
Processor Customization on a Xilinx Multimedia Board

Partha Biswas, Sudarshan Banerjee, and Nikil Dutt,

CECS Technical Report #06-04
Center for Embedded Computer Systems School of Information and Computer Science

University of California, Irvine, CA 92697, USA

Mar 12, 2006

Abstract
Performance of applications can be boosted by executing application-specificInstruction Set Exten-

sions (ISEs)on a specialized hardware coupled with a processor core. Many commercially available
customizable processors have communication overheads in their interface with the specialized hardware.
However, existing ISE generation approaches have not considered customizable processors that have com-
munication overheads at their interface. Furthermore, they have not characterized the energy benefits of
such ISEs. This report presents a soft-processor customization framework that takes an input ‘C’ applica-
tion and realizes a customized processor capturing the microarchitectural details of its interface with the
specialized unit. The speedup, energy, power and code size benefits of the ISE approach were accurately
evaluated on a real system implementation by applying the design flow to a popular Xilinx Microblaze
soft-processor core synthesized for four real-life applications. It was found that only one large ISE per
application is sufficient to get an average 1.41× speedup over pure software execution in spite of incurring
communication overheads. Finally, a simultaneous savings in energy (up to 40%) and power (up to 12%
peak power reduction) with this increased performance were observed.

1

Contents

1 Introduction 4

2 Customized Processor Model 5

3 Related Work 5

4 Framework for Complete System Realization 6
4.1 Preprocessing Input Application .7
4.2 ISE Generation Phase .7
4.3 H/W Generation Phase .7
4.4 S/W Generation Phase .8
4.5 Processor Subsystem Generation Phase .10

5 Communication Template for Xilinx Microblaze 11

6 Experiments 12
6.1 Experimental Setup .12
6.2 System Implementation on the Board .13

7 Experimental Results 13
7.1 Performance and Code Size .13
7.2 Power and Energy Results .15
7.3 Slices Utilization .16

8 Summary and Future Directions 16

A System Realization on Xilinx Multimedia Board 18

B Steps for System Simulation using ModelSim 21

C Creating a Custom FSL Interface 26

D VHDL Source for the Communication Template 26

E Structural AFU model for adpcm-d 29

F AFU with its Interface for adpcm-d 36

List of Figures

1 Target Customized Processor Subsystem .5
2 The Flow of our Framework .6
3 (a) A high-level application to a hardware/software system generation (b) Processor sub-

system generation .8

4 The ISE here is composed of the shaded instruction nodes. (a) An example showing the
LastDefpoint and theFirstUsepoint; (b1) an example where it is not possible to insert
the ISE under consideration; (b2) After code restructuring; (b3) positioning of the ISE
betweenLastDefandFirstUse. 9

5 Measuring System Power .10
6 A DP-external AFU Interface .10
7 Microblaze Processor Core with an AFU and its Interface.11
8 Communication Template for AFU Interface in Microblaze12
9 Xilinx Multimedia Board .13
10 An ISE for ADPCM ENCODER (adpcm-e) having 4 inputs and 2 outputs; each operation

node maps to a hardware component. .15

1 Introduction

Typically, applications running on a programmable platform can be executed either as a software al-
gorithm or on a specialized hardware unit. The software approach is the slowest but most flexible while
the hardware approach is the fastest but least flexible.Instruction Set(IS)-extensible processorscomprise
an emerging class of processors (especially in the embedded domain) that permit execution of only the
critical application kernels in customized units (as hardware) with the rest of the application executing
on the processor core (as software). This speeds up the application without compromising the processor
clock or modifying the architectural model of the processor and yet preserves the flexibility of the soft-
ware approach. We call such a coprocessing hardware element anAd-hoc Functional Unit (AFU). The
AFU operation is triggered by an instruction or a set of instructions that we call anInstruction Set Exten-
sionor ISE. In the past, researchers have modeled AFUs having no communication overhead. However,
many commercially popular customizable processors have communication overheads in their interface
with AFUs. Therefore, our goal is to consider the microarchitectural details of an AFU interface in a
processor customization framework and accurately evaluate the performance and energy benefits of ISEs
in a realistic processor. The efficacy of the framework lies in seamlessly considering the synchronization
between the processor and the AFU in a unified manner for different applications.

Minimizing power and energy consumption is as important as maximizing performance in embedded
systems. A high power consumption may destroy a chip completely through overheating while a high
energy consumption may reduce the battery life of an embedded device. Therefore, even though ISEs can
achieve high speedups, designers need to determine if this speedup comes at a price of increased power.
This report shows that increased performance can also reduce both power and energy of a customizable
processor in the presence of an AFU and reports the effects on code size and area.

It is predicted [17] that by 2010, over one-third of all PLD/FPGA devices are expected to have micro-
processor cores, up from 15% today. Xilinx Microblaze [10] is a popular commercially-available soft-core.
We demonstrate the use of our framework by transforming a given input application into a running Xil-
inx Microblaze hardware-software system. For four real-life applications (from Mediabench and EEMBC
suites), we measure the real performance gain over pure software execution and also accurately evaluate
energy and power consumption. Our experimental results show that significant speedup is obtained only
when an ISE contains a large set of atomic operations. With only one large ISE per application, we ob-
tained speedup of up to1.47× over simple software execution andsimultaneouslyup to 40% energy saving
and 12% peak power reduction. To the best of our knowledge, this is also the first attempt to present the
details of interfacing an AFU with a customizable soft-core. The main contributions highlighted in this
report are the following:

• We present a generalized interface-aware soft-processor customization framework for mapping an
application in C into a running processor-AFU subsystem that enables accurate evaluation of all the
metrics deemed important in embedded system design, namely, performance, energy, power, cost
and code size.

• By applying our framework to Microblaze soft-processor core, we conclude that ISEs can be simul-
taneously beneficial in terms of performance, energy, power and code size.

The rest of the report is organized as follows. We present our target customizable processor model
in Section 2. In Section 3, we present some related research work. We describe our framework for
transforming a given application to a customized processor subsystem in Section??. Section 6.1 presents

File

Execution
Unit

Data

Program
Memory

Decoder

E
xt

er
na

l

In
te

rf
ac

e

E
xt

er
na

l

B
us

A
FU

 In
te

rf
ac

e

Processor

Register
Memory

Subsystem

C o r e

Coprocessor

Peripherals

External
Memory

AFU

Tightly−coupled

Tightly−coupled

AFU

Loosely−coupled

DP−internal

DP−external

Figure 1. Target Customized Processor Subsystem

how we use the framework to target Xilinx Microblaze soft-processor core. In Section??, we describe our
experimental results. Finally, Section 8 concludes the report.

2 Customized Processor Model

Our goal is to map a given application to the target customizable processor model shown in Figure 1.
In this model, the software part of the application stored in the program memory is composed of base in-
structions to be run on Execution Unit and ISEs to be run on the hardware part, i.e., AFUs. An AFU can be
tightly-coupled with the core through an AFU interface inside the processor subsystem or loosely-coupled
through an external bus. The AFU interface or the external interface implements the communication pro-
tocol between the AFU and the processor and thus controls synchronization of data and access to the
processor register file.

The function of an ISE is to transfer control to an AFU for execution. An ISE can be either asingle
user-definedinstruction or a set ofmultiple pre-defined instructions. A single user-defined instruction is
decoded as a special instruction, which encapsulates inputs and outputs of an AFU as source and destina-
tion operands respectively. The decoder takes the responsibility of issuing such a special instruction to an
appropriate AFU for execution. Alternatively, sending inputs and receiving outputs of the AFU from the
processor can be done at the expense of multiple data transfer instructions. Such instructions must already
exist in the instruction set of the processor in the form of “send data to AFU” and “receive data from
AFU” instructions. In this case, the AFU incurs communication overhead at its interface while sending
and receiving data.

3 Related Work

Several algorithms [1, 4, 2, 3, 5, 6] have recently been proposed to identify ISEs in a given application.
The speedups over simple software execution claimed in most of the approaches [1, 4, 2, 3] are estimated
by assuming a typical RISC processor execution model. The methodology in [5] targets Trimaran research
infrastructure. Using a simulator, the authors show speedup for applications that reuse AFUs generated
for other applications in the same domain. Such reuse of AFUs across application is possible only when
ISEs found were reasonably small in size. However, we will confirm in our experimental results that such

small-sized ISEs would not generate a considerable speedup for AFUs with communication overheads.
Sun et al. [6] employs aTensilica Instruction Extension (TIE)compiler in their methodology and

operates at a higher (C source-code) level of abstraction. Therefore, this methodology relies more on
designer’s experience for ISE identification and mapping to AFUs. The AFU in this case therefore does not
have any communication overhead. Fei et al. [7] integrated a fairly accurate energy estimation engine in the
same framework, but they do not report a comparison of energy before and after extending the processor. A
recent work having a goal of real system implementation [8] generated application-specific instructions for
Altera Nios II processor in the presence of AFUs that do not have communication overheads. The results
show a good speedup and limited area overhead, but they do not discuss energy or power consumption.
Unlike [8], in this report, we deal with the non-trivial details of synchronization between the processor
and the AFU with the help of a generic communication template.

Note that in the prior related work, the AFU in general did not have communication overheads at its in-
terface. Indeed, there are many commercially available processors providing such an interface. Common
examples are Altera Nios II processor [13], LEON processor [12], etc. However, there are similarly many
commercial customizable processors where AFUs incur overhead in sending and retrieving data. Some ex-
amples include STMicroelectronics ST120 [11], Xilinx Microblaze processor [10], etc. To the best of our
knowledge, ISE generation in the context of AFUs incurring communication overheads at their interface
with the core processor has not been studied yet. This is our motivation for proposing a framework that
is capable of incorporating different AFU models and in particular, targeting Xilinx Microblaze soft-core.
We apply the design flow of our framework to study performance gain, energy/power consumption, code
size reduction and area overhead with the introduction of an AFU into the Microblaze subsystem.

4 Framework for Complete System Realization

Our framework takes as input a high-level application (in C), and generates an executable and an AFU
with appropriate interfacing protocol (as shown in Figure 2). The executable runs in the processor core as
software containing ISEs for invoking the AFU operation in hardware. Our target for running the complete
processor-AFU subsystem is an FPGA platform.

Processor

Core
AFU

ISEs

Application

ISE Generation

Executable AFU+Interface

H/W GenerationS/W Generation

FPGA
platform

System

Interface

Latency

Figure 2. The Flow of our Framework

The expanded view of our framework is shown in Figure 3(a). It has five main phases:Preprocessing
phase,ISE generationphase,S/W generationphase,H/W generation phase, andProcessor subsystem

generation phase. The Preprocessing phase takes the input application and generates an annotated in-
termediate representation. The ISE generation phase generates ISEs under microarchitectural constraints.
The H/W generation phase synthesizes the corresponding AFUs with their interfaces and the S/W gener-
ation phase generates the executable. A dotted arrow between the two phases indicates that the latency
of an ISE obtained in the H/W generation phase is passed on to the S/W generation phase. Finally, the
Processor subsystem generation phase builds the complete running system for evaluation.

4.1 Preprocessing Input Application

This phase can be identified as a box labeled “Preprocessing” in Figure 3(a). A compiler front-end
yieldsControl Flow Graph (CFG)andData Flow Graph(DFG)of an input application and runs predica-
tion to combine a set of small basic blocks into a large basic block. The input application is then profiled
and the basic blocks are annotated with their execution counts. Acomponent library is created contain-
ing a synthesizable combinational element corresponding to each instruction in the target instruction set.
Each element in the library is synthesized for a given technology and the corresponding instruction in the
DFG is annotated with a normalized hardware latency. Each instruction in theDFG is also annotated with
its software latency obtained from the target architecture specification.

4.2 ISE Generation Phase

This phase (shown as the “ISE generation” box in Figure 3(a)) is integrated with the compiler front-
end. An ISE generation algorithm takes the annotatedCFG/DFGand returns subgraphs or ISEs that would
maximize performance under microarchitectural constraints. Although any ISE generation algorithm can
be used, we use ISEGEN in our framework because it identifies all the instances of an ISE exploiting
large-scale ISE reuse.

4.3 H/W Generation Phase

We show this phase in a box marked “H/W generation” in Figure 3(a). The two subtasks of this
phase arecomponent library binding andinterface synthesis. The identified subgraph or ISE is isolated
and each instruction in the subgraph is replaced by the corresponding element in the component library.
Figure 10 shows an example subgraph where each node maps to an element in the component library. The
data dependencies between the instructions are replaced by port-to-port connections between the elements
and the resulting structure is an AFU. This structural AFU model is then synthesized to evaluate the critical
path length. The critical path length divided by the clock period of the processor core gives the number of
cycles needed for the AFU operation. This latency information is passed on to the scheduler in the S/W
generation phase (shown with a dotted arrow in Figure 3). The evaluated number of cycles is also used to
synchronize the AFU with respect to the core.

Apart from the component library, the designer also creates a communication template for AFUs,
which captures the communication protocol between the processor core and the AFU. The writing back
of result from the AFU to the processor is delayed by the exact number of cycles required by the AFU
operation. The implementation of communication protocol together with synchronization with the core
completes the AFU interface synthesis. Note that the H/W generation phase can be applied to synthesize
the AFU and its interface in the customized processor model presented in Figure 1.

ISEs or
subgraphs

AFU +
Interface

Executable

Application

System

Processor Subsystem
generation

(b)

H/W generation

Compiler
Front-end

CFG/DFG

Profile code

Annotate w/ hw/sw
latencies, exec count

Component
Library

Annotated
CFG/DFG

ISEGEN

Constraints
Communication

Template

Replace ops by
components and
edges by cnxns

Clock
Period

Structural
AFU model

Eval Crit. Path
Calc # Cycles

Couple
Computation w/
Communication

Cycles

Replace
subgraph by ISE

CFG/DFG
w/ ISEs

Scheduling
Register Alloc

Compiler
Back-end

S/W generation

Preprocessing

ISE generation

(a)

Synthesis
P/R

Processor
modelInterface

AFU +

Component Library Binding Interface Synthesis

Latency

Figure 3. (a) A high-level application to a hardware/software system generation (b) Processor subsystem
generation

4.4 S/W Generation Phase

This phase (shown in Figure 3(a) as a box titled “S/W generation”) generates code for the target
processor taking into account the presence of AFUs. The two subtasks in the S/W generation phase are

subgraph matchingandsubgraph replacementwith ISEs. Since all possible instances of an ISE have
already been enumerated by the ISE generation phase, the subgraph matching simply consists of a DFG
traversal and marking constituent instructions of the ISE in the DFG.

1

2

3

4

5

LastDef

FirstUse

(a)

1

2

3

4

5

FirstUse

LastDef

1

2

3

4

5

LastDef

FirstUse

3

1

4

2

5

(b1) (b2) (b3)

Figure 4. The ISE here is composed of the shaded instruction nodes. (a) An example showing theLastDef
point and the FirstUsepoint; (b1) an example where it is not possible to insert the ISE under considera-
tion; (b2) After code restructuring; (b3) positioning of the ISE betweenLastDefand FirstUse.

After subgraph matching, the ISE is used to replace the set of marked instructions in the DFG. We
depict the ISE replacement strategy in Figure 4. An ISE can be placed anywhere between the point
where its source operands have their last definition (LastDef) and the point where its destination operand
has its first use (FirstUse) as shown in Figure 4(a) (the shaded nodes identify the ISE under consider-
ation). Since ISE generation phase has ensured convexity of the identified subgraphs, it is never pos-
sible to have a dependency edge from theFirstUsenode to theLastDefnode because this would make
the subgraph non-convex. Consequently, it is possible to encounter a situation where aFirstUsepoint
precedes aLastDefpoint in the instruction sequence. This renders the subgraph replacement impos-
sible without code restructuring. Consider the following sequence of operations in instruction order:
(1)a = b ∗ c; (2)f = a|0x2; (3)e = 5; (4)d = a+ e; (5)g = e− d. Suppose the ISE under consideration is
a multiply followed by an add, as identified by the nodes labeled 1 and 4 in Figure 4(b1) respectively. Fig-
ure 4(b1-b3) show an example of how the placement of ISE betweenLastDefandFirstUseis accomplished
through code restructuring. Since in this case theFirstUsepoint appears earlier in the instruction chain
than theLastDefpoint, the ISE cannot be placed anywhere (Figure 4(b1)). So, instruction reordering has
to be done in order that theLastDefpoint precedes theFirstUsepoint. This reordering is possible because
there is no dependency fromFirstUseto LastDef. Figure 4(b2) shows the code snippet after restructuring
Figure 4(b1) (i.e., swapping the positions of node 2 and node 3) and Figure 4(b3) shows the placement of
ISE between theLastDefpoint (node 3) and theFirstUsepoint (node 2).

If an ISE is used as a single user-defined instruction, a single instruction just replaces the set of
constituent instructions. Replacing the multiply and the add with a single user-defined instruction
(ISE1(·, ·, ·)), the resulting instruction sequence (as in Figure 4(b3)) would become: (3)e = 5; (1),(4)
d = ISE1(b, c, e); (2) f = a|0x2; (5) g = e− d. However, if an ISE is represented as a set of predefined
data transfer instructions (send(·), receive(·)), the resulting instruction sequence after ISE replacement
would appear as: (3)e = 5; (1),(4)send(b); send(c); send(e); receive(d); (2) f = a|0x2; (5) g = e− d.
After subgraph replacement with ISE, the compiler performs scheduling, register allocation and target
code generation as a back-end pass. Note that the latency of the ISE required by the scheduler is derived

SystemExecutable

VCD

StructuralMemory
Image Model

Timing
Info

Routing
Info

Superimpose

Simulation Simulation
PowerHardware

Power
Report

Figure 5. Measuring System Power

from the H/W generation phase as shown in Figure 3(a).

4.5 Processor Subsystem Generation Phase

We show this phase in Figure 3(b). As a final step, the processor model of the target Soft-core along
with the AFU and its interface are synthesized and implemented using standard synthesis and Place-
and-Route tools. The executable generated in Figure 3(a) and the system synthesized in Figure 3(b) are
deployed in two schemes, one for measuring speedup and the other for evaluating energy/power consump-
tion. With the goal of measuring actual time spent in running the application, thescheme for Performance
Measurementuses the bitmap of the synthesized system to program an FPGA fabric, which then becomes
the platform for actually running the executable. The executable is downloaded into the system memory
through a JTAG port and the number of cycles for running the executable is measured using a hardware
timer.

External
Memory

Peripherals

AFU

Tightly−coupled

DP−external

File

Execution
Unit

Data

Program
Memory

Decoder

E
xt

er
na

l

In
te

rf
ac

e

E
xt

er
na

l

B
us

A
FU

 In
te

rf
ac

e

Register
Memory

C o r e

Processor
Subsystem

Figure 6. A DP-external AFU Interface

Since there is no direct way to measure power of a running system on the FPGA fabric, we employ
a differentscheme for Power/Energy Evaluation(depicted in Figure 5) for accurately evaluating the
power and energy consumption of the system. Note that there are three kinds of information in the post-

Place-and-Route system (Figure 3(b)): the structural model of the system, the timing information and
the routing information. We superimpose the memory image of the executable (in Figure 3(a)) into the
memory section of the structural model. This complete structural model along with the timing information
is run through a cycle-accurate hardware simulator to generate aValue Change Dump (VCD)of all the
signals in the structural netlist. The routing information and the VCD information together are then used
by a power simulator to generate the dynamic power consumed at different time steps. We then derive the
total energy dissipated in the system from the reported power and the measured execution time.

Now, we apply our processor customization framework to generate a real system.

5 Communication Template for Xilinx Microblaze

Xilinx Microblaze [10] is a soft-core with a DP-external AFU interface (as shown in Figure 6). We
demonstrate the utility of our framework by transforming a given input application into a running Microb-
laze hardware-software system.

Microblaze has a DP-external AFU to be connected with the processor viaFast Simplex Links (or
FSLs). FSLs are dedicated point-to-point unidirectional 32-bit wide FIFO interfaces. The Microblaze is
capable of including a maximum of 8 input and 8 output FSLs.

CLK

Counter

FSL AFU
Int.8X8

In

Out
AFU

Count Cnt_en

AFU_en
Microblaze
Processor

Figure 7. Microblaze Processor Core with an AFU and its Interface.

Microblaze is a 32-bit RISC processor with a simple 3-stage pipeline. Figure 7 shows an AFU and its
interfacing with the Microblaze processor core via8 × 8 FSL channels. The AFU interface implements
the processor-AFU communication protocol and is synchronous with the Microblaze processor through a
global clock (CLK). The AFU interface is also connected to a counter module to enable counting whenever
required. If the count enable signal (Cnt en) is ‘1’, counting is enabled. Otherwise, the counter is reset to
‘0’. The signalsIn[32] andOut[32] are used to send data to and receive data from the AFU respectively.
When the AFU-enable signal,AFU en is ‘1’, the AFU latches the output inOut[32].

In Figure 8, we present the generic communication template for Microblaze-AFU interaction as a
Finite State Machine (FSM)synchronous with respect toCLK. For the sake of explanation, we call an
FSL channel FSLR when it is used for AFU read operation or FSLW when it is used for AFU write
operation. Associated with every FSLR channel is a set of three signals, namely, (FSL READSIG,
FSL DATA EXISTS, FSL IN DATA[32]). Another triplet, (FSL WRITESIG, FSL FIFO FULL,
FSL OUT DATA[32]) is associated with every FSLW channel. The FSM is initially in “InputSync” state
waiting for data to arrive on an FSLR channel. When data exists on the FSL channel, the corresponding
FSL DATA EXISTSsignal goes high causing a transition from “InputSync” state to “InputRead” state.
In “Input Read” state,FSL READSIG is set to high to cause the data in the FSLR FIFO to be read into

In <= FSL_IN_DATA

FSL_OUT_DATA <= Out

FSL_WRITE_SIG <= ‘0’

FSL_READ_SIG <= ‘0’

Cnt_en <= ‘0’

FSL_READ_SIG <= ‘1’

AFU_en <= ‘0’

FSL_WRITE_SIG <= ‘1’

AFU_en <= ‘0’

FSL_READ_SIG <= ‘0’
AFU_en <= ‘1’

Cnt_en <= ‘1’

(Count == # Cycles) and

(FSL_Q_FULL == ‘low’)

true true

Input−Sync Input−Read

Output−SyncOutput−Write

(FSL_DATA_EXISTS == ‘high’)
(FSL_DATA_EXISTS == ‘low’)

(Count != # Cycles) or

(FSL_Q_FULL == ‘high’)

Figure 8. Communication Template for AFU Interface in Microblaze

In[32] using a 32-bit signal array,FSL IN DATA. After the data has been read intoIn[32] , the FSM tran-
sitions to “OutputSync” state and waits on the AFU operation by enabling the counter. After# Cycles
(as evaluated in the H/W generation phase in Figure 3(a)) has elapsed, the result of the AFU operation is
latched inOut[32]. If FSL W FIFO is not full (i.e.,FSL FIFO FULL is low), a state transition takes place
to “Output Write” state. In the “OutputWrite” state, data fromOut[32] is written into the FSLW FIFO
usingFSL OUT DATA[32] by settingFSL WRITESIG to high. Thus, for introducing every new AFU,
only the AFU module in Figure 7 and the# Cycleschange in the process of H/W generation, while the
communication template is reused.

6 Experiments

We first describe our experiemental setup in detail and then present the experimental results.

6.1 Experimental Setup

The ISE generation algorithm (ISEGEN) [1] was integrated with a MACHSUIF [9] front-end. The
S/W generation was done with Microblaze GCC-2.95 (mb-gcc) compiler. Microblaze Instruction Set has
multiple data-transfer instructions for sending data to and receiving data from its FSL channels —put for
sending andget for receiving data in blocking mode, andnput/ngetare the corresponding instructions in
non-blocking mode. We used the non-blocking send instruction (nput) and the blocking receive instruc-
tion (get) for our AFU interface. Because of using two different compilers for ISE generation and S/W
generation, the subgraph replacement with ISEs was done as a post-assembly pass on the assembly out-
put of mb-gcc. After replacing the identified subgraphs with ISEs,mb-gccwas run again to generate the
executable.

We selected four real-life applications for demonstrating the effectiveness of our framework:autcor
(Auto-correlation) from EEMBC suite,adpcm-e(ADPCM Encoder) andadpcm-d(ADPCM Decoder)
from Mediabench suite, andAES(AES encryption). Our platform isXilinx Multimedia Board, which is
equipped with aVirtex-II XC2V2000FPGA. Figure 9 shows a snapshot of the board. We usedXilinx Plat-
form Studiofor configuring the FPGA to include a Microblaze processor with a 64KB (i.e., the maximum

Figure 9. Xilinx Multimedia Board

size possible) Block RAM (BRAM), two Local Memory Buses (LMBs) (to interface with BRAM – one
for instruction and the other for data), one Microblaze Debugging Manager (MDM) and one Timer (both
MDM and Timer on a single On-chip Peripheral Bus (OPB)). The standard inputs and outputs of an appli-
cation were redirected to the MDM and the elapsed number of cycles was evaluated using the Timer. We
set the clock frequency of the Microblaze processor to 50 MHz. The tools used in the second scheme (Fig-
ure 5) for evaluating energy and power are ModelSim for hardware simulation [15] and Xilinx XPower for
power simulation [16]. We now detail the steps to realize a complete hardware-software subsystem using
the Xilinx Multimedia Board.

6.2 System Implementation on the Board

The steps that we used to build aHardware-Softwaresystem using Xilinx Embedded Development Kit
(EDK) are enumerated in Appendix A. The generated system can be simulated both behaviorally as well
as structurally following the steps detailed in Appendix B. Appendix C briefly explains how an AFU is
introduced in the form of a user core in the system.

7 Experimental Results

We demonstrate the effectiveness of our approach using a number of front-end tools in our framework
shown in Figure 3(a).

7.1 Performance and Code Size

The code generation for the baseline configuration was done bymb-gccwith all optimizations turned
on (-O2, -mnoxl-soft-mul) so that the performance is maximized in pure software execution. The Microb-
laze configuration was then customized for different applications by introducing AFU with its interface as
explained in Section 6.1. The ISEs were generated with I/O constraints of maximum 4 inputs and 2 outputs

and number of AFUs set to 1. Note here that for each application, a different Microblaze configuration is
generated and the resulting system is analyzed by applying our framework. The results in terms of code
size reduction and speedup over software execution are summarized in Table 1.

Table 1. Speedup and Code Size Reduction with the Introduction of an AFU having 4 inputs and 2
outputs in the Microblaze subsystem

Core Only Core + AFU Code
BMs Bytes Cycles Bytes Cycles Redn Spdup

autcor 58444 264305 58452 404673 -8 0.65×
adpcm-d 12049 252688 11953 190979 96 1.32×
adpcm-e 14121 157177 13989 106821 132 1.47×

AES 16013 240613 14957 167397 1056 1.44×

Each of the operand-send and result-receive operations in Microblaze has a latency of 2 cycles. Con-
sequently, the latency for transferring 6 operands is 12 cycles in the worst case and 6 cycles in the best
case (i.e., if all the latencies are successfully hidden by the scheduler). The ISE generated forautcorwas
a chain of just three operations: a multiply, a barrel right shift and an add having software latencies as 3,
2 and 1 cycles respectively. With AFU operation taking just 1 cycle, the best case latency of the ISE is
6 + 1 = 7 cycles. Thus, even the best case performance of the ISE lags behind the worst case performance
of the corresponding software execution (3+2+1 = 6 cycles). Consequently, there was slowdown instead
of speedup forautcorowing to the communication overhead. However, there are some prior related work
[6, 8], which have shown speedup even with small-sized ISEs containing on the order of 3-4 instructions
because of incurring no communication overhead in processor-AFU interface.Thus, we confirm that if
the AFU interface has a communication overhead, a small-sized ISE will only result in performance
degradation.

Table 2. Power Benefits of ISEs in the Microblaze subsystem
Core Only Core + AFU % Pk % Avg

P. Pwr A. Pwr P. Pwr A. Pwr Pwr Pwr
BMs (mW) (mW) (mW) (mW) Redn Redn

autcor 1957 1287 1869 1229 4.5 4.5
adpcm-d 1975 1317 1919 1197 2.8 9.1
adpcm-e 2070 1332 2012 1178 2.8 11.6

AES 2256 1276 1982 1187 12.1 7.0

The applicationsadpcm-dandadpcm-eare the two examples where predication of several small critical
basic blocks led to a large basic block. Consequently, the ISEs found for these two benchmarks are
very large containing on the order of 40 operations. This led to a significant speedup in spite of the
communication overhead. Figure 10 shows the ISE ofadpcm-ethat generated a speedup of1.47× over
pure software execution. The shaded nodes show the inputs and the outputs of the ISE. Appendix D,

−

−

>=

==

in4

in3

+

in3

<
− >>

>>

<

−or

+

+

<

>>

or

or

out1

*
+

in2in2

−

==

>=

<=

’0’

’0’

’1’

’1’

’32767’

’−32768’

’4’

’1’

’2’

’3’

’4’

’8’

01

10

01 01 01

01 01 01

01 01

0 1
sel

sel

selsel

sel

selselsel

sel

sel

’32767’

sel

sel

out2

0

0 1

1

’−32768’

sel

in2in1

Figure 10. An ISE for ADPCM ENCODER (adpcm-e) having 4 inputs and 2 outputs; each operation
node maps to a hardware component.

Appendix E and Appendix F present the complete VHDL source code for the AFU and its interface for
adpcm-d.

The last benchmark under consideration isAES, which has the largest number of instructions in its
critical basic block. The generated ISE [1] had 8 instances in the critical basic block covering more than
50% of the DFG and overall 12 instances in the critical function. Both the large size and large-scale reuse
(as defined in [1]) of the ISE accounts for a significant speedup (1.44×) obtained on AES despite the
overhead in sending and receiving operands. Along with the merit of speedup,AESalso exhibit a7% code
size reduction owing to replacement of a large chunk of code by an ISE in the form of a set of data transfer
instructions.

7.2 Power and Energy Results

From Table 2, it is evident that both the peak power (P. Pwr) as well as the average power (A. Pwr)
reduced with the introduction of AFU. Because the presence of both core and AFU apparently indicates
more circuit activity, an initial expectation is increased power with the addition of AFU. However, because
the ISE here is a multi-cycle operation interlocked with the Microblaze pipeline, the AFU operation com-
pletely overlaps with a processor pipeline stall. Consequently, we obtain an overall power reduction in the
presence of AFU operation owing to reduced overall circuit activity.

As shown in Table 3, we also obtained up to40% saving in energy on account of reduced application
runtime. It is interesting to note that the trend of energy decrease (or increase) exactly follows that of
speedup (shown again in Table 3 for the sake of comparison). This trend can be expected as a corollary to

Table 3. Energy Benefits of ISEs in the Microblaze subsystem
Tot Energy (µJ) Tot Energy (µJ) %age

BMs for Core Only for Core+AFU Saving Spdup

autcor 2.21 3.10 -40.27 0.65×
adpcm-d 8.48 5.84 31.13 1.32×
adpcm-e 10.54 6.34 39.85 1.47×

AES 69.09 43.69 36.76 1.44×

a consistent power reduction shown in Table 2.Thus, contrary to conventional expectation, enhanced
performance simultaneouslyresults in reduced power and energy for the customized Microblaze
soft-core.

7.3 Slices Utilization

The XC2V2000FPGA that we use as our target platform has 10752 slices. Table 4 shows the per-
centage utilization of the FPGA slices before and after introducing the AFU that brought the speedup in
Table 1.

Table 4. Slices Utilization (out of 10752) in the absence of an AFU and in the presence of an AFU for the
four applications in XC2V2000 FPGA

BMs No AFU autcor adpcm-d adpcm-e AES
Slices 1274 1609 1804 2226 2043
Util. 11% 14% 16% 20% 19%

Note here thatXC2V2000used here is very small. The largest possibleVirtex-II chip, XC2V8000
contains46592 slices. If the largest FPGA is used instead ofXC2V2000, the average slices utilization
reduces to only5%, which is very reasonable.Thus, the area overhead of including an AFU in the
Microblaze subsystem is also minimal.

8 Summary and Future Directions

Applications can be accelerated in a programmable processor by executing their performance-critical
sections in customizedAd-hoc Functional Units (AFUs)as Instruction Set Extensions (ISEs). We pre-
sented an interface-aware processor customization framework that enabled us to implement a customizable
soft-core microarchitecture capturing the details of interfacing with an AFU. We applied our framework
to four real-life applications and realized four different processor configurations. Our results confirmed
that in the presence of communication overhead at the processor-AFU interface, significant speedup over
pure software execution is possible only if the AFU function is sufficiently larger than a set of 2-3 op-
erations. Further analysis of the synthesized systems led to the conclusion that integration of AFUs in a
customizable processor can result in increased performance and reduced code size, whilesimultaneously

decreasing power and energy consumption. Our future work will investigate the advantages of ISEs in
other reconfigurable platforms and commercially available processors.

References

[1] P. Biswas, S. Banerjee, N. Dutt, L. Pozzi and P. Ienne. ISEGEN: Generation of High-Quality In-
struction Set Extensions by Iterative Improvement. InProc. of DATE, 2005.

[2] P. Biswas, V. Choudhary, K. Atasu, L. Pozzi, P. Ienne and N. Dutt. Introduction of Local Memory
Elements in Instruction Set Extensions. InProc. of DAC, 2004.

[3] K. Atasu, L. Pozzi and P. Ienne. Automatic Application-Specific Instruction-Set Extensions under
Microarchitectural Constraints. InProc. of DAC, 2003.

[4] P. Yu and T. Mitra. Scalable Custom Instructions Identification for Instruction-Set Extensible Pro-
cessors. InProc. of CASES, 2004.

[5] N. Clark, H. Zhong and S. Mahlke. Processor Acceleration through Automated Instruction Set
Customization. InProc. of MICRO, 2003.

[6] F. Sun, S. Ravi, A. Raghunathan and N. K. Jha. Synthesis of Custom Processors based on Extensible
Platforms. InProc. of ICCAD, 2002.

[7] F. Sun, S. Ravi, A. Raghunathan and N. K. Jha. A Hybrid Energy-Estimation Technique for Exten-
sible Processors.IEEE TCAD, 2004.

[8] J. Cong, Y. Fan, G. Han and Z. Zhang. Application-Specific Instruction Generation for Configurable
Processor Architectures. InProc. of FPGA, 2004.

[9] Machine SUIF.http://www.eecs.harvard.edu/hube/software/software.html .

[10] Microblaze Processor Reference Guide.http://www.xilinx.com/ise/embedded/mb_
ref_guide.pdf .

[11] ST100 DSP Core Architecture Overview.http://www.st.com/stonline/prodpres/
dedicate/st100/overview/overview.htm .

[12] The Leon Processor User Manual.http://www.ra.informatik.uni-stuttgart.de/
˜virazela/LP_Project/leon-2.3.7.pdf .

[13] The Nios II Processor Reference Handbook.http://www.altera.com/literature/hb/
nios2/n2cpu_nii5v1.pdf

[14] SC140 DSP Core Reference Manual.http://www.soc.napier.ac.uk/module.php3?
op=getresource&cloaking=no&resourceid=1473119 .

[15] ModelSim SE datasheethttp://www.model.com/products/pdf/datasheets/se.
pdf

[16] Xilinx XPower Documentation http://toolbox.xilinx.com/docsan/xilinx6/
books/data/docs/dev/dev0089_14.html

[17] Panelists peer into future of FPGAs. Article 60407325,EETimes. March 7, 2005.

A System Realization on Xilinx Multimedia Board

Here we present the detailed steps to realize a basic hardware-software subsystem with the hardware
consisting of the Microblaze processor, local memory bus, BRAM, timer and mdm and the software being
the Microblaze executable.

1. InvokeXilinx Platform Studio (XPS) 6.2i (or higher).

2. Click File→New Project→Platform Studio. The settings forCreate New Projectare as follows:

Project File:<Path to work directory>/system.xmp
Target Device Architecture: virtex2
Device Size: xc2v2000
Package: ff896
Speed Grade: -6 (default)

3. Click OK and then answerYesfor Do you want to start with an empty MHS File? Then click OK
for the commentProject→Add/Edit Cores.

4. Setting up the hardware: Under System tab, right click onSystem BSPand selectAdd/Edit
Cores

(a) Add the following peripherals:

• microblaze (1)

• bramblock (1)

• lmb bram if cntlr (2) (1 for data; 1 for instruction): Base Address = 0x00000000; High
Address = 0x0000ffff(Memory allocated both for data and instruction = 64 KB)

• opb mdm (1): Base Address = 0xffff0400; High Address = 0xffff04ff

• opb timer (1): Base Address = 0xffff0800; High Address = 0xffff08ff(Note that address
ranges chosen are disjoint)

(b) Add the following bus connections:

• lmb v10 v1 00 a (2):
microblaze0 dlmb (M), lmb bram if cntlr 0 slmb (S),
microblaze0 ilmb (M), lmb bram if cntlr 1 slmb (S)

• opb v20 v1 10 b (1):
microblaze0 dopb (M), microblaze0 iopb (M),
opb mdm 0 sopb (S), opbtimer 0 sopb (S)

(c) All the Clk and Rst ports. All the net names must besysclk or sys rst corresponding to Clk
and Rst ports respectively.

(d) The following parameters need to be changed from their default values:

• microblaze0:
C DEBUG ENABLED = 1,
C USE BARREL = 1 (to use a barrel shifter),
C NUMBER OF RD ADDR BRK = 1,
C NUMBER OF WR ADDR BRK = 1

• opb mdm 0: C UART WIDTH = 8

• lmb v10 0: C EXT RESETHIGH = 0

• lmb v10 1: C EXT RESETHIGH = 0

• opb v20 0: C EXT RESETHIGH = 0

Click OK to register all the above changes for the hardware.

5. Setting up the software: In theApplications tab, right click onSoftware Projectsand clickAdd
New Project. Give a name to the project and click OK.

(a) Right click on Sources and clickAdd File... Select all the source (*.c) files and click OK.

(b) Right click on Headers and clickAdd File... Select all the header (*.h) files and click OK.

(c) Right click onDefault: microblaze 0 xmdstub and click toMark to Initialize BRAM .

(d) Right click onProject: <Project name> and click to un-selectMark to Initialize BRAM .

(e) Right click on Project: <Project name> and selectSet Compiler Options. Under Di-
rectories tab, give a suitable path forOutput ELF File , for example,<Path to work
directory>/output/executable.elf. (If barrel shifter is present in the Microblaze, i.e., if
C USE BARREL = 1, then, under the Advanced tab, insert-mxl-barrel-shift in the Program
Sources Compiler Options.)

6. SelectProject→Software Platform Settings.

(a) In theProcessor and Driver Parameterstab, change the Current Value of xmdstubperipheral
to opb mdm 0.

(b) In the Library/OS Parameters tab, change the Current Values of both stdin and stdout to
opb mdm 0.

7. Create a User Constraints File in<path to work directory>/data/system.ucfwith the following
lines (for Xilinx Multimedia Board):
NET ”sys clk” LOC = ”AD16”;
NET ”sys rst” LOC = ”AH7”;
NET ”sys clk” NODELAY;
NET ”sys clk” TNM NET=”clk50”;
TIMESPEC ”TSclk50”=PERIOD ”clk50” 20 ns HIGH 50%;

Note that the pin mapping will alter if the board is different. The clock frequency is selected to be
50 MHz with 50% duty cycle.

8. Synthesizing the hardware (to be carried out by one the following ways):

• Using EDK with Xilinx XST (easier option):

(a) RunTools→Generate Netlist.
(b) RunTools→Generate Libraries and BSPs.
(c) RunTools→Update Bitstream.

• Using EDK with Synplicity Synplify Pro (if XST license is unavailable):

(a) OpenOptions→Project Options from the XPS menu. Select tabHierarchy and Flow
and make the following changes:

i. ChangeSynthesis Toolto None.
ii. ChangeImplementation Tool Flow to ISE (ProjNav).

(b) RunTools→Export to ProjNav . A directoryprojnav is created that contains the exported
files.
Note that if Xilinx Platform Studio has been installed after XST has expired, an error will
be reported saying “[ERROR] Unable to set property: Synthesis Tool”. To resolve this
error, run a script containing the following in the<Path to work directory>/ directory.
sed ’/XST/d’ nplcmdfile> tmpfile
mv tmpfile nplcmdfile
pjcli -v -f npl cmdfile

(c) Invoke (from Windows menu)Xilinx ISE→Project Navigator.
(d) Click File→Open Projectand opensystem.nplto be found in theprojnav directory.

(e) Double-clickxc2v2000-6ff896(to be found underSources in Project) to openProject
Properties. Change the value ofSynthesis Toolto Synplify Pro (VHDL/Verilog) and
click OK.

(f) Make the following changes insystem-structure(<path>/system.vhd) (found under
xc2v2000-6ff896):

i. Comment the lineslibrary UNISIM; anduse UNISIM.VCOMPONENTS.ALL;
ii. Add the following lines in the beginning:

LIBRARY synplify;
use synplify.attributes.all;

iii. Comment all the attribute statements. For example, “–attribute boxtype
of bramblock 0 wrapper: component is ”blackbox”;” for the component
“bram block 0 wrapper”. Instead, introduce for each component, the following
lines: “attribute synblack box of<componentname>: component is true;” and “at-
tribute synnoprune of<componentname>: component is true;”. The attribute state-
ments were pertaining to XST and Synplify Pro would simply ignore them. So, the
“black box” constraints are specified in Synplicity syntax. If the system does not have
any output, the Synthesis phase would prune all the components. This is prevented by
usingsyn noprune attribute.

(g) Right-click onsystem-structure(<path>/system.vhd)and selectAdd Source. Findsys-
tem.ucf in thedata directory and clickOpen to add constraints.

(h) Selectsystem-structure(<path>/system.vhd). Double-clickSynthesize—Synplify Pro
in Processes for Sourcesection to run synthesis. (Alternatively, double-clickGenerate
Programming File directly which includes running synthesis and Place-and-Route.)

(i) Double-clickImplement Designto perform Place-and-Route of the design.

(j) Double-clickGenerate Programming Fileto generate the bitmap file.

(k) Go back to XPS. SelectTools→Import from ProjNav and import the following files:

i. BIT file: <path to work directory>/projnav/system.bit and

ii. BMM file: <path to work directory>/implementation/systembd.bmm.

(l) From the XPS menu, runTools→Update Bitstream.

9. Compiling the software: RunTools→Build All User Applications . Check whether the size of
executable.elfis less than 64 KB. (Recall that the memory allocated for both data and instruction
was 64 KB) Also note that the maximum usable space in 56 BRAMs is 64 KB. If not, it is not
possible to run with only BRAMs. The alternatives are out of the scope of this document.

10. Running the system:

(a) Switch on the board and invokeiMPACT from Xilinx ISE→Accessories.

(b) Configure devices via Boundary-Scan Mode withAutomatically connect to cable and iden-
tify Boundary-Scan chain selected. Select appropriate device to program (e.g., xc2v2000 in
our case).

(c) Right-click on the device and selectAssign New Configuration File. Find download.bit in
<path to work directory>/implementation/ directory and selectOpen. (Observe thePROG
LED change color from red to green indicating success.) Close the iMPACT window.

(d) Create a filexmd.ini in <path to work directory>/ with the following lines:
help
mbconnect mdm
dow mblaze/code/executable.elf
rst
con

(e) From the XPS menu, runTools→XMD and check the output of runningexecutable.elf(soft-
ware) on the synthesized hardware.

B Steps for System Simulation using ModelSim

A complete system simulation is intended for verifying the correctness and generating the Value
Change Dump (VCD) for the different signals employed. The correctness is ensured using both the be-
havioral simulation as well as the structural (Post-Place-and-Route) simulation. The VCD is relevant only
after the flattened netlist has been generated. After the VCD dump is generated by the structural simulation
run, XPower is employed to evaluate the system in terms of power and energy consumption.

The steps required for taking the design from the EDK into the Project Navigator and running the
behavioral and structural simulation are as follows:

1. Creating Simulation libraries

(a) Compiling Xilinx Simulation Libraries (COMPXLIB): Following are the two ways.

• From the Project Navigator:
i. Open an existing project (that might have been exported from Xilinx Platform Studio

using theExport to ProjNav option) and highlight the target device.
ii. In the Processes for Sourcewindow, under the Design Entry Utilities, right-click

Compile HDL Simulation Libraries and select Properties. Select appropriate Target
Simulator (ModelSim SE in our case) and click OK.

iii. Double-clickCompile HDL Simulation Libraries to compile the Xilinx Simulation
Libraries (inC:/Xilinx/vhdl/mti sedirectory).

• From Command Line (shown for virtex2 board):
compxlib -s mtise -f virtex2 -l vhdl
Run compxlib -help to choose appropriate option for the board under consideration.

(b) Compiling EDK Behavioral Simulation Libraries (COMPEDKLIB):
Compedklib.bat -s mtise -o edklib -X

2. Initial Set-up for Simulation

(a) Invoke Xilinx Platform Studio (XPS) and load the design created with XPS (using ProjNav
implementation flow) as explained in the document titledBuilding a Hardware-Software
system using Xilinx EDK and Xilinx Multimedia Board .

(b) From XPS, selectOptions→Project Options, and in theHDL and Simulation tab, select
Simulation Model asBehavioral. Set appropriate paths for the simulation libraries as follows:
(Check the installation directories of the ModelSim libraries)
EDK Library: C:/Xilinx/vhdl/mti se/edklib
Xilinx Library: C:/Xilinx/vhdl/mti se

(c) Right click onProject: <Project name> and make sureMark to Initialize BRAM is se-
lected.

(d) Right click onDefault: microblaze 0 xmdstub and make sureMark to initialize BRAM is
un-selected.

3. Behavioral Simulation using ModelSim

(a) From XPS, invokeTools→Sim Model Generation (which populatessimulation/behavioral
directory). Modifysimulation/behavioral/systeminit.vhd by commenting the last few lines
as follows:

--configuration system_conf of system is
-- for STRUCTURE

-- for all : bram1_wrapper use configura-
tion work.bram1_conf;

-- end for;
--end for;

--end system_conf;

(b) Now, from Project Navigator, addprojnav/testcase.vhdwith the following content:

-- TestBench Template

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

ENTITY testbench IS
END testbench;

ARCHITECTURE behavior OF testbench IS

-- Component Declaration
COMPONENT system
PORT(

sys_clk : IN std_logic;
sys_rst : IN std_logic
);

END COMPONENT;

SIGNAL clk : std_logic;
SIGNAL rst : std_logic;

BEGIN

-- Component Instantiation
uut: system PORT MAP(

sys_clk => clk,
sys_rst => rst

);

-- Test Bench Statements
tb_clk : PROCESS -- 50 MHz clock
BEGIN

clk <= ’1’; wait for 10 ns;
clk <= ’0’; wait for 10 ns;

END PROCESS tb_clk;

tb_reset : PROCESS
BEGIN

rst <= ’0’; wait for 1 us;
rst <= ’1’; wait;

END PROCESS tb_reset;
-- End Test Bench

END;

-- Check the system_init.vhd file for ensuring the correct-
ness of the module names
configuration testbench_conf of testbench is

for behavior
for uut: system

for STRUCTURE
for all : bram_block_0_wrapper use configura-

tion work.bram_block_0_conf; end for;
end for;

end for;
end for;

end testbench_conf;

(c) Create a script file,projnav/projnav.do with the following content: (a script for behavioral
simulation)
cd ../simulation/behavioral
do system.do
vcom -93 -work work system.vhd
vcom -93 -work work ../../projnav/testbench.vhd
vsim -Lf unisim -t ps +notimingchecks work.testbenchconf
add wave *

(d) Right-click on system-structure(<path>/system.vhd)and selectAdd Source. Find test-
bench.vhd in theprojnav directory and clickOpen to add test bench. Selectvhdl testbench
while adding the test bench.

(e) Click on testbench-behavior (testbench.vhd). Right-click onSimulate Behavioral Model
in theProcesses for Sourcepartition and select properties. Change the following fields:

• Use Custom Do File: Check the selection.

• Use Automatic Do File: Uncheck the selection.

• Custom Do File: Click and browse for projnav/projnav.do.

(f) Double-click ”Simulate Behavioral Model” to run the behavioral simulation.

4. Structural/Timing Simulation using ModelSim

(a) Right click onProject: <Project name> and click toMark to Initialize BRAM .

(b) Right click on Default: microblaze 0 xmdstub and click to un-selectMark to initialize
BRAM .

(c) InvokeTools→Sim Model Generation: This populates the simulation/structural directory.

(d) The file systeminit.vhd contains the memory map of the executable. A part of it looks like
the following:
configuration bram1conf of bram1wrapper is
for STRUCTURE

for bram1 : bram1elaborate
for STRUCTURE
for ramb16s1 s1 0 : ramb16s1 s1
use entity unisim.ramb16s1 s1(ramb16s1 s1 v)
generic map(
INIT 00⇒ X”C102125AF2808102049087432010AA84154A021FFCF04AC06DE65996B4FDE57F”,
INIT 01⇒X”102040B1C26D8BF87EFB72A82420409D17492DC2074FB95734CFFFE508A183FF”,
...
INIT 3E⇒ X”00”,
INIT 3F⇒ X”00”);
end for;
...
end for;
end for;
end for;
end bram1conf;
The corresponding section in the<work directory>/systemtimesim.vhd is empty. Superim-
pose this memory section fromsysteminit.vhd into<work directory>/systemtimesim.vhd
so that the corresponding BRAM section of the latter looks like the following:...
ramb16s1 s1 2 : X RAMB16S1S1
generic map(
INIT A⇒ X”0”,
INIT B⇒ X”0”,
SRVALA⇒ X”0”,
SRVALB⇒ X”0”,
WRITEMODE A⇒ ”WRITE FIRST”,
WRITEMODE B⇒ ”WRITE FIRST”,
INIT 00⇒X”C1027257FA808102079097432013AF849F4A0F0FFFB04A80766AFABDDF739FFD”,
INIT 01⇒X”102040B1C337A97A6EFB77A8272040CB52497DC20EDBB9F6BCCF7FFC09E146FF”,
...
INIT 3E⇒ X”00”,
INIT 3F⇒ X”00”,
...
This can be easily done using a simple script.

(e) Make projnav/projnav par.do with the following content: This is the script for post-place-
and-route simulation. Note that VCD is destined to be generated insystem.vcd.
vmap simprim C:/Xilinx/vhdl/mtise/simprim/
vlib work
vcom -93 -work work systemtimesim.vhd
vcom -93 -work work testbenchpar.vhd
vsim -t ps +notimingchecks -sdftyp /testbench/uut=systemtimesim.sdf work.testbench
vcd file system.vcd
vcd add testbench/uut/*
add wave *

(f) Right-click on system-structure(<path>/system.vhd)and selectAdd Source. Find test-
bench.vhd in the projnav directory and clickOpen to add a test bench. Selectvhdl test
benchwhile adding the test bench.

(g) Click on testbench-behavior (testbench.vhd). Right-click onSimulate Behavioral Model
in theProcesses for Sourcepartition and select properties. Change the following fields:

• Use Custom Do File: Check the selection.

• Use Automatic Do File: Uncheck the selection.

• Custom Do File: Click and browse forprojnav/projnav par.do.

(h) Double-clickSimulate Post-Place & Route VHDL Model to invoke the structural simula-
tion. Run structural simulation by selectingSimulate→Run→All . Choose an appropriate
termination criterion to terminate the simulation.

C Creating a Custom FSL Interface

A user core in the form of an AFU resides in the<project directory>/pcores direc-
tory. The base name for an FSL interface description follows the following naming convention:
<core name> <version number>. For example,my fsl 1 00 a is a valid base name for a user core
calledmy fsl.

Under the<project directory>/pcores/data directory, two files are created for describing the inter-
face and specifying the order in which the underlying modules are synthesized. The respective files are
my fsl 1 00 a.mpd andmy fsl 1 00 a.paocorresponding to the chosen base name. Under the<project
directory>/pcores/hdl/vhdl directory, reside the VHDL source code for the user core and the FSL inter-
face.

D VHDL Source for the Communication Template

We present in this section the simple FSL Interface used to synchronize the data transfer between the
processor core and the user core (or AFU). The I/O constraints used here is 4-inputs and 2-outputs.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

library unisim;
use unisim.vcomponents.all;

entity fsl_interface is
Port (

CLK : in std_logic; -- System clock
RESET : in std_logic;

data_in1 : out std_logic_vector(0 to 31);

data_in2 : out std_logic_vector(0 to 31);
data_in3 : out std_logic_vector(0 to 31);
data_in4 : out std_logic_vector(0 to 31);
data_out1 : in std_logic_vector(0 to 31);
data_out2 : in std_logic_vector(0 to 31);

count_en : out std_logic; -- enabling the counter
-- Signal from the counter
counter_ticks : in std_logic_vector(0 to 1);

FSL0_S_CLK : out std_logic;
FSL0_S_READ : out std_logic;
FSL0_S_DATA : in std_logic_vector(0 to 31);
FSL0_S_CONTROL : in std_logic;
FSL0_S_EXISTS : in std_logic;

FSL1_S_CLK : out std_logic;
FSL1_S_READ : out std_logic;
FSL1_S_DATA : in std_logic_vector(0 to 31);
FSL1_S_CONTROL : in std_logic;
FSL1_S_EXISTS : in std_logic;

FSL2_S_CLK : out std_logic;
FSL2_S_READ : out std_logic;
FSL2_S_DATA : in std_logic_vector(0 to 31);
FSL2_S_CONTROL : in std_logic;
FSL2_S_EXISTS : in std_logic;

FSL3_S_CLK : out std_logic;
FSL3_S_READ : out std_logic;
FSL3_S_DATA : in std_logic_vector(0 to 31);
FSL3_S_CONTROL : in std_logic;
FSL3_S_EXISTS : in std_logic;

FSL0_M_CLK : out std_logic;
FSL0_M_WRITE : out std_logic;
FSL0_M_DATA : out std_logic_vector(0 to 31);
FSL0_M_CONTROL : out std_logic;
FSL0_M_FULL : in std_logic;

FSL1_M_CLK : out std_logic;
FSL1_M_WRITE : out std_logic;
FSL1_M_DATA : out std_logic_vector(0 to 31);
FSL1_M_CONTROL : out std_logic;
FSL1_M_FULL : in std_logic;

AFU_en : out std_logic -- enabling AFU operation
);

end fsl_interface;

architecture behavioral of fsl_interface is

SIGNAL count : natural range 0 to 9;
begin

FSL0_M_CONTROL <= ’0’;
FSL0_S_CLK <= CLK;
FSL1_S_CLK <= CLK;
FSL2_S_CLK <= CLK;
FSL3_S_CLK <= CLK;
FSL0_M_CLK <= CLK;
FSL1_M_CLK <= CLK;

AFU_control: process (CLK)
begin

if(RESET = ’1’) then
count <= 0;
FSL0_S_READ <= ’0’;
FSL1_S_READ <= ’0’;
FSL2_S_READ <= ’0’;
FSL3_S_READ <= ’0’;
FSL0_M_WRITE <= ’0’;
FSL0_M_DATA <= (others => ’1’);
FSL1_M_WRITE <= ’0’;
FSL1_M_DATA <= (others => ’1’);

elsif CLK’event and CLK = ’1’ then
CASE count IS

WHEN 0 =>
FSL0_S_READ <= ’0’;
FSL1_S_READ <= ’0’;
FSL2_S_READ <= ’0’;
FSL3_S_READ <= ’0’;
FSL0_M_WRITE <= ’0’;
FSL1_M_WRITE <= ’0’;
count_en <= ’1’; -- Initialize the counter
count <= 1;

WHEN 1 =>
IF (FSL0_S_EXISTS = ’1’) and (FSL1_S_EXISTS = ’1’)
and (FSL2_S_EXISTS = ’1’) THEN and (FSL3_S_EXISTS = ’1’) THEN

FSL0_S_READ <= ’1’;
FSL1_S_READ <= ’1’;

FSL2_S_READ <= ’1’;
FSL3_S_READ <= ’1’;
data_in1 <= FSL0_S_DATA;
data_in2 <= FSL1_S_DATA;
data_in3 <= FSL2_S_DATA;
data_in4 <= FSL3_S_DATA;
AFU_en <= ’0’;
count <= 2;

END IF ;
WHEN 2 =>

FSL0_S_READ <= ’0’;
FSL1_S_READ <= ’0’;
FSL2_S_READ <= ’0’;
FSL3_S_READ <= ’0’;
AFU_en <= ’1’;
count_en <= ’0’; -- enable counting
IF(counter_ticks = "01") THEN -- only this will vary

count <= 3; -- depending on app.
END IF;

WHEN 3 => -- +1 cycle before writing
IF(FSL0_M_FULL = ’0’) THEN

FSL0_M_DATA <= data_out1;
FSL0_M_WRITE <= ’1’;
AFU_en <= ’0’;
count <= 0;

END IF;
IF(FSL1_M_FULL = ’0’) THEN

FSL1_M_DATA <= data_out2;
FSL1_M_WRITE <= ’1’;
AFU_en <= ’0’;
count <= 0;

END IF;
WHEN OTHERS => NULL;

END CASE ;
end if;

end process;
end behavioral;

E Structural AFU model for adpcm-d

The structural model of the AFU generated foradpcm-dwith I/O Constraints of 4-inputs 2-outputs is
presented in thecut1 module.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

library unisim;
use unisim.vcomponents.all;

entity cut1 is
Port (
AFU_en : in std_logic;
data_in1 : in std_logic_vector(0 to 31);
data_in2 : in std_logic_vector(0 to 31);
data_in3 : in std_logic_vector(0 to 31);
data_in4 : in std_logic_vector(0 to 31);
data_out1 : out std_logic_vector(0 to 31);
data_out2 : out std_logic_vector(0 to 31)
);
end cut1;

architecture logic of cut1 is
signal sig1 : std_logic_vector(0 to 31);
signal sig2 : std_logic_vector(0 to 31);
signal sig3 : std_logic_vector(0 to 31);
signal sig4 : std_logic_vector(0 to 31);
signal sig5 : std_logic_vector(0 to 31);
signal sig6 : std_logic_vector(0 to 31);
signal sig7 : std_logic_vector(0 to 31);
signal sig8 : std_logic_vector(0 to 31);
signal sig9 : std_logic_vector(0 to 31);
signal sig10 : std_logic_vector(0 to 31);
signal sig11 : std_logic_vector(0 to 31);
signal sig12 : std_logic_vector(0 to 31);
signal sig13 : std_logic_vector(0 to 31);
signal sig14 : std_logic_vector(0 to 31);
signal sig15 : std_logic_vector(0 to 31);
signal sig16 : std_logic_vector(0 to 31);
signal sig17 : std_logic_vector(0 to 31);
signal sig18 : std_logic_vector(0 to 31);
signal cnst_0 : std_logic_vector(0 to 31);
signal cnst_1 : std_logic_vector(0 to 31);
signal cnst_2 : std_logic_vector(0 to 31);
signal cnst_3 : std_logic_vector(0 to 31);
signal cnst_4 : std_logic_vector(0 to 31);
signal cnst_7 : std_logic_vector(0 to 31);
signal cnst_8 : std_logic_vector(0 to 31);
signal cnst_32767 : std_logic_vector(0 to 31);

signal cnst_minus_32768 : std_logic_vector(0 to 31);

component barrel_right_shifter
port(

chip_en : in std_logic;
data_in : in std_logic_vector(0 to 31);
shift_amnt : in std_logic_vector(0 to 31);
data_out : out std_logic_vector(0 to 31)

);
end component barrel_right_shifter;

component add_32
port(

chip_en : in std_logic;
data_in1 : in std_logic_vector(0 to 31);
data_in2 : in std_logic_vector(0 to 31);
data_out : out std_logic_vector(0 to 31)

);
end component add_32;

component sub_32
port(

chip_en : in std_logic;
data_in1 : in std_logic_vector(0 to 31);
data_in2 : in std_logic_vector(0 to 31);
data_out : out std_logic_vector(0 to 31)

);
end component sub_32;

component and_32
port(

chip_en : in std_logic;
data_in1 : in std_logic_vector(0 to 31);
data_in2 : in std_logic_vector(0 to 31);
data_out : out std_logic_vector(0 to 31)

);
end component and_32;

component mult_32
port(

chip_en : in std_logic;
data_in1 : in std_logic_vector(0 to 31);
data_in2 : in std_logic_vector(0 to 31);
data_out : out std_logic_vector(0 to 31)

);

end component mult_32;

component mux_eq_32
port(

chip_en : in std_logic;
cond1 : in std_logic_vector(0 to 31);
cond2 : in std_logic_vector(0 to 31);
data_in1 : in std_logic_vector(0 to 31);
data_in2 : in std_logic_vector(0 to 31);
data_out : out std_logic_vector(0 to 31)

);
end component mux_eq_32;

component mux_leq_32
port(

chip_en : in std_logic;
cond1 : in std_logic_vector(0 to 31);
cond2 : in std_logic_vector(0 to 31);
data_in1 : in std_logic_vector(0 to 31);
data_in2 : in std_logic_vector(0 to 31);
data_out : out std_logic_vector(0 to 31)

);
end component mux_leq_32;

component mux_geq_32
port(

chip_en : in std_logic;
cond1 : in std_logic_vector(0 to 31);
cond2 : in std_logic_vector(0 to 31);
data_in1 : in std_logic_vector(0 to 31);
data_in2 : in std_logic_vector(0 to 31);
data_out : out std_logic_vector(0 to 31)

);
end component mux_geq_32;

begin -- logic
cnst_0 <= b"0000_0000_0000_0000_0000_0000_0000_0000";
cnst_1 <= b"0000_0000_0000_0000_0000_0000_0000_0001";
cnst_2 <= b"0000_0000_0000_0000_0000_0000_0000_0010";
cnst_3 <= b"0000_0000_0000_0000_0000_0000_0000_0011";
cnst_4 <= b"0000_0000_0000_0000_0000_0000_0000_0100";
cnst_7 <= b"0000_0000_0000_0000_0000_0000_0000_0111";
cnst_8 <= b"0000_0000_0000_0000_0000_0000_0000_1000";
cnst_32767 <= b"0000_0000_0000_0000_0111_1111_1111_1111";
cnst_minus_32768 <= b"1111_1111_1111_1111_1000_0000_0000_0000";

and_32_1 : and_32
port map(

chip_en => AFU_en,
data_in1 => data_in1,

data_in2 => cnst_7,
data_out => sig1

);

and_32_2 : and_32
port map(

chip_en => AFU_en,
data_in1 => sig1,

data_in2 => cnst_2,
data_out => sig2

);

and_32_3 : and_32
port map(

chip_en => AFU_en,
data_in1 => sig1,

data_in2 => cnst_4,
data_out => sig3

);

and_32_4 : and_32
port map(

chip_en => AFU_en,
data_in1 => sig1,

data_in2 => cnst_1,
data_out => sig4

);

brs_1 : barrel_right_shifter
port map(

chip_en => AFU_en,
data_in => data_in2,
shift_amnt => cnst_3,
data_out => sig5

);

add_32_1 : add_32
port map(

chip_en => AFU_en,

data_in1 => sig5,
data_in2 => data_in2,
data_out => sig6

);

mux_eq_32_1 : mux_eq_32
port map(

chip_en => AFU_en,
cond1 => sig3,
cond2 => cnst_0,
data_in1 => sig5,
data_in2 => sig6,
data_out => sig8

);

brs_2 : barrel_right_shifter
port map(

chip_en => AFU_en,
data_in => data_in2,
shift_amnt => cnst_1,
data_out => sig7

);

add_32_2 : add_32
port map(

chip_en => AFU_en,
data_in1 => sig7,
data_in2 => sig8,
data_out => sig9

);

mux_eq_32_2 : mux_eq_32
port map(

chip_en => AFU_en,
cond1 => sig2,
cond2 => cnst_0,
data_in1 => sig8,
data_in2 => sig9,
data_out => sig11

);

brs_3 : barrel_right_shifter
port map(

chip_en => AFU_en,
data_in => data_in2,

shift_amnt => cnst_2,
data_out => sig10

);

add_32_3 : add_32
port map(

chip_en => AFU_en,
data_in1 => sig11,
data_in2 => sig10,
data_out => sig12

);

mux_eq_32_3 : mux_eq_32
port map(

chip_en => AFU_en,
cond1 => sig4,
cond2 => cnst_0,
data_in1 => sig11,
data_in2 => sig12,
data_out => sig13

);

sub_32_1 : sub_32
port map(

chip_en => AFU_en,
data_in1 => data_in3,
data_in2 => sig13,
data_out => sig15

);

add_32_4 : add_32
port map(

chip_en => AFU_en,
data_in1 => data_in3,
data_in2 => sig13,
data_out => sig14

);

and_32_5 : and_32
port map(

chip_en => AFU_en,
data_in1 => data_in1,

data_in2 => cnst_8,
data_out => sig16

);

mux_eq_32_4 : mux_eq_32
port map(

chip_en => AFU_en,
cond1 => sig16,
cond2 => cnst_0,
data_in1 => sig14,
data_in2 => sig15,
data_out => sig17

);

mux_leq_32_1 : mux_leq_32
port map(

chip_en => AFU_en,
cond1 => sig17,
cond2 => cnst_32767,
data_in1 => sig17,
data_in2 => cnst_32767,
data_out => sig18

);

mux_geq_32_1 : mux_geq_32
port map(

chip_en => AFU_en,
cond1 => sig18,
cond2 => cnst_minus_32768,
data_in1 => sig18,
data_in2 => cnst_minus_32768,
data_out => data_out1

);

mult_32_1 : mult_32
port map(

chip_en => AFU_en,
data_in1 => data_in1,

data_in2 => cnst_4,
data_out => data_out2

);

end logic;

F AFU with its Interface for adpcm-d

The AFU with its interface that is captured inmy fsl glues together the structural AFU model (pre-
sented in Appendix E) and the communication template (presented in Appendix D). The AFU with its

interface for theadpcm-dexample is presented as follows:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

library unisim;
use unisim.vcomponents.all;

entity my_fsl is
Port (

CLK : in std_logic; -- System clock
RESET : in std_logic;

FSL0_S_CLK : out std_logic;
FSL0_S_READ : out std_logic;
FSL0_S_DATA : in std_logic_vector(0 to 31);
FSL0_S_CONTROL : in std_logic;
FSL0_S_EXISTS : in std_logic;

FSL1_S_CLK : out std_logic;
FSL1_S_READ : out std_logic;
FSL1_S_DATA : in std_logic_vector(0 to 31);
FSL1_S_CONTROL : in std_logic;
FSL1_S_EXISTS : in std_logic;

FSL2_S_CLK : out std_logic;
FSL2_S_READ : out std_logic;
FSL2_S_DATA : in std_logic_vector(0 to 31);
FSL2_S_CONTROL : in std_logic;
FSL2_S_EXISTS : in std_logic;

FSL3_S_CLK : out std_logic;
FSL3_S_READ : out std_logic;
FSL3_S_DATA : in std_logic_vector(0 to 31);
FSL3_S_CONTROL : in std_logic;
FSL3_S_EXISTS : in std_logic;

FSL0_M_CLK : out std_logic;
FSL0_M_WRITE : out std_logic;
FSL0_M_DATA : out std_logic_vector(0 to 31);
FSL0_M_CONTROL : out std_logic;
FSL0_M_FULL : in std_logic;

FSL1_M_CLK : out std_logic;
FSL1_M_WRITE : out std_logic;
FSL1_M_DATA : out std_logic_vector(0 to 31);
FSL1_M_CONTROL : out std_logic;
FSL1_M_FULL : in std_logic

);
end my_fsl;

architecture IMP of my_fsl is
signal count_en : std_logic; -- enabling the counter
signal chip_en : std_logic;
signal counter_ticks : std_logic_vector(0 to 1); -- Sig-
nal from the counter
signal data_in1, data_in2, data_in3, data_in4 : std_logic_vector(0 to 31);
signal data_out1, data_out2 : std_logic_vector(0 to 31);

component counter
port(

CLK : IN std_logic;
enable : IN std_logic;
counter_ticks : OUT std_logic_vector(0 to 1)

);
end component counter;

component cut1
port(

AFU_en : IN std_logic;
data_in1 : IN std_logic_vector(0 to 31);
data_in2 : IN std_logic_vector(0 to 31);
data_in3 : IN std_logic_vector(0 to 31);
data_in4 : IN std_logic_vector(0 to 31);
data_out1: OUT std_logic_vector(0 to 31);
data_out2: OUT std_logic_vector(0 to 31)

);
end component cut1;

component fsl_interface
port(

CLK : in std_logic;
RESET : in std_logic;
count_en : out std_logic;
counter_ticks : in std_logic_vector(0 to 1);
data_in1 : out std_logic_vector(0 to 31);
data_in2 : out std_logic_vector(0 to 31);

data_in3 : out std_logic_vector(0 to 31);
data_in4 : out std_logic_vector(0 to 31);
data_out1: in std_logic_vector(0 to 31);
data_out2: in std_logic_vector(0 to 31);
FSL0_S_CLK : out std_logic;
FSL0_S_READ : out std_logic;
FSL0_S_DATA : in std_logic_vector(0 to 31);
FSL0_S_CONTROL : in std_logic;
FSL0_S_EXISTS : in std_logic;
FSL1_S_CLK : out std_logic;
FSL1_S_READ : out std_logic;
FSL1_S_DATA : in std_logic_vector(0 to 31);
FSL1_S_CONTROL : in std_logic;
FSL1_S_EXISTS : in std_logic;
FSL2_S_CLK : out std_logic;
FSL2_S_READ : out std_logic;
FSL2_S_DATA : in std_logic_vector(0 to 31);
FSL2_S_CONTROL : in std_logic;
FSL2_S_EXISTS : in std_logic;
FSL3_S_CLK : out std_logic;
FSL3_S_READ : out std_logic;
FSL3_S_DATA : in std_logic_vector(0 to 31);
FSL3_S_CONTROL : in std_logic;
FSL3_S_EXISTS : in std_logic;
FSL0_M_CLK : out std_logic;
FSL0_M_WRITE : out std_logic;
FSL0_M_DATA : out std_logic_vector(0 to 31);
FSL0_M_CONTROL : out std_logic;
FSL0_M_FULL : in std_logic;
FSL1_M_CLK : out std_logic;
FSL1_M_WRITE : out std_logic;
FSL1_M_DATA : out std_logic_vector(0 to 31);
FSL1_M_CONTROL : out std_logic;
FSL1_M_FULL : in std_logic;
AFU_en : out std_logic

);
end component fsl_interface;

begin

counter_inst : counter
port map (

CLK => CLK,
enable => count_en,
counter_ticks => counter_ticks

);

cut1_inst: cut1
port map (

AFU_en => chip_en,
data_in1 => data_in1,
data_in2 => data_in2,
data_in3 => data_in3,
data_in4 => data_in4,
data_out1 => data_out1,
data_out2 => data_out2

);

fsl_interface_inst : fsl_interface
port map (

CLK => CLK,
RESET => RESET,
count_en => count_en,
counter_ticks => counter_ticks,
data_in1 => data_in1,
data_in2 => data_in2,
data_in3 => data_in3,
data_in4 => data_in4,
data_out1 => data_out1,
data_out2 => data_out2,
FSL0_S_CLK => FSL0_S_CLK,
FSL0_S_READ => FSL0_S_READ,
FSL0_S_DATA => FSL0_S_DATA,
FSL0_S_CONTROL => FSL0_S_CONTROL,
FSL0_S_EXISTS => FSL0_S_EXISTS,
FSL1_S_CLK => FSL1_S_CLK,
FSL1_S_READ => FSL1_S_READ,
FSL1_S_DATA => FSL1_S_DATA,
FSL1_S_CONTROL => FSL1_S_CONTROL,
FSL1_S_EXISTS => FSL1_S_EXISTS,
FSL2_S_CLK => FSL2_S_CLK,
FSL2_S_READ => FSL2_S_READ,
FSL2_S_DATA => FSL2_S_DATA,
FSL2_S_CONTROL => FSL2_S_CONTROL,
FSL2_S_EXISTS => FSL2_S_EXISTS,
FSL3_S_CLK => FSL3_S_CLK,
FSL3_S_READ => FSL3_S_READ,
FSL3_S_DATA => FSL3_S_DATA,
FSL3_S_CONTROL => FSL3_S_CONTROL,
FSL3_S_EXISTS => FSL3_S_EXISTS,

FSL0_M_CLK => FSL0_M_CLK,
FSL0_M_WRITE => FSL0_M_WRITE,
FSL0_M_DATA => FSL0_M_DATA,
FSL0_M_CONTROL => FSL0_M_CONTROL,
FSL0_M_FULL => FSL0_M_FULL,
FSL1_M_CLK => FSL1_M_CLK,
FSL1_M_WRITE => FSL1_M_WRITE,
FSL1_M_DATA => FSL1_M_DATA,
FSL1_M_CONTROL => FSL1_M_CONTROL,
FSL1_M_FULL => FSL1_M_FULL,
AFU_en => chip_en

);
end IMP;

