for shared buses with two FSMs 7
4 Burst double-handshake NISC interface for shared bus with two FSMs.. 9

 4

NISC Double-Handshake Communication Interface
Bita Gorjiara, Mehrdad Reshadi, Daniel Gajski

1 NISC communication basics
To enable communication to a NISC component, three basic elements should be supported by NISC:
interrupt handling, the communication interface (CI) unit, and the proper software drivers. In this
document, we describe the NISC interface and the corresponding software drivers for three specific
double-handshake protocols: one-word double handshake controlled by one FSM, one-word double
handshake with two FSMs and burst-mode double-handshake protocols. The protocols are designed for
communication over a shared bus (Figure 1).

Figure 1. NISCs communicating to a shared bus through Communication Interfaces (CI)

2 One-word double-handshake NISC interface with one FSM
In this section, the implementation of CI for a simple double-handshake protocol is presented. In this
protocol one word is transmitted per bus transaction. Figure 6 shows a simple NISC architecture and the
corresponding CI. NISC provides two register (i.e. Addr, Din) to temporarily store address and data that
must be sent. Furthermore, NISC controls the interface using two control signals StartSend and
ReceiveDone. The interface has one internal register (i.e. Dout) to store the received data. Note that Din
and Dout need to be separated in order to avoid conflict between NISC and the interface. The interface,
also, provides feedback to the NISC about its internal status through signals SendBusy and Interrupt. As
shown in Figure 2, the handshaking protocol on the shared bus is implemented by an FSM.
Figure 3 shows the pseudo code that runs on NISC and acts as a driver API for sending a word to a target
component identified by receiverAddr. Once a program calls the Send_Driver, the driver checks the
SendBusy signal to make sure that the interface is not busy with sending a previous message (line 3).
Then, the driver writes the data and address of receiver to the Din and Addr registers (line 4, 5). These
registers are controlled by the CW register of NISC. Next, the driver issues StartSend for the FSM (line 6)
and returns to the calling program.
Figure 5 shows the state and timing diagrams of the FSM. As soon as the StartSend becomes 1, the Send
FSM sets the SendBusy signal to make sure that NISC will not request another send until the current one
is finished. The Send FSM also sets the Request signal and waits for the bus grant (state S1). Once the
Grant signal becomes 1, it puts the data and address on the bus, raises the Ready signal and waits for the
acknowledgement from the receiver (state S2). When the Ack signal becomes 1, the Send FSM lowers the
Ready signal (state S3) and then goes back to state S0 and releases the bus by lowering the Request. It
also resets the SendBusy signal to allow NISC to send another word.

 5

Figure 2. One-word double-handshake interface with one FSM

1
2
3
4
5
6
7

void Send_Driver(data, receiverAddr){
 //wait while until the FSM is ready
 while(SendBusy() ==1);
 Addr = receiverAddr;
 Dout = data;
 StartSend ();
}

1
2
3
4
5
6

interrupt Receive_Interrupt(){
 disable interrupt
 some_buff = Din;
 ReceiveDone();
 enable interrupt
}

Figure 3. One-word DH send driver code Figure 4. One-word DH receive driver code

On the receiver side a similar FSM (shown in Figure 5) monitors the address bus and the Ready signal to
find out when to start reading data (State R0). If the address matches with its own address, and the Ready
signal is set, then the FSM stores the data into Din register, and interrupts the NISC by raising the
Interrupt signal (state R1). At this point, the Receive FSM sets the Ack signal to high and waits for the
Ready signal to become 0 (state R2). Afterwards, in state R3, the FSM resets Ask signal and waits for the
ReceiveDone to become 1, which indicates that the NISC has finished reading the Din. Once ReceiveDone
signal become one, the FSM goes back to the state S0 and waits to send or receive another word.

Figure 4 shows the interrupt handler for receiving one word from the bus. First, it disables the interrupt,
and then reads the content of Din and stores it into a local memory or register file. Next, it notifies the
FSM by calling ReceiveDone() function which raises the ReceiveDone signal. Finally, it enables the
interrupt again.

 6

Figure 5. Send/Receive FSM and timing diagrams for a one-word DH protocol

 7

3 One-word double-handshake NISC interface for shared buses
with two FSMs

In implementation of CI, we assume the protocol stays the same, however, the FSM is partitioned to two
FSMs: one for send and one for receive. The advantage with this approach is more parallelism, and hence
better performance. Figure 6 shows the block diagram of NISC and the CI. Similar to the previous
implementation, NISC provides two registers to store address and data as well as two control signals
ReceiveDone and StartSend. The communication interface contains an internal register (Din), and
provides feedback to the NISC architecture through SendBusy and Interrupt signals.

Figure 6. One-word double-handshake interface with two FSMs

Figure 7 shows the pseudo code that runs on NISC and acts as a driver API for sending a word to a target
component identified by receiverAddr. Once a program calls the Send_Driver, the driver checks the
SendBusy signal to make sure that the interface is not busy with sending a previous message (line 3).
Then, the driver writes the data and address of receiver to the Din and Addr registers (line 4, 5). These
registers are controlled by the CW register of NISC. Next, the driver issues StartSend for the Send FSM
(line 6) and returns to the calling program.

Figure 9(a) shows the state and timing diagrams of the Send FSM. As soon as the StartSend becomes 1,
the Send FSM sets the SendBusy signal to make sure that NISC will not request another send until the
current one is finished. The Send FSM also sets the Request signal and waits for the bus grant (state S1).
Once the Grant signal becomes 1, it puts the data and address on the bus, raises the Ready signal and
waits for the acknowledgement from the receiver (state S2). When the Ack signal becomes 1, the Send
FSM lowers the Ready signal (state S3) and then goes back to state S0 and releases the bus by lowering
the Request. It also resets the SendBusy signal to allow NISC to send another word.

 8

1
2
3
4
5
6
7

void Send_Driver(data, receiverAddr){
 //wait while until send FSM is ready
 while(SendBusy() ==1);
 Addr = receiverAddr;
 Dout = data;
 StartSend ();
}

1
2
3
4
5
6

interrupt Receive_Interrupt(){
 disable interrupt
 some_buff = Din;
 ReceiveDone();
 enable interrupt
}

Figure 7. One-word DH send driver code Figure 8. One-word DH receive driver code

The Receive FSM (shown in Figure 9(b)) monitors the address bus and the Ready signal to find out when
to start reading data (State R0). If the address matches with its own address, and the Ready signal is set,
then the Receive FSM stores the data into Din register, and interrupts the NISC by raising the Interrupt
signal (state R1). At this point, the Receive FSM sets the Ack signal to high and waits for the Ready signal
to become 0 (state R2). Afterwards, in state R3, the FSM resets Ask signal and waits for the ReceiveDone
to become 1, which indicates that the NISC has finished reading the Din. Once ReceiveDone signal
become one, the FSM goes back to the state R0 and waits to receive another word.
Figure 8 shows the interrupt handler for receiving one word from the bus. First, it disables the interrupt,
and then reads the content of Din and stores it into a local memory or register file. Next, it notifies the
Receive FSM by calling ReceiveDone() function which raises the ReceiveDone signal. Finally, it enables
the interrupt again.

Figure 9. (a) Send FSM and , (b) Receive FSM state and timing diagrams for a one-word DH protocol

 9

4 Burst double-handshake NISC interface for shared bus with two
FSMs

In the burst mode protocol described here, we assume that an initial handshaking is done at the beginning
of the communication and then N words are transmitted in N consecutive cycles without any further
handshaking. To implement such a burst-mode communication protocol, we need to have two queues
with the size of the burst message. Also, the clock cycle of all Send and Receive FSMs must be the same.
However, different NISCs may have different clock cycles. Figure 10 shows the NISC architecture and
the corresponding CI for burst mode protocol.

AddrBus

DataBus

Ready

Ack

DinEmpty

offset

status

const

address

CMem

AG

Din
queue

ALU DMem

RF

AddrDout
queue

DoutPushDinPop

NISC CI

loadAddr

Figure 10. Burst double-handshake interface for NISC

To send data, the program calls the Send_Driver from the driver (shown in Figure 11). This function first
loads the receiver address (receiveAddr) into the Addr register (line 3), and then reads multiple words of
data from memory stored in memAddr and pushes them into the Dout queue (line 5). Next, the driver
issues the StartSend command to the Send FSM (line 6).

The Send FSM (shown in Figure 13(a)) waits for the StartSend command, and then raises the Request
signal to get the bus access (state S1). Once the bus is granted (Grant=1), the Send FSM puts the address
on the bus and raises the Ready signal (state S2) and waits for the receivers acknowledgement. Once Ack
becomes 1, the Send FSM puts the data of Dout queue on the bus one word per cycle until the queue
becomes empty (state S3). Afterwards, the Send FSM lowers the Ready signal and waits for the receiver
to lower the Ack signal (state S4). Next, it releases the bus and goes to state S0.

 10

1
2
3
4
5
6
7

void Send_Driver(n, memAddr, receiveAddr){
 while(SendBusy() == 1);
 LoadAddr(receiveAddr);
 for(i=0; i<n; i++)
 PushDout(memAddr[i]);
 StartSend();
}

1
2
3
4
5
6
7
8
9

interrupt Receive_Interrupt(){
 disable interrupt
 some_buffer[0] = Top();
 int i=1;
 while (DinEmpty()==0){
 PopDin();
 some_buffer[i++] = Top();
 }
 ReceiveDone();
 enable interrupt
}

Figure 11. Burst DH send driver code Figure 12. Burst DH receive driver code

Figure 13. (a) send, (b) receive state diagrams and timing diagrams for a burst communication protocol

 11

On the receiver side, the Receive FSM (shown in Figure 13(a)) monitors the address bus and the Ready
signal to detect when to start reading data (State R0). If the address matches with its own address, and the
Ready signal is set, then the Receive FSM raises the Ack signal. Then it waits for one cycle for the first
data to be placed on the bus and then for the next several cycles it reads from the bus one word per cycle
as long as the Ready signal remains 1 (state R3). The data is pushed into the Din queue in every clock
cycle. Once Ready becomes 0, the Receive FSM lowers the Ack signal (state R4). It also interrupts the
NISC and waits until all data are read from the queue. In this way, the receive queue will be empty for the
next packet of data.

Figure 12 shows the receive interrupt routine. First, it disables the interrupt and then pops the data from
the queue and stores it in a local memory until the queue becomes empty. Finally, it notifies the Receive
FSM that the reading is finished and re-enables the interrupt.

