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Abstract

Increase in system level modeling has given rise to a need forefficient functional validation of models above cycle accu-
rate level. This paper presents a tool for comparing system level models, before and after a refinement. Verifiable refinements
include mapping functionality in the specification to platform components, static scheduling of functions mapped to a com-
ponent and routing of transactions across components. The verification tool starts by abstracting the input models intoa
control and data dependency graph representation. A seriesof functionality preserving transformations is then applied to
the graphs in order to normalize them. Finally, the normalized graphs are checked for isomorphism and a decision on the
equivalence of models is returned. Experimental results onindustrial examples demonstrate the feasibility and the efficiency
of this verification technique.
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A Tool for Functional Verification of System Level Model Refinements

Samar Abdi and Daniel Gajski
Center for Embedded Computer Systems

University of California, Irvine

Abstract

Increase in system level modeling has given rise to a
need for efficient functional validation of models above cy-
cle accurate level. This paper presents a tool for comparing
system level models, before and after a refinement. Verifi-
able refinements include mapping functionality in the spec-
ification to platform components, static scheduling of func-
tions mapped to a component and routing of transactions
across components. The verification tool starts by abstract-
ing the input models into a control and data dependency
graph representation. A series of functionality preserving
transformations is then applied to the graphs in order to
normalize them. Finally, the normalized graphs are checked
for isomorphism and a decision on the equivalence of mod-
els is returned. Experimental results on industrial examples
demonstrate the feasibility and the efficiency of this verifi-
cation technique.

1. Introduction

System level (SL) design is being adopted to combat the
rising complexity of modern embedded designs. Design
methodologies now involve several modeling stages and
platform/application updates before a cycle accurate imple-
mentation is considered. At each step, the system model
is transformed to reflect the design decision made at that
step. However, it is imperative that the functionality of the
model is preserved as the design progresses through these
incremental refinements. In other words, we need to vali-
date if two models, before and after the implementation of
a design decision, are functionally equivalent. In this pa-
per, we present a technique and implementation results for
functional validation of model refinements resulting from
SL design decisions.

A possible SL design methodology is as follows. We
start by creating an executable model of the system that in-
cludes the application and the mapping of the application
onto components of the platform architecture. The model
is executed and performance metrics like area, power and
speed are gathered. If the implementation is not satisfac-

tory, then the platform, or the mapping of the application
on the platform, is modified and a new model is produced
and evaluated. This process may be repeated several times
before a final implementation is decided, and each interme-
diate models is functionally verified as it is refined.

There is a huge body of research in functional equiva-
lence verification of high level system modes, mostly from
the software community. Symbolic simulation has been
used in [6] to verify equivalence of terminating embedded
software. In [11], the authors use textual comparisons of
models to check consistency. Checking of C models against
their verilog implementations has been proposed in [5]
using bounded model checking. Correct-by-construction
techniques have been implemented for system design, no-
table in ForSyde [12] tool set. The need for high level mod-
eling of embedded systems has given rise to system level
design languages (SLDLs) such as like SystemC 2.0 [2] and
SpecC [7]. This has led to research being directed towards
modeling and verification at system level in order to verify
the correctness of design steps. Traditional software model
checking [10] and bounded model checking [4] allow prop-
erty verification of high level models written in C-like lan-
guages. However, to the best of our knowledge, there has
been little work in refinement verification of system level
models using model transformations.

2. SL Modeling and Refinement

2.1 Excutable Performance Model

A typical executable performance model is shown in Fig-
ure 1(a). The platform consists of a processor (Proc.) con-
nected to Bus1 along with two hardware components (HW1
and HW2). Communication elements such as arbiter and
interrupt controller (IC) allow safe and synchronized com-
munication between the processor and the HW components.
The architecture in the model is captured using hierarchy (a
parallel composition of components) and signals and chan-
nels for wires and bus interfaces. The application itself is
captured by instantiating behaviors inside the appropriate
component behavior. For instance, behaviorsb1 andb2 of
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(a) Performance Model
 (b) Abstract functional model


Figure 1. The platform model and its corresponding functional abstraction

the application are mapped to Proc. as seen by the behav-
ioral hierarchy.

2.2 Abstract Functional Model

For functional verification of the system, we are not in-
terested in the implementation details. Therefore, the per-
formance model may be abstracted into a purely functional
model. We now look at the syntax, semantics and derivation
of the functional model.

2.2.1 Model Algebra

The performance model of the system is typically written
in a system level design language (SLDL) like SystemC
[2]. The abstract functional model can be expressed using a
much simpler representation we will refer to as Model Al-
gebra (MA)[3]. MA uses simple objects and composition
rules to express a system model. The objects are:
Behavior, to capture the functionality
Channel, to capture the bus structure
Condition, to capture control flow
Port, for hierarchy
Variable, for storage
Address, to distinguish bus transaction links
The composition rules of MA allow us to create behavioral
hierarchy, control dependencies and data dependencies. Be-
haviors (represented as round edged boxes) can be either
hierarchical, created using composition rules, orleaf. All
leaf level behaviors are treated as uninterpreted functions.
A special type of behavior called theidentitybehavior has
the property that its output is the same as its input.

Control dependencies are graphically represented us-
ing directed broken edges between behaviors nodes (round
edged boxes) and conditions nodes (circles). A control de-
pendency of the formAfter b1 executes, if condition q is
true, then b2 may executecan be represented with three
nodes forb1, b2 and q and two control edges (b1,q) and
(q,b2). A more complex control dependency of the form
After b1 through bn have executed, if condition q is true,
then b may executecan be represented withn+ 1 control
edges (b1,q),...,(bn,q) and (q,b).

Communication is possible either through variable (rep-
resented as box) read/write or channel (represented as el-
lipses) transactions. A variable read is represented with a
solid edge from the variable node to a behavior node. Sim-
ilarly, a variable write is represented with a solid edge from
behavior to variable node. Transaction links are represented
with a pair of solid edges, from sender behavior to chan-
nel and channel to receiver. Both edges are labeled with
the transaction link address. Transactions follow the ren-
dezvous protocol (Hoare semantics [9]) in contrast to non-
blocking read/write of variables. Transactions links may
share a channel and are distinguished by their addresses.

2.2.2 Deriving Functional Model

Given the syntax of Model Algebraic representation, we de-
rive the abstract functional model of our example as shown
in Figure 1(b). The bold grey arrows show the abstraction
of the objects in the performance model in Figure 1(a) into
objects in the abstract model on the right hand side. All hier-
archical behaviors have unique start and terminate identity
behaviors calledvirtual starting point (vsp)andvirtual ter-
minating point (vtp)respectively. Leaf behaviors are copied
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as is since they are treated as uninterpreted functions. Se-
quentiality and loops inside HW1 are modeled using con-
trol dependencies as shown. Note the abstraction of the be-
haviors and the task scheduler inside Proc. using the con-
trol flow of MA. Both behaviorsb1 andb2 are allowed to
start simultaneous aftervsp. However, the Proc. behav-
ior terminates only after bothb1 and b2 have terminated.
All communication implemented in the performance model
(using bus signals, arbiter, IC, drivers and bus interfaces) is
abstracted into high level transaction linksl1 andl2 imple-
mented on the channel labeledBus1. Finally, the top level
system is abstracted as a parallel composition of hierarchi-
cal component behaviors.

2.3 Model Refinements

Refinement is the general term we will use for modifica-
tions to either the platform architecture, or the implementa-
tion of the application on the architecture. In this section,
we consider two basic types of SL model refinements.

2.3.1 Replacements

Replacements are used to either model the application in
greater detail (to improve confidence in estimation) or to
change the platform (to improve some performance metric).
Examples include modeling a behaviors a cycle accurate
level, changing the bus protocol, changing the precision, ar-
bitration policy, task scheduling policy etc. In our method-
ology, verification of replacements requires property check-
ing to correctly abstract the functionality from the model.
For instance, if the bus arbitration policy is changed, we
need to check if the new policy still forces mutually exclu-
sive access to the bus.
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Figure 2. The refined SL platform model

2.3.2 Rearrangements

These type of refinements include modifications that do not
alter the leaf level behaviors, only rearranging the control

flow or the routing of transactions. Scheduling of behav-
iors inside a component, moving a behavior from one com-
ponent to another and changing the route of inter-behavior
communication are typical examples of rearrangements.
Figure 2 shows an updated platform derived from the plat-
form in Figure 1(a). We can see that a new bus, Bus2, has
been added, behaviorb4 has been moved into a new HW
component, HW3, and the behaviors inside Proc. have been
serialized. In this paper, we will focus on the verification of
rearrangements.

3 Refinement Verification

In order to verify the functional correctness of a refine-
ment, we must first define a notion of equivalence. This
equivalence notion is defined for the MA representation of
a model. We then show how functionality preserving trans-
formations can be used to check if two models, before and
after a refinement are equivalent.

3.1 Equivalence Notion

Our notion of functional equivalence is based on the
trace of values that the variables hold during model execu-
tion. Consider a variablev1 in a given modelM1. Assume
M1 is refined to a new modelM2, such that variablev2 in
M2 is expected to hold the same values asv1 was holding
during execution ofM1. We say that the pair(v1,v2) are
corresponding variablesfor M1 and M2. We further de-
fine τ(v,M, Init ) to be the partial order trace of all values
assumed my variablev when modelM is executed with an
initialization Init of all M’s variables. LetInit1 and Init2

be intializations ofM1 andM2, respectively, such that the
corresponding variables ofM1 andM2 have the same intial
value. ModelsM1 andM2 are said to befunctionally equiv-
alentwith respect to pair(v1,v2) if and only if
τ(v1,M1, Init1) = τ(v2,M2, Init2)
The above definition of equivalence requires us to define
how the corresponding variables in the original and refined
model will be determined. In certain refinements extra vari-
ables may be created. We consider all variables written by
non-identity behaviors for equivalence of models.
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SL Model (A)


Refined

SL Model (B)


Functional

Abstraction


Graphical

Representation


(A)


Graph

Normalization


Normalized

Model A


Functional

Abstraction


Graphical

Representation


(B)


Graph

Normalization


Normalized

Model B


Isomorphism

Check


Equivalent /

Not Equivalent


Model

Refinement


Figure 3. Steps in refinement verification
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3.2 Verification technique

The verification tool flow is shown in Figure 3. First,
we abstract the SLDL model into a graphical MA represen-
tation. The MA representation then undergoes a series of
transformations until no more transformations can be ap-
plied. The final model is said to be normalized. The nor-
malized models are then checked for isomorphism.

There are two key requirements for such a verification
technique to succeed. The first requirement is thesound-
nessof the transformation laws that are used to normalize
the model. Soundness means that each transformation must
produce an equivalent model, according to the equivalence
notion defined above. The second requirement is that the
normalization algorithm must always produce isomorphic
normal forms for any two models that can be proven equiva-
lent using the transformation laws. In the following section,
we will discuss the transformation laws, but refer the reader
to our technical report [3] for detailed proofs.

4 Model Normalization

The normalization procedure consists of two steps. First
the hierarchy is flattened and the transaction links are re-
solved, resulting in a control and data dependency graph.
Then a series of transformations (derived from transforma-
tion laws) are applied to normalize the graph.
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Figure 4. Transaction link resolution

4.1 Flattening and Link Resolution

The MA representation is flattened by recursively modi-
fying port mappings and control flow relations. Consider a
hierarchical behaviorbh which a sub-behavior ofbh. Con-
sider portph of bh. A sub-behavior ofbh reading from a
variablev in b via port ph will have a direct read relation
from v afterbh is flattened. Similar flattening methods are
used for variable writes and channel transactions.

Transaction links in the flattened model are resolved as
illustrated in Figure 4. Note that we allow the sender and
receiver of a transaction to be identity behaviors only. The
transaction link in the LHS ensures that at the end of the
transaction,v′ will be a copy ofv. It also ensures thatedoes
not terminate beforee′ starts executing and vice versa. The
above two properties are also followed in the RHS model,
whereedirectly writes tov′. Also, the additional control de-
pendencies ensure that no behavior followinge′ is executed

until e has executed, and vice versa. After link resolution,
the model turns into a control and data dependency graph of
behaviors, condition nodes and variable nodes.

4.2 Model Transformation Laws

The following transformation laws are used to normalize
the model. Note that each law is symmetric (as indicated
by bidirectional arrow), but the normalization algorithm ap-
plies the law from LHS to RHS.
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Figure 5. Identity elimination law

4.2.1 Identity Elimination

The identity behavior does not modify any outputs of
non-identity behaviors and therefore its execution isunob-
servedduring model simulation. First the variable read and
the variable written are merged.Then all incoming control
nodes are cross multipled with outgoing control to produce
new control nodes. The condition of the resulting nodes is
obtained by ANDing the conditions of the original node.
Thus we have identical control paths in the LHS and the
RHS as illustrated in Figure 5.
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Figure 6. Control relaxation law

4.2.2 Control Relaxation

A behaviorb1 is said todominate b2 if b1 executes at least
once before every execution ofb2. The domination rela-

4



tionship will be graphically shown using broken thick grey
arrows. If a control relation fromb1 to b2 with conditionq is
such thatb1 dominatesb2 and bothq andb2 do not have any
data dependencies onb1 or q, then the false control depen-
dency may be relaxed to allowb2 to execute in parallel with
b1. The control relaxation law illustrated in Figure 6, first
padsb1 andb2 with identity behaviors using the inverse of
the identity elimination law. Then the control dependencies
are modified as shown.
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Figure 7. Control elimination law

4.2.3 Control Elimination

If two behaviorsb1 and b2 have edges to a control node
q leading tob3, then if b1 dominatesb2 and b3 does not
dominateb2 (Figure 7(a), the edgeb1,q may be removed. If
b3 does dominateb2, then the edgeb2,q may be removed.
This law is illustrated in Figure 7.
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Figure 8. Streamlining law

4.2.4 Streamlining

Let two control nodesq1 andq2 with identical control con-
ditions have edges leading to the same behaviorb, andq1

andq2 both have an edge frombx. Let there be another edge
from bw(6= bx) to q1 and fromby(6= bx) to q2. If by is VSP
or dominated by VSP andbw is same asb or dominated by
b, then the two control nodesq1 andq2 can be merged into
a node with an edge frombx, as shown in Figure 8.
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Figure 9. Condition bubbling law

4.2.5 Condition bubbling

Consider a condition nodeq 6= 1. Let there be an edge from
b to q and fromq′ to b. If there is no data dependency fromb
to q, then the condition ofq can be ANDed with condition
of q′ and condition ofq can be set to 1. Thus the control
condition ofq is evaluated earlier, as shown in Figure 9.

5 Experimental Results

A verification tool based on the technique on Section 3.2,
was written in C++ for checking refinement of SpecC mod-
els. The functional abstraction module was used to derive
the Model Algebraic representation from a SpecC Model.
The transformation rules in Section 4 were then used to
normalize this representation into a control and data depen-
dency graph. The normalized graphs for the original and
refined model were compared using a simple graph isomor-
phism checker implemented within the verification tool. A
BDD manipulation package CUDD [1] was used to main-
tain the boolean functions for the condition nodes.

The verification tool has been tested on a wide variety of
applications and refinements. We present here, results from
two applications from the multimedia domain. The first ap-
plication is a GSM voice codec application [8] ( 12K lines
of SpecC code) for cellular phones. The second application
is a module within an MP3 decoder ( 8K lines of SpecC
code). Three types of rearrangement refinements were tried
for each application. The first refinement,behavior map-
ping, was used to move some behavior from one compo-
nent to another. This refinement resulted in a different be-
havioral hierarchy and extra behaviors and synchronization
to preserve the functionality of the design. The second re-
finement,communication scheduling, was used to reorder
behavior execution inside components so as to change the
bus congestion. The final refinement,transaction routing,
was used to change the bus architecture and route transac-
tions via a bridge.

The table in Figure 10 shows results for the verification
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Figure 10. Performance of verification tool for various refinements

of aforementioned refinements on the two applications. The
columnModel before normalizationgives statistics for the
abstract functional model in terms of number of behavior
nodes (B), variable nodes (D), condition nodes (Q), con-
trol dependency edges (CD) and data dependency edges
(DD). The columnNormal Modelgives the statistics of the
normalized graph. Note that normal form is unique for
all models involved in the refinements.Number of trans-
formationsinclude transformations resulting from flatten-
ing (flat), identity elimination (IE), control relaxation (CR),
control elimination (CE), Streamlining (Str) and condition
bubbling (Bub). The total number of transformations is
greater than the sum of the itemized transformations, since
we did not include miscellaneous transformations like re-
moval of unreachable nodes, variables without readers or
writers etc. The number of transformations includes trans-
formations performed for normalizingboth the original
modeland the refined model. As we can see, the total veri-
fication time is in the order of a few seconds, which makes
this technique very practical.

6 Conclusion and Future Work

We presented a technique to check the functional equiva-
lence of system level models before and after different types
of refinements. The main advantage of this technique is
that the designer does not need to perform costly simula-
tions after every modification to the design implementation.
However, this technique is not a comprehensive solution
and must be used in conjunction with property checking to
verify most types of useful model refinements. Our exper-
imental results demonstrated the practical feasibility ofour
verification technique on industrial examples. In the future,
we will integrate a property checker in order to verify the
functional abstraction of SLDL models.
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