
Software Virtual Memory Management for MMU-less
Embedded Systems

Siddharth Choudhuri

Tony Givargis

Technical Report CECS-05-16

November 6, 2005

Center for Embedded Computer Systems

University of California, Irvine

Irvine, CA 92697-3425, USA

(949) 824-8168

{sid, givargis}@cecs.uci.edu

Abstract

For an embedded system designer, the rise in processing speeds of embedded processors and micro-

controller evolution has lead to the possibility of running computation and data intensive applications

on small embedded devices that earlier only ran on desktop-class systems. From a memory stand point,

there is a similar need for running larger and more data intensive applications on embedded devices.

However, support for large memory adadress spaces, specifically, virtual memory, for MMU-less em-

bedded systems is lacking. In this paper, we present a software virtual memory scheme for MMU-less

systems based on an application level virtual memory library and a virtual memory aware assembler.

Our virtual memory support is transparent to the programmer, can be tuned for a specific application,

correct by construction, and fully automated. Our experiements validate the feasibility of virtual memory

for MMU-less embedded systems using benchmark programs.

Contents

1 Introduction 1

2 Related Work 3

3 Technical Approach 4

3.1 System Architecture . 4

3.2 Methodology . 6

3.3 Virtual Memory Approach . 7

3.3.1 Approach 1 - Pure VM . 8

3.3.2 Approach 2 - Fixed Address VM . 8

3.3.3 Approach 3 - Selective VM . 9

4 Experiments 9

4.1 Experimental Setup . 9

4.2 Experimental Results . 10

5 Conclusion 15

References 16

i

List of Figures

1 Overall Design Flow . 5

2 Memory Layout . 6

3 Experimental Setup . 9

4 Hit Rate - Pure VM . 11

5 Hit Rate - Fixed Address VM . 12

6 Execution Time Comparision . 12

7 Hit Rate Variation for Benchmarks . 13

8 Average Memory Access Time for Benchmarks . 15

ii

Software Virtual Memory Management for MMU-less Embedded Systems

Siddharth Choudhuri, Tony Givargis

Center for Embedded Computer Systems

University of California, Irvine

Irvine, CA 92697-3425, USA

{sid,givargis}@cecs.uci.edu

http://www.cecs.uci.edu

Abstract

For an embedded system designer, the rise in processing speeds of embedded processors and microcontroller

evolution has lead to the possibility of running computation and data intensive applications on small em-

bedded devices that earlier only ran on desktop-class systems. From a memory stand point, there is a similar

need for running larger and more data intensive applications on embedded devices. However, support for

large memory adadress spaces, specifically, virtual memory, for MMU-less embedded systems is lacking.

In this paper, we present a software virtual memory scheme for MMU-less systems based on an applica-

tion level virtual memory library and a virtual memory aware assembler. Our virtual memory support is

transparent to the programmer, can be tuned for a specific application, correct by construction, and fully

automated. Our experiements validate the feasibility of virtual memory for MMU-less embedded systems

using benchmark programs.

1 Introduction

Embedded ubiquitous devices have revolutionized our day to day life. Most of these devices are based on

microcontrollers and low end processors. The rise in use and variety of such embedded systems is driven

by the fact that microcontrollers and low end embedded processors are cheap, easy to program using well

defined programming models, and provide great flexibility in design and function of embedded systems.

1

According to the semiconductor industry association [19], the global microcontroller market, driven by

consumer and automotive applications, will reach $13.5 billion by 2007. It is estimated that in five years, the

number of processors in the average home could grow from 40 to 280 and the number of embedded chips

sold to support increasingly intelligent devices could grow to over nine billion [19]. In fact, microcontrollers

account for more than 97% of total processors sold [6].

While microcontrollers were initially designed for small control based applications, driven by Moore’s

law, this class of processors have evolved from tiny 4-bit systems running at a few KHz to more complex

8/16-bit systems running at a few MHz, as well as some 32-bit systems running at 100s of MHz [18].

For an embedded system designer, this steady rise in processor speed has lead to the possibility of

running complex and computationally intensive applications on small embedded devices that could earlier

run only on desktop-class systems. From a memory stand point, there is a similar need for running larger

and more data intensive applications on embedded devices. However, support for large memory address

spaces, specifically, virtual memory, for low end embedded processors and microcontroller-based systems

is lacking [4].

Virtual memory is a scheme that provides to the software layer an illusion of a very large contiguous

memory address space (i.e., one that is as large as the secondary storage) at an ideal speed of accessing

RAM. Virtual memory, in addition to providing applications larger-than-RAM memory, enables abstractions

such as multitasking (e.g., multiple processes accessing disjoint and large address spaces) and protection

(e.g., prohibiting one process from accessing another process’s data). In most cases, virtual memory is

implemented as an operating system (OS) feature [7][20].

The implementation of virtual memory in an OS is heavily based on the underlying processor archi-

tecture, specifically, the memory management unit (MMU). MMU is a hardware unit associated with the

core processor that provides support for virtual memory addressing. However, unlike high-end processors,

microcontroller and a large class of low end embedded processors are MMU-less. Table 1 lists a few such

MMU-less embedded processors [25, 8, 2, 14, 1]. As a result, OS supported virtual memory for such pro-

cessors, for the most part, is absent [4]. Thus having processing power does not necessarily translate into the

ability of running data-intensive programs unless process address space issues, specifically, virtual memory

is taken care of.

In order to support data-intensive programs that do not fit into available RAM, embedded programmers

2

end up reinventing hand coded paging techniques. Such adhoc techniques are time consuming, complex and

non-portable at best. An incorrect implementation can lead to serious bugs that are difficult to track in the

process of address translation.

In this paper, we present software virtual memory management schemes for MMU-less processors.

Our proposed approach presents the programmer with an abstraction of virtual memory with little or no

modifications required to the program. Our approach gives the programmer a view of contiguous memory

that is as large as secondary storage. We present three schemes that differ from each other in terms of

address space virtualized, performance overhead, and transparent access to the virtual memory system by

the high level application. Using our scheme, the application program is compiled and passed as input to

vm-assembler(virtual memory aware assembler). The vm-assembler, in addition to converting assembly to

binary, inserts additional code that implements the virtual to physical address translation at runtime. Thus,

the binary executable has a self-contained software implementation of a traditional MMU. Besides giving

the programmer a view of large available memory, virtual memory also lays foundation on which schemes

like protection, multitasking, dynamic memory allocation and sharing can be built. We show the efficacy

of our work by running a set of benchmark applications targeted for a MIPS processor, compiled using

mips-gcc compiler, and the proposed vm-assembler. Our scheme can be tuned to be application specific, it

is correct by construction and automated.

Table 1: MMU-less Processors
Processor Manufacturer Specs

MPC52XX (Coldfire) Freescale 40-60 (MHz)
MCF52XXX Freescale 16-166 (MHz)

MPC5200 Freescale 266-400 (MHz)
Microblaze Xilinx 125 MIPS

i960 Intel 16-40 (MHz)
ARM7TDMI ARM 60 (MHz)
NEC V850 NEC 20-100 (MHz)
PIC18XXX Microchip 30 (MHz)

ADSP-BFXXX Analog Deices 200-750 (MHz)

2 Related Work

Compiler directed virtual memory for low end embedded systems has been proposed by [15]. The proposed

approach can only be used for code section of the program. In a lot of cases, the data segment of a program

3

is larger than code segment, attributed to size of data-structues. Also, code segment in low end embedded

systems is sometimes hardwired (in ROM/EPROM) and hence cannot be paged. Another drawback in [15],

is that the amount of program paged depends on the function size. This could lead to varying page sizes

that depend on function body leading to an inefficient implementation. In our work, we have proposed

techniques to page data segment of a program, which has a greater need to be paged, than the code segment

which is fixed and known apriori. The granularity of page size is determined by the programmer and is not

fixed. Thus the programmer can customize the page size that works best for the given application in hand.

Softvmis an approach proposed by [9] that provides virtual memory support for MMU-less systems.

However, the work requires presence of a virtual cache, a hardware mechanism supported by the processor

to invoke a “software cache miss handler” and a “mapped load” instruction supported by the processor

that converts virtual address to physical address. Our approach does not make any assumption about the

underyling processor architecture.

Application level virtual memory (AVM) has been proposed in [5]. While providing the virtual memory

abstraction at user level, this work is based in the context of extensible operating systems and assumes the

presence of an underlying MMU. Virtual memory support in embedded operating systems is lagging for

MMU-less systems. QNX[16] and WindowsCE[23], provide limited virtual memory support for processors

equipped with MMU. uClinux[22], a Linux derivative for MMU-less processors does not provide any sup-

port for virtual memory[4]. While eCOS[17], an embedded OS, can be compiled for MMU-less processors,

doing so disables virtual memory support. Other popular OSs, namely, VxWorks[24], Hard Hat Linux[13],

and LynxOS[10] have support for virtual memory but can only be ported to processors with MMU support.

3 Technical Approach

3.1 System Architecture

Figure 1 shows the overall system architecture. Figure 1(a) depicts the target system consisting of a MMU-

less MIPS R3000 processor simulator, having a fixed amount of RAM. The chracterstics of RAM (or local

memory) is that it is fast (in terms of access time) and small (in terms of size). The processor is connected

to a secondary storage device using an I/O interface. Two types of I/O interfaces are possible, namely, serial

and parallel. The characteristics of secondary storage is that it is slow (in terms of access time) and large (in

4

terms of size). For our experimental results, we have considered two kinds of secondary storage, namely,

EEPROM and Flash. The target system can have different architectures depending on the combination of

I/O interface and the type of secondary storage. Figure 1(b) shows our design flow. The inputs to the design

flow are:

1. The application source code. Note that, application’s view of address space is as large as the secondary

storage i.e., the virtual address space.

2. The virtual memory library. This library consists of an implementation of virtual to physical address

translation (vm.c). It also includes a header file (vm.h) with configurable parameters (page size, ram

size), details of which are explained later in this section.

We use mips-gcc (version 3.2.1) to compile the application, along with virtual memory library, and generate

an assembly output. The generated assembly code, serves as the input to the vm-assembler. The vm-

assembler inserts additional code that is responsible for runtime virtual to physical translation. The generated

binary, directly runs on our MIPS instruction set simulator (i.e., without the support of any underlying

operating systems).

mips-gcc

Configurable
Parameters

vm-aware assembler

Application
vm.h, vm.c

MIPS Processor
+

RAM
Flash

EEPROM

Secondary
Storage

I/O
Interface

(Serial, Parallel)

MIPS Instruction Set Simulator

Binary

(a) Target System

(b) Design Flow

Figure 1: Overall Design Flow

5

The virtual memory sub-system has two configurable parameters, namely, RAM sizeS(i.e., the amount

of RAM available for caching of virtual memory pages) and page sizeP which determines the size of an

indivisible block of data that is stored/loaded from secondary storage at any given time.

3.2 Methodology

The underlying idea behind any virtual memory scheme is that compilers generate code with memory oper-

ations (loads and stores) for a virtual address space. A virtual address, generated out of the processor during

runtime, is translated to a valid, physical address. In systems that have an MMU, this translation is done by

the MMU at runtime. In our scheme, we provide this translation in software. The vm-assembler, described

in the previous section, intercepts memory operations in the assembly code (loads and stores) and replaces

them by a call to avirtual-to-physicaltranslation function (from vm library), invoked during runtime. Before

describing the translation algorithm, we present the system memory organization in Figure 2.

OffsetPageTag

Virtual Address
0(K-1)K(M-1)M(N-1)(B-1)

V D Tag Page

Page Offset

0(M-1)

Physical Address

==

== 1

&&

Hit

Page Table

2

Secondary
Storage

0

1

2

(P-1)

N

RAM 2
M

2
K

Paged

Figure 2: Memory Layout

6

Consider a system with secondary storage equal to 2N bytes and 2M bytes in RAM that is paged. A page

size is equal to 2K bytes. Thus, we haveP = 2M/2K pages of RAM available for paging. We use a page

table for address translation lookup. With our scheme, a page can map only to one unique entry in page table

(direct mapped). Thus, we haveP entries in the page table. Each page table entry (PTE), has the following

information:

1. Page= log2(M−K) bits, points to a unique page in RAM i.e.,Page∈ {0,1,2, ...,P−1}.

2. Tag= log2(N−M) bits, is used for comparing tag generated out of the virtual address.

3. V the valid bit, if set, indicates that the PTE information is valid.

4. D the dirty bit, if set, indicates that the page pointed to by the PTE, has data that has been modified

(written).

The processor generated virtual address consists of B-bits (If the secondary storage is large enough, we

could haveB = N). This address is broken down into offset(K least significant bits), page (M−K bits) and

tag (N−M bits). The page bits of virtual address point to an entry in the PTE. The virtual address tag bits

are compared to the tag field of this PTE. If the valid bit is set and the tag bits match, we have a hit (i.e., the

physical address is in main memory). The actual physical address is computed by concatenating offset bits

of virtual address with “page” entry of the PTE.

There can be cases other than a hit, depending on the result of comparing tags, valid bit and dirty bit.

These are described in the virtual-to-physical translation algorithm. This algorithm is similar to a direct

mapped address translation used in traditional operating systems [7][20]. Note that the virtual memory

library, mentioned in previous section, has the implementation of 1.

3.3 Virtual Memory Approach

We now present three approaches to providing virtual memory. The approaches differ from each other

in terms of(1) extent of memory mapped to virtual address space,(2) performance trade-offs (in terms

of execution cycles) and(3) transparency provided to the programmer by the virtual memory subsystem.

Experimental results from the three approaches are provided in the next section.

7

Algorithm 1 Virtual to Physical Translation
1: functionvirtual-to-physical
2: Input va : virtual address, wr : 1 =⇒ write,0 =⇒ read
3: Output pa : physical address
4: Decomposeva into 〈tag, page, o f f set〉
5: pte← PTE[page]
6: if pte.tag= va.tag and pte.valid = 1 then
7: if wr = 1 then
8: pte.dirty← 1
9: end if

10: return pa= page× sizeo f(page) + o f f set
11: end if
12: if pte.valid = 1 and pte.dirty = 1 then
13: write RAM[page] to secondary store
14: end if
15: Readnewpage|va∈ newpagefrom secondary store
16: Update pte.tag, pte.page, pte.valid
17: if wr = 1 then
18: pte.dirty← 1
19: end if
20: return pa= page× sizeo f(page) + o f f set

3.3.1 Approach 1 - Pure VM

The first approach mimics a system with hardware MMU. Every memory access in the application is in a

virtual address space that is translated to physical address during runtime. This approach is transparent to

the application. The drawback however, is that, every memory access is virtualized resulting in a call to the

virtual-to-physical function as many times as there are memory (load/store) instructions in the program.

3.3.2 Approach 2 - Fixed Address VM

In this approach, a region of the memory is marked as virtualized. Any memory access (load/store) that

belongs to this marked region is translated. This approach requires the programmer to indicate to the vm-

assembler the region marked as virtual. As opposed to the previous approach, in this case, the overhead of

translation from virtual to physical address is reduced to only the memory region marked as virtual. This

however, requires a runtime check to be made at every load/store to determine if the address is virtualized.

This is achieved by modifying the vm-assembler so that it inserts code that does runtime check on every

memory access and translates only those addresses that are virtualized. In our experiments, we tested this

approach by marking all the data region belonging to global variables as belonging to virtual address space.

8

3.3.3 Approach 3 - Selective VM

Selective VM is similar to the previous approach, but is more fine-grained in terms of memory that is

virtualized. Note that in the previous approach, a runtime check was required on every memory access to

determine if the address is virtualized. Selective VM avoids this runtime check overhead by annotating

data structures at source level. It requires the programmer to tag individual data structures as belonging

to virtual address space (as opposed to an entire region). This annotation is done at variable declaration,

using a#pragma directive. Any use or def of annotated data structure in the source is modified to a call

to the virtual-to-physical function. This approach significantly reduces the runtime overhead by restricting

the translation only to large data structures that can reap benefit out of virtualization. It gives the embedded

programmer more control on what is virtualized. However, this approach is the least transparent to the

application programmer compared to the other two approaches.

4 Experiments

In this section, we describe our experimental setup followed by results from the approaches described in

previous section.

Figure 3: Experimental Setup

4.1 Experimental Setup

Figure 3 depicts our experimental setup and flow. Our experimental setup consists of a virtual memory

aware assembler, the target processor simulator, the RAM and the secondary storage device (i.e., Flash and

EEPROM) simulators. Four architectures of the target system are simulated. The first two architectures con-

sist of a processor connected to either Flash or EEPROM secondary storage devices over a serial interface.

9

The next two architectures consist of a processor connected to either Flash or EEPROM secondary storage

device over a parallel interface.

The inputs to the system is a C source file (benchmark) and virtual memory configuration parame-

ters, namely, page sizeP and RAM sizeS. In our experiments, we have considered page size vlaues of

P = (32,64...512) bytes. Further, in our experiments, we have considered RAM size (amount of main

memory available for caching secondary storage)S= (256,512...16384) bytes. The program is compiled

into assembly and then passed through our vm-assembler. The output of vm-assembler is executed in the

context of a MIPS instruction set simulator. The device independent statistics (reads, writes, misses, hits)

are then passed through our memory access models to obtain device speicific performance values, namely,

theaverage memory access timefor application. Our memory access models are based on datasheet values

[3][21][12] for clock speed, bus speed, and secondary storage access time (Table 2)1.

Table 2: Access Times
Device Read (ns/byte) Write (ns/byte)
SRAM 70 70

EEPROM (Serial) 800 39062
EEPROM (Parallel) 260 78125

Flash (Serial) 25 42968
Flash (Parallel) 23 390

We used benchmark programs from powerstone [11] suite for our experiments. Specifically, the bench-

mark programs include:adpcm, a 16 bit PCM to 4 bit ADPCM coder;bcnta bit shifting and anding program;

crc, program that performs cyclic redundancy check;desa standard data encryption algorithm;fir integer

finite impulse response filter;g3fax, a group three fax decoder;jpeg, an implementation of the JPEG image

decompression standard;pocsagpaging communication protocols andv42, a modem encoding/decoding

algorithm. Table 3 summarizes the total number of bytes marked for virtual memory in case of selective

VM (approach 3), as described in section§4.3.3.

4.2 Experimental Results

Ideally, a program will have the fastest execution time if there is enough RAM available to fit the runtime

needs of the program. This case, although possible, is not practical due to the high cost requirements of

having large amounts of RAM. However, we use this case as alower boundfor our purposes (i.e., any
1The values shown are averaged for per byte access time

10

Table 3: Benchmark Memory Access Pattern
Benchmark Read Write

adpcm 1028 400
bcnt 8448 0
crc 1280 1280
des 4096 128
fir 140 136

g3fax 4096 1728
jpeg 154801 154201

pocasg 256 656
v42 23938 8192

program running in the context of virtual memory cannot be faster than a program having sufficient RAM

available to fit its run-time requirements). Similarly, the case of having to run a program entirely off the

secondary storage is not feasible and results in the worst case execution time. We use this case as ourupper

bound. Virtual memory implementation tries to achieve a performance that is as close as possible to the

lower bound, while not imposing the limitations of having large amounts of main memory to fit a program’s

run-time requirements.

 92

 93

 94

 95

 96

 97

 98

 99

 100

v42pocsagjpegg3faxfirdescrcbcntadpcm

H
it

R
at

e

Figure 4: Hit Rate - Pure VM

Figure 4 shows the memory access hit rate of benchmark programs using pure VM (approach 1), as

described in section§4.3.1. The hit rates are averaged over all combinations of ram sizeS, and page size

P (i.e., S×P). Similarly, Figure 5 shows the memory access hit rate of benchmark programs using fixed

address VM (approach 2), as described in section§4.3.2. In case of fixed address VM, we observe that not

every program results in a high hit rate. Note that, hit rate is calculated as ratio of number of hits to number

of accesses. Thus, in case of fixed address VM, having large number of accesses to data that resides in

virtual address space would help increase the hit rate. However, for benchmark programs like bcnt, this is

11

 65

 70

 75

 80

 85

 90

 95

 100

v42pocsagjpegg3faxfirdescrcbcntadpcm

H
it

R
at

e

Figure 5: Hit Rate - Fixed Address VM

not the case. It has variables in global memory that are accessed infrequently, leading to a relatively low

hit rate. Thus, fixed address VM is highly application specific and depends on application memory access

pattern. Not all programs perform well using the fixed address VM approach.

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

v42pocsagjpegg3faxfirdescrcbcntadpcm

C
yc

le
s

No VM
Selective VM

Fixed Address
Pure VM

Figure 6: Execution Time Comparision

Figure 6 compares the average execution time of benchmark programs (over all combinations ofSand

R). The comparision is made against the lower bound case of having a RAM size large enough to fit the

runtime requirements of program (labelled as No VM). It can be seen that the pure VM and the fixed

address VM approaches lead to execution cycles that is an order of magnitude larger than the selective VM

approach. This can be attributed to the fact that in case of pure VM, every memory access results in a call

to the virtual-to-physical function. In case of fixed address VM, execution cycles is less than pure VM, but

there is additional overhead in terms of checking every memory access to see if the address lies in virtual

or physical address space, contributing to the overhead in execution cycles. Out of the three approaches,

selective VM results in execution cycles that is closest to the lower bound. Hence for futher results, we

only concentrate on selective VM approach, as the other two approaches may not be feasible due to the

12

 0

 20

 40

 60

 80

 100

v42pocsagjpegg3faxfirdescrcbcntadpcm

H
it

R
at

e
256
512

1k
2k
4k
8k

16k

Figure 7: Hit Rate Variation for Benchmarks

overhead in execution cycles. Note that, even though in some cases pure VM has considerable overhead

in execution cycles compared to the lower bound; the comparision is being made against a case of having

RAM that is large enough to fit the entire program runtime requirements. This may not be possible in case of

embedded systems with limited memory and cost constraints (of having large RAM); more so when dealing

with programs that have large runtime data memory requirements. The selective VM approach is a trade

off between providing virtual memory with reasonable overhead in execution cycles. Apart from providing

the programmer with an abstraction of virtual memory, the other goal of this work was to explore various

combinations of page sizeP and RAM sizeS and study how these configurations affect the performance

in terms of hit rate and average memory access time. Figure 7 shows the variation in hit rate for each

benchmark program, with all possible page sizesP and all possible RAM sizesS. For each benchmark,

multiple vertical bars, each corresponding to one of the possible RAM sizesS, capture the hit rate as a

function of each of the possible page sizesP. For example in case ofg3faxandS= 2k, varying page size

P yields a hit rate between 56% to 88%. We note that, for some benchmarks, the variation is smaller (e.g.,

jpeg and v42) and for other benchmarks this is much more pronounced (e.g.,adpcmand g3fax). Thus,

programs can be profiled to come up with an optimal page size. Furthermore, as the amount of RAM size

S increases beyond a certain threshold, the variation disappears. Likewise, as the RAM sizeS increases, we

reach a point ofdiminishing returnsafter which increase in the RAM sizeSdoes not result in any significant

improvements in hit rate. This is because we reach a point where there are enough free pages available to

cache most of the data that is virtualized.

13

Table 4: Optimal Configurations
RAM SizeS

256 512 1K 2K 4K 8K 16k
adpcm 32 32 32 64 512 512 512

P
age

S
izeP

bcnt 32 32 128 128 128 512 512
crc 32 32 512 512 512 512 512
des 32 32 32 32 128 512 512
fir 32 32 512 512 512 512 512

g3fax 32 32 32 32 32 512 512
jpeg 128 256 512 512 512 512 512

pocsag 32 64 128 512 512 512 512
v42 32 32 64 128 128 128 128

Table 4 shows the best case configurations corresponding to each of the possible RAM sizesS. These

configurations correspond to the points that have maximum hit rate in Figure 7. It can be seen that, though a

large page size often yields high hit rates, this case is not always common. This could be due to the fact that,

having a large page size does not necessarily mean an entire page worth of data is used to cache (internal

fragmentation). In such a case, having smaller, fuller, page sizes can be more useful. As the page sizeP

increases, the penalty of accessing secondary storage also increases, creating a trade-off between improved

hit rate versus miss penalty. This trade-off requires device specific exploration of all possible confiugrations

which is described next.

Figure 8 shows the average memory access time for each benchmark and each RAM sizeS with the

optimal page size configurationP (i.e., from Table 4). Figure 8 captures this information for four different

architectures obtained by using serial vs. parall and EEPROM vs. Flash combinations. Figure 8 also

captures the lower bound (i.e., all data in RAM) and worst case (i.e., all data in secondary memory), shown

as the two continous plots. The lower and upper bounds presented are not feasible solutions, but they serve

as bounds to evaluate our experiments. The average memory access time also shows a trend ofdiminishing

returnsas seen in case of hit rate. For example in case ofcrc, the average memory access time drops close

to the lower bound forS= 1K.

Thus, from an embedded systems programmers point of view, applications can be profiled to obtain the

right configuration of page size and ram size that leads to maximum benefit.

14

 10

 100

 1000

 10000

 100000

v42pocsagjpegg3faxfirdescrcbcntadpcm

Av
er

ag
e M

em
or

y A
cc

es
s T

im
e

 (n
se

c)

Serial EEPROM

AMAT
Best Case

Worst Case

 10

 100

 1000

 10000

 100000

v42pocsagjpegg3faxfirdescrcbcntadpcm

Av
er

ag
e M

em
or

y A
cc

es
s T

im
e

 (n
se

c)

Parallel EEPROM

AMAT
Best Case

Worst Case

 10

 100

 1000

 10000

 100000

v42pocsagjpegg3faxfirdescrcbcntadpcm

Av
er

ag
e M

em
or

y A
cc

es
s T

im
e

 (n
se

c)

Serial Flash

AMAT
Best Case

Worst Case

 10

 100

 1000

v42pocsagjpegg3faxfirdescrcbcntadpcm

Av
er

ag
e M

em
or

y A
cc

es
s T

im
e

 (n
se

c)

Parallel Flash

AMAT
Best Case

Worst Case

Figure 8: Average Memory Access Time for Benchmarks

5 Conclusion

We have presented a software virtual memory scheme for MMU-less embedded systems. This is achieved

using a vm-aware assembler and a virtual memory library. Our approach provides a view of larger than

RAM memory to the programmer, tuned for a specific application, robust and automated. The virtual mem-

ory system that we presented can be tuned by adjusting two configuration parameters, namely, RAM size

and page size. In our experiments, we have explored different configurations for applications drawn from

the powerstone benchmark. Our results show that the ideal configuration of a virtual memory system are

application dependent. Our experiments validate the feasibility of virtual memory for MMU-less embedded

15

systems. We also presented three different approaches each with its advantages and disadvantages and found

out that having a user defined virtual memory is the right trade-off between achieving virtual memory and

performance overhead.

Our future work will focus on optimizing the virtual to physical translation that can lead to reduction in

execution time cycles. We also plan to focus on considering additional caching techniques, such as assciative

schemes.

References

[1] Blackfin Processor.http://www.analog.com/processors/processors/blackfin/ .

[2] ARM. ARM7TDMI. http://www.arm.com/products/CPUs/ARM7TDMI.html .

[3] Atmel. Atmel Corporation.http://www.atmel.com .

[4] M. David. uClinux for Linux Programmers. InLinux Journal, July 2000.

[5] D. R. Engler, M. F. Kaashoek, and J. J. O’Toole. Exokernel: an operating system architecture for application-

level resource management. InSOSP ’95: Proceedings of the fifteenth ACM symposium on Operating systems

principles, pages 251–266. ACM Press, 1995.

[6] Gartner. Gartner research.http://www3.gartner.com .

[7] J. L. Hennessy and D. A. Patterson.Computer Architecture: A Quantitative Approach, second edition. Morgan

Kaufmann, San Francisco, California, USA, 1995.

[8] Intel. Intel i960 Processor Overview.http://developer.intel.com/design/i960/family.htm .

[9] B. L. Jacob and T. N. Mudge. Uniprocessor Virtual Memory without TLBs. InIEEE Transactions on Computers,

volume 50, pages 482 – 499, May 2001.

[10] Lynuxworks. Lynx OS.http://www.lynxworks.com/ .

[11] A. Malik, B. Moyer, and D. Cermak. A Lower Power Unified Cache Architecture Providing Power and Perfor-

mance Flexibility. InInternationl Symposium on Low Power Electronics and Design, 2000.

[12] Microchip. PIC18F4320 Device Datasheet.http://www.microchip.com .

[13] Montavista. Hard Hat Linux.http://www.mvista.com .

[14] NEC Electronics. NEC V850E Product Overview.http://www.necel.com/micro/english/v850/ .

[15] C. Park, J. Lim, K. Kwon, J. Lee, and S. L. Min. Compiler-assisted demand paging for embedded systems

with flash memory. InEMSOFT ’04: Proceedings of the fourth ACM international conference on Embedded

software, pages 114–124. ACM Press, 2004.

[16] QNX. QNX Software Systems.http://www.qnx.com .

[17] RedHat. ecos.http://sources.redhat.com/ecos/ .

16

[18] W. Schwartz. Enhancing performance using an arm microcontroller with zero wait-state flash. InInformation

Quarterly, Volume 3, Number 2, 2000.

[19] SIA Press Release. Growth for 2004 global semiconductor sales.http://www.semichips.org/pre_

release.cfm?ID=321 .

[20] A. Silberschatz, P. Galvin, and G. Gagne.Operating System Concepts, sixth edition. John Wiley and Sons, Inc.,

2003.

[21] ST. Stmicroelectronics.http://www.st.com .

[22] uClinux. uclinux.http://www.uclinux.com .

[23] Windows CE. Microsoft Windows Embedded.http://www.microsoft.com/windowsce .

[24] Windriver. VxWorks Real Time OS.http://www.windriver.com .

[25] Xilinx. Microblaze Soft Core.http://www.xilinx.com/microblaze/ .

17

