
 i

NISC Technology and Preliminary Results

Mehrdad Reshadi, Bita Gorjiara, Daniel Gajski

Technical Report CECS-05-11
August 24, 2005

Center for Embedded Computer Systems

University of California Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

{reshadi, bgorjiar, gajski}@cecs.uci.edu

Abstract
A common way of improving an application’s performance is implementing it on a custom hardware.
High level synthesis (HLS) and application specific instruction-set processor are two alternatives for
automating this process. HLS techniques usually can handle small programs. Also, since the datapath is
not available during scheduling, limited datapath and layout optimizations (such as interconnect
pipelining) are possible in HLS. On the other hand, to run an application on a custom hardware, ASIP
approaches require the extra phases of designing custom instructions and implementing them in both
instruction decoder and compiler.

In this report, we present theNISC approach where an application is directly compiled on a given
datapath. The compiler does not use any instruction abstraction and directly generates the control
signal values of datapath components in each clock cycle. The generated architecture is called No-
Instruction-Set-Computer (NISC). In this report, we present the core compiler algorithm followed by
two sets of experimental results, one focusing on architecture reuse and the other one on designing a
custom architecture for a given application. Having a fine-grained control over the datapath, our
compiler can generate up to 70% better performance compared to an instruction-set- based compiler
according to our preliminary results. Also, by designing a custom datapath for DCT algorithm, we
could achieve 7 times speedup, 1.64 times power reduction, 12.5 times energy savings, and more than 3
times area reduction compared to a soft-core MIPS implementation.

 ii

Contents
1. Introduction 1
2. Comparing NISC with other approaches 3

2.1 NISC vs. HLS 3
2.2 NISC vs. ASIP 4
2.3 NISC vs. Microcoded architectures 4

3. NISC flow 5
4. Algorithm overview and illustrative example 5
5. Simultaneous scheduling and binding algorithm for custom pipelined datapaths 9

5.1 Scheduling the CFG of the program 9
5.2 Scheduling the DFG of the program 10

6. Experiments 12
6.1 Reusing datapath for different benchmarks 13
6.2 Case study: DCT implementation 15

6.2.1 Implementing DCT using general-purpose datapaths 15
6.2.2 Designing a custom hardware for DCT 17

6.2.2.1 Software transformations 17
6.2.2.2 Initial Custom datapath: CDCT1 18
6.2.2.3 CDCT2: Bus customization and adding a pipeline register to the datapath 19
6.2.2.4 CDCT3: Eliminating the unused parts of ALU, comparator and RF 20
6.2.2.5 CDCT4 and CDCT5: Controller pipelining 20
6.2.2.6 CDCT6: bit-width reduction 21

6.2.3 Comparing performance, power, energy and area of the NISCs 22
6.2.4 Comparison with a manual design 24

7. Related works 25
8. Conclusion 26
9. Acknowledgements 26
10. References 27

 iii

List of figures
Figure 1- NISC flow.. 2
Figure 2- A sample NISC architecture. ... 2
Figure 3- NISC based design flow. ... 5
Figure 4- Partitioning a DFG into output sub-trees. .. 6
Figure 5- (a) Sample DFG, (b) Sample datapath... 7
Figure 6- Schedule of RTAs after scheduling >> operation.. 7
Figure 7- Schedule of RTAs after scheduling + operation.. 8
Figure 8- Schedule of RTAs after scheduling h sub-tree. ... 8
Figure 9- Schedule of RTAs after scheduling all sub-trees. .. 9
Figure 10- The ScheduleFunction procedure. ... 10
Figure 11- The ScheduleBasicBlock procedure. ... 11
Figure 12- The ScheduleOperation function. .. 11
Figure 13- The ScheduleOperands function.. 12
Figure 14- The ScheduleRead function... 12
Figure 15- Datapath with simple interconnects... 13
Figure 16- Datapath with complex interconnects.. 13
Figure 19- C-Code of matrix multiplication.. 15
Figure 20- Block diagram of GPD. ... 16
Figure 21- C-code of unrolled matrix multiplication. ... 17
Figure 22- Transformed matrix multiplication C-code. .. 18
Figure 23- Block diagram of CDCT1. .. 18
Figure 24- Block diagram of CDCT2. .. 20
Figure 25- Block diagram of CDCT6. .. 21
Figure 26- Power breakdown of the DCT implementations. .. 23
Figure 27- Comparing different DCT implementations.. 24
Figure 28- Comparing CDCT6 with a commercial manual design [29]... 24

 iv

List of tables
Table 1- Execution cycles counts of benchmarks. .. 14
Table 2- Execution cycle counts and speedups on MIPS and MIPS-like NISCs.................................... 14
Table 3- Clock period of architectures after synthesis. ... 14
Table 4- Execution delay (us) of benchmarks and speedup vs. NP. ... 14
Table 6- ALU and Comparator operations.. 16
Table 7- Critical-path delay breakdown of CDCT1.. 19
Table 8- Critical-path delay breakdown of CDCT2.. 20
Table 9- Critical-path delay breakdown of CDCT3.. 20
Table 10- Critical-path delay breakdown of CDCT4.. 21
Table 11- Critical-path delay breakdown of CDCT5.. 21
Table 12- Summary of the experiments. ... 22
Table 13- Performance, power, energy, and area of the DCT implementations. 22

 1

An Algorithm for Compiling Applications on Custom Pipelined
Datapaths and Synthesizing the Controller

Mehrdad Reshadi, Bita Gorjiara, Daniel Gajski

Center for Embedded Computer Systems
University of California Irvine, CA, 92697

{reshadi, bgorjiar, gajski}@cecs.uci.edu

Abstract
A common way of improving an application’s performance is implementing it on a custom hardware.
High level synthesis (HLS) and application specific instruction-set processor are two alternatives for
automating this process. HLS techniques usually can handle small programs. Also, since the datapath is
not available during scheduling, limited datapath and layout optimizations (such as interconnect
pipelining) are possible in HLS. On the other hand, to run an application on a custom hardware, ASIP
approaches require the extra phases of designing custom instructions and implementing them in both
instruction decoder and compiler.

In this report, we present theNISC approach where an application is directly compiled on a given
datapath. The compiler does not use any instruction abstraction and directly generates the control
signal values of datapath components in each clock cycle. The generated architecture is called No-
Instruction-Set-Computer (NISC). In this report, we present the core compiler algorithm followed by
two sets of experimental results, one focusing on architecture reuse and the other one on designing a
custom architecture for a given application. Having a fine-grained control over the datapath, our
compiler can generate up to 70% better performance compared to an instruction-se- based compiler
according to our preliminary results. Also, by designing a custom datapath for DCT algorithm, we
could achieve 7 times speedup, 1.64 times power reduction, 12.5 times energy savings, and more than 3
times area reduction compared to a soft-core MIPS implementation.

1. Introduction
A common way of improving the performance of applications in embedded systems and SOCs is to
implement them in custom hardware. Manual design of Application Specific Integrated Circuits (ASIC)
is no longer practical due to the increasing size and complexity of applications and the shrinking time-
to-market. High Level Synthesis (HLS) and Application Specific Instruction set Processors (ASIPs) are
commonly used to automate the process of improving application performance. However, these
techniques have limitations that restrict their usage and their effectiveness. HLS techniques support a
subset of a programming language and can handle relatively small size programs. Additionally, since
the final datapath is not available during synthesis, design decisions and optimizations are limited to
estimations of final physical attributes. On the other hand, ASIPs rely on limited number of instruction
extensions for improving the performance. Identifying the beneficial instructions, implementing an
efficient instruction decoder, and incorporating the new instructions in the compiler are complex tasks
and require special expertise; which may affect the time to market of these processors.

In this paper, we propose a new approach that combines some of the techniques of HLS and ASIP to
overcome their limitations and provide an easy and efficient way of compiling programs on custom

 2

pipelined datapaths. In our approach, we map a program (written in a high level language such as C)
directly on the datapath and generate a controller that executes the program on the given datapath. We
do not use predefined instruction semantics. Instead we have complete fine-grained control over
datapath. Hence, we can achieve better parallelism and resource utilization. We call this architecture
No-Instruction-Set-Computer (NISC). Figure 1 shows the overall flow of this process.

Figure 1- NISC flow

A NISC is composed of a pipelined datapath and a pipelined controller that drives the control signals of
the datapath components in each clock cycle. The control values are stored in a control memory. For
small size programs, the control values are generated via logic in the controller. The datapath of NISC
can be simple or as complex as datapath of a processor. Figure 2 shows a sample NISC architecture
with a memory based controller and a pipelined datapath that has partial data forwarding, multi-cycle
and pipelined units, as well as data memory and register file.

Figure 2- A sample NISC architecture.
In Figure 1, the custom datapath contains information such as clock period, net-list of components and
their timings. The cycle-accurate compiler analyzes the datapath to determine what operations are
possible and how data must flow between them. The core of this compiler is a scheduling and binding
algorithm that maps the application on the given datapath and generates the control signals of
components in every clock cycle. This algorithm must be efficient and impose little limitations on the
structure of the input datapath. In the rest of this paper, we first compare NISC with other approaches
and explain the NISC flow in more details; then we present an algorithm that performs the scheduling
and binding simultaneously and maps an application onto a given NISC architecture.

This paper is organized as follows: Section 2 compares NISC with alternative approaches. Section 3
explains the NISC design flow. Section 4 illustrates the core algorithm of the compiler using an
example. We describe the details of the algorithm in Section 5. The results of various experiments are
shown in Section 6. Section 7 reviews related works and Section 8 concludes the paper.

 3

2. Comparing NISC with other approaches
2.1 NISC vs. HLS
Traditional High Level Synthesis (HLS) techniques take an abstract behavioral description of a digital
system and generate a register-transfer-level (RTL) datapath and controller. In these approaches, after
scheduling, the components are connected (during binding) to generate the final datapath. The generated
datapath is in form of a netlist and must be converted to layout for the final physical implementation.
Lack of access to layout information limits the accuracy and efficacy of design decisions especially
during scheduling. Since the generation of datapath and controller are tightly coupled, only those
optimizations on the final datapath or layout are possible that do not invalidate the schedule.

Today, wiring and interconnect contribute to a significant portion of cost and delay of the circuit. The
wire attributes depend on the technology as well as layout geometry (wire shape, length, fan out etc).
An important technique for reducing the clock period of a design is pipelining the interconnects.
Applying this technique is not easy during scheduling, because wire information is not available yet. It
is not also possible to efficiently apply it after generating the datapath because it invalidates the
schedule.

There have been many attempts in the past to predict or estimate the physical attributes of the final
datapath layout. Not only these attempts lack the necessary accuracy, they also lead to more complex
allocation and scheduling algorithms.

The growing complexity of new manufacturing technologies demands synthesis techniques that favor
Design-For-Manufacturability (DFM). However, the interdependent scheduling, allocation and binding
tasks in HLS are too complex by themselves and adding DFM will add another degree of complexity to
the design process. This increasing complexity requires a design flow that provides a practical
separation of concerns and supports more aggressive optimizations based on accurate information.

In NISC, this goal is achieved by performing the scheduling and binding on a fully allocated datapath.
The major benefits of this approach include:

• Design and manufacturing constraints can be easily applied to the datapath and its layout without
modifying or complicating the scheduling algorithm.

• The timing information used by scheduling can be very accurate because the layout of datapath is
available.

• The datapath can be optimized for area, power, speed, etc. without worrying about invalidating a
schedule.

• The datapath can be selected from a pre-laid out and optimized set of IPs. Therefore the same way
that standard cells simplified ASIC design, predefined datapaths can simplify system synthesis.

• It is possible to use traditional HLS techniques along with the application characteristics to generate
an initial datapath. Then we can iteratively schedule the application and refine the datapath by
adding/removing components or interconnects to improve the clock period, power consumption,
area etc., and meet the constraints.

We can support all features of high level languages such as C by adding proper components and
structures to the datapath. Therefore, we can target a broader application domain. Traditional HLS
techniques could seldom achieve such language coverage.

 4

2.2 NISC vs. ASIP
Compiling an application to a customized datapath has also been the goal of retargetable compilers and
application specific instruction set processors (ASIPs) [23]. In these approaches, the compiler uses the
high level instruction abstractions to indirectly control the datapath. It assumes that the processor
already has a controller that translates the instructions into proper control signals for the datapath
components.

In ASIPs, functionality and structure of datapath can be customized for an application through custom
instructions. At run time, each custom instruction is decoded and executed by the corresponding custom
hardware. Due to practical constrains on size and complexity of instruction decoder and custom
hardware, only few custom instructions can be actually implemented in ASIPs. Therefore, only the most
frequent or beneficial custom instructions are selected and implemented. In other words, the goal is to
implement a custom hardware that executes critical portions of the program. In ASIPs, this requires
several intermediate steps, i.e. designing custom instructions, implementing an efficient instruction
decoder, and incorporating the new instructions in the compiler. These steps are complex and usually
time consuming tasks that require special expertise.

In NISC, the instruction-set related intermediate phases are completely removed and the program is
directly mapped to the datapath. If the datapath is designed to improve the execution of certain portions
of program, the NISC compiler will automatically utilize it. Since the compiler is no longer limited by
the fixed semantics of instructions, it can fully exploit datapath capabilities and achieve better
parallelism and resource utilization.

2.3 NISC vs. Microcoded architectures
In horizontally microcoded architectures, a set of very simple operations in each cycle determines the
behavior of datapath in that cycle. To enable automatic extraction of microcodes from datapath and
using them in a compiler, the microcodes must execute in single cycle and have meaningful execution
semantics for the compiler. However, consider operations such as load (Memory Read) or pipelined
multiplication. These microcodes must be translated to multiple control values in different cycles. For
example, during load, the ChipSelect control signal of memory must become 1 at some time (cycle) and
then become 0 at some other time (cycle). Similarly, a pipelined multiply corresponds to events, i.e.
multiple control values in multiple cycles. Note that, these events cannot be associated with different
microcodes since such microcodes would not have meaningful execution semantics for compiler.
Therefore, the microcode operations may require simple decoder in the architecture that translates them
to actual control values. In fact, in most microcoded machines, the compiler only deals with microcodes
and the structural details of datapath are often hidden from compiler.

In contrast, in NISC, each low-level action (such as accessing storages, transferring data through
busses/multiplexers, and executing operations) is associated with a simple timing diagram that
determines the values of corresponding control signals at different times. The NISC compiler eventually
schedules these control values based on their timings and the given clock period of the system.
Therefore, although a NISC may look similar to a horizontally microcoded architecture, the NISC
compiler has much more low-level control over the datapath and hence is closer to a synthesis tool in
terms of capability and complexity.

Nevertheless, because of similarities between NISC and a statically scheduled horizontally microcoded
architecture, the presented algorithm in this paper can be used for compiling microcode operations as
well.

 5

3. NISC flow
Figure 3 shows a possible NISC based design flow for implementing an application on a custom
hardware. In NISC, the controller is generated after compiling the application on a given datapath. The
datapath can be generated (allocated) using different techniques. For example, it can be an IP, reused
form other designs, generated by HLS, or specified by the designer. In our current implementation, we
use an XML file to capture the netlist of components in the datapath. A component can be a register,
register-file, bus, multiplexer, functional unit, memory etc. The functionalities of components are
associated with timing information of corresponding control values. The program, written in a high
level language such as C, is first compiled and optimized by a front-end and then mapped (scheduled
and bound) on the given datapath. The compiler generates the stream of control values as well as the
contents of data memory. The generated results and datapath information are translated to a
synthesizable RTL design, described in Verilog, that is used for simulation (validation), synthesis
(implementation), etc.

At any point, after scheduling down to the implementation, the results can be analyzed, and the design
can be improved by refining the datapath and recompiling the program on the refined datapath. This
kind of flow is possible only if we can compile an application directly to a given datapath.

Figure 3- Possible NISC based design flow.
Since the NISC compiler compiles the application directly to the datapath, it can achieve better
parallelism and resource utilization than conventional instruction-set based compilers. However, NISC
compiler must solve a more complex problem because it must deal with all structural details of the
datapath. The core of this compiler is a scheduling and binding algorithm that links the operations of the
application to the clock cycles and datapath resources. The algorithm has to perform scheduling and
binding simultaneously (see Section 4) and support features such as datapath/controller pipelining, data
forwarding, operation chaining, multi-cycle and pipelined units. In the rest of this paper, we present one
such algorithm. It processes the data flow graph (DFG) of basic blocks backward and generates a finite
state machine (FSM) that executes the Control Data Flow Graph (CDFG) [4] of the program on a given
datapath. The variable, operation, and interconnect bindings are performed during the schedule of each
operation. We also allow pre-binding of variables and operations so that the designer or other
algorithms can control the results. For examples, a partitioning algorithm may partition the variables
and pre-bind them to two memory units.

4. Overview of the compiler algorithm by an illustrative example
In this section we illustrate the basis of our scheduling and binding algorithm using an example. The
input of algorithm is the CDFG of application, netlist of datapath components and the clock period of

 6

system. The output is an FSM in which each state represents a set of register transfers actions (RTAs)
that execute in one clock cycle. An RTA can be either a data transfer through buses / multiplexers /
registers, or an operation executed on a functional unit. The set of RTAs are later used to generate the
control bits of components.

As opposed to traditional HSL, we can not schedule operations merely based on the delay of the
functional units. The number of control steps between the schedule of an operation and its successor
depends on both the binding of operations to functional units (FU) and the delay of the path between
corresponding FUs. For example, suppose we want to map DFG of Figure 5(a) on datapath of Figure
5(b). Operation shift-left (>>) can read the result of operation + in two ways. If we schedule operation +
on U2 and store the result in register file RF, then operation >> must be scheduled on U3 in next cycle
to read the result from RF through bus B2 and multiplexer M2. Operation >> can also be scheduled in
the same cycle with operation + and read the result directly from U2 through multiplexer M2.
Therefore, selection of the path between U2 and U3 can directly affect the schedule. Since knowing the
path delay between operations requires knowing the operation binding, the scheduling and binding must
be performed simultaneously.

Binding itself involves three subtasks: variable binding assigns a value to a storage; operation binding
assigns an operation to an FU; and interconnect binding selects a path between two FUs, or a storage
and a FU. In our algorithm, these three subtasks are done during schedule of each operation.

The basic idea in the algorithm is to schedule an operation and all of its predecessors together. An
output operation in the DFG of a basic block is an operation that does not have a successor in that basic
block. We start from output operations and traverse the DFG backward. Each operation is scheduled
after all its successors are scheduled. The scheduling and binding of successors of an operation
determine when and where the result of that operation is needed. This information can be used for:
utilizing available paths between FUs efficiently, avoiding unnecessary register file read/writes,
chaining operations, etc.

Figure 4- Partitioning a DFG into output sub-trees.

We partition the DFG of the basic block into sub-trees. The root of a sub-tree is an output operation.
The leaves are input variables, constants, or output operations from other basic blocks. If the successors
of an operation belong to different sub-trees, then that operation is considered as an internal output and
will have its own sub-tree. Such nodes are detected during scheduling. Figure 4 shows an example DFG
that is partitioned into three sub-trees. The roots of the sub-trees are the output operations and are shown
with shaded nodes. The algorithm schedules each sub-tree separately. If during scheduling of the
operations of a sub-tree, the schedule of an operation fails, then that operation is considered an internal
output and becomes the root of a new sub-tree.

A sub-tree is available for schedule as soon as all successor of its root (output operation) are scheduled.
Available sub-trees are ordered by the mobility of their root. The algorithm starts from output nodes and
schedules backward toward their inputs, therefore more critical outputs tend to be generated towards the
end of the basic block (almost similar to ALAP schedule).

Consider the example DFG of Figure 5(a) to be mapped on the datapath of Figure 5(b). Assume that the
clock period is 20 units and delays of U1, U2, U3, multiplexers and busses are 17, 7, 5, 1 and 3 units,
respectively. We schedule the operations of basic block so that all results are available before last cycle,

 7

i.e. 0; therefore, the RTAs are scheduled in negative cycle numbers. In each step, we try to schedule the
sub-trees that can generate their results before a given cycle clk. The clk starts from 0 and is
decremented in each step until all sub-trees of a basic block are scheduled.

>>

2

h

e x

a b

x

c d

f

+g

e=a×b;
f=c×d;
g=e+f;
h=g>>2;

(a) (b)

RF

B1
B2
B3

B4

U1 U2 U3
+ >>

R1

x

M1 M2

Figure 5- (a) Sample DFG, (b) Sample datapath.

During scheduling, different types of values may be bound to different types of storages (variable
binding). For example, global variables may be bound to memory, local variables to stack or register
file, and so on. A constant is bound to memory or control word (CW) register, depending on its size. A
control word may have limited number of constant fields that are generated in each cycle along with the
rest of control bits. These constant fields are loaded into the CW register and then transferred to a proper
location in datapath. The NISC compiler determines the values of constant(s) in each cycle. It also
schedules proper set of RTAs to transfer the value(s) to where it is needed.

When scheduling an output sub-tree, first step is to know where the output is stored. In our example,
assume h is bound to register file RF. We must schedule operation >> so that its result can be stored in
destination RF in cycle -1 and be available for reading in cycle 0. We first select a FU that implements
>> (operation binding). Then we make sure that a path exists between selected FU and destination RF
and all elements of the path are available (not reserved by other operations) in cycle -1 (interconnect
binding). In this example we select U3 for >> and bus B4 for transferring the results to RF. Resource
reservation will be finalized if the schedule of operands also succeeds. The next step is to schedule
proper RTAs in order to transfer the value of g to the left input port of U3 and constant 2 to the right
input port of U3. Figure 6 shows the status of schedule after scheduling the >> operation. The figure
shows the set of RTAs that are scheduled in each cycle to read or generated a value. At this point, B3
and M2 are considered the destinations to which values of 2 and g must be transferred in clock cycle -1,
respectively.

clock→
operation↓

-3 -2 -1

a
b
c
d
e
f
g M2=?;
2 B3=?;
h B4=U3(M2, B3); RF(h)=B4;

Figure 6- Schedule of RTAs after scheduling >> operation.

 8

In order to read constant 2, we need to put the value of CW register on bus B3. As for variable g, we
schedule the + operation on U2 to perform the addition and pass the result to U3 though multiplexer
M2. Note that delay of reading operands of + operation and executing it on U2, plus the delay of reading
operands of >> operation and executing it on U3 and writing the results to RF is less than one clock
cycle. Therefore, all of the corresponding RTAs are scheduled together in clock cycle -1. The algorithm
chains the operations in this way, whenever possible. The new status of scheduled RTAs is shown in
Figure 7. In the next step, we should schedule the × operations to deliver their results to the input ports
of U2.

clock→
operation↓

-3 -2 -1

a
b
c
d
e M1=?;
f B2=?;
g M2=U2(M1, B2);
2 B3=CW;
h B4=U3(M2, B3); RF(h)=B4;

Figure 7- Schedule of RTAs after scheduling + operation.
The left operand (e) can be scheduled on U1 to deliver its result through register R1 in cycle -2 and
multiplexer M1 in cycle -1. At this point, no other multiplier is left to generate the right operand (f) and
directly transfer it to the right input port of U2. Therefore, we assume that f is stored in the register file
and try to read it from there. If the read is successful, the corresponding × operation (f) is considered as
an internal output and will be scheduled later. Figure 8 shows the status of schedule at this time. The
sub-tree of output h is now completely scheduled and the resource reservations can be finalized.

clock→
operation↓

-3 -2 -1

a
b
c B1=RF(c);
d B2=RF(d);
e R1=U1(B1, B2); M1=R1;
f B2=RF(f);
g M2=U2(M1, B2);
2 B3=CW;
h B4=U3(M2, B3); RF(h)=B4;
Figure 8- Schedule of RTAs after scheduling h sub-tree.

The sub-tree of internal output f must generate its result before cycle -1 where it is read and used by
operation +. Therefore, the corresponding RTAs must be scheduled in or before clock cycle -2 and write
the result in register file RF. The path from U1 to RF goes through register R1 and hence takes more
than one cycle. The second part of the path (after R1) is scheduled in cycle -2 and the first part (before
R1) as well as the execution of operation × on U1 is scheduled in cycle -3. The complete schedule is
shown in Figure 9.

 9

clock→
operation↓

-3 -2 -1

a B1=RF(a);
b B2=RF(b);
c B1=RF(c);
d B2=RF(d);
e R1=U1(B1, B2); M1=R1;
f R1=U1(B1, B2); B4=R1; RF(f)=B4; B2=RF(f);
g M2=U2(M1, B2);
2 B3=CW;
h B4=U3(M2, B3); RF(h)=B4;

Figure 9- Schedule of RTAs after scheduling all sub-trees.
In the above example, we showed how the DFG is partitioned into sub-trees during scheduling. We also
showed how pipelining, operation chaining, and data forwarding are supported during scheduling of
sub-trees.

5. Simultaneous scheduling and binding algorithm for custom pipelined
datapaths
In this section we describe our algorithm for compiling the application to a custom datapath. When
compiling the CDFG of each function of a program, we must consider the structure of the controller for
compiling the control flow graph (CFG) and consider the structure of datapath for compiling the DFG.
This process is described in the next two subsections.

In the description of the algorithm, we use the following definitions:

• Each basic block has a schedule status ss, where ss.RTAs(clk) stores the set of scheduled RTAs in
clock cycle clk, and ss.resTable(clk) stores the reservation status of resources in clock cycle clk, and
ss.length shows the number of scheduled states for that block.

• For an operation op, op.result is the value generated by op and op.operands is the list of results of
predecessors of op.

• For a functional unit FU, FU.output is the output port of FU and FU.inputs is the set of input ports of
FU. A functional unit may implement multiple operations. For each operation, FU.timing represents
the delay of the unit (or its stages if it is pipelined) as well as the duration of applying the control
signals to the unit.

• A path p is the list of resources that can transfer a value from one point to another. These resources
include busses, multiplexers and registers. The timing of resources of p is stored in p.timings and is
calculated base on delay of buses or multiplexers, or setup time and read delay of registers or register-
files.

• A destination dst is a storage or an input port of a functional unit.

5.1 Scheduling the CFG of the program
The result of NISC compiler is an FSM that can be implemented in logic or using a memory. In a
memory-based implementation the state register is a program counter register (PC). Therefore, a state
change in the FSM corresponds to incrementing the PC or loading it with a new value using a jump
operation. While incrementing PC always takes one cycle, loading it with a new value may take more
than one cycle. The result of scheduling a basic block is always a sequence of states. We may only need
a jump at the end of a basic block, if the last state of the block is not before the first state of the next

 10

basic block. In the algorithm, we assume that the order of basic blocks is given, and that there may be
jump operation at the end of some basic blocks.

Since we perform the scheduling backward, the result will be a set of states numbered from –N to +bd.
The return address of a function is loaded into PC at state 0. Constant bd is the branch delay of the
architecture, i.e. in a basic block, after loading the target address of a jump operation into PC, bd more
control words will be executed from that basic block. Value of bd depends on the distance between PC
and control word register, which is fixed and unique. Usually, this delay is 0 or 1 cycle in NISC.

 In procedure ScheduleFunction (Figure 10), the blkList contains the topologically ordered list of basic
blocks where the last element of the list is the return block. The blocks of this list are processed in
reverse, starting from return block and after scheduling each block, the results are added to the fsm. In
the main loop of ScheduleFunction (lines 3-8), before scheduling the body of a basic block, the jump
operation at the end of block is scheduled. The same way that a + operation is mapped to an adder or
ALU and writes its results to a register or register file, the jump is considered an operation that is
mapped to address generator and writes its result to the PC register in cycle clk. In this way, we can
schedule jump the same way that we schedule other operations (line 5). In order to make sure that the
branch delay of the jump operation is filled by other operations in the basic block, we try to schedule the
DFG of the basic block from cycle clk+bd (line 6). After scheduling each basic block, the new value of
clk is calculated by decrementing the number of states that was added in the block (line 7). The
ScheduleBasicBlock and ScheduleOpertion functions are described in Section 5.2. After scheduling all
functions of a program, fsm will contain the final FSM of the design.

00
01
02
03
04
05
06
07
08

ScheduleFunction(FSM fsm, ordered list of basic blocks blkList)
 clk = 0;
 bd = branch delay;
 foreach (blk ∈ reverse of blkList)
 if (blk has a jump operation)
 ScheduleOperation(blk.jump, clk, blk.ss, PC);
 ScheduleBasicBlock(blk, clk+bd);
 add blk.ss states to fsm;
 clk = clk – blk.ss.length;

Figure 10- The ScheduleFunction procedure.

5.2 Scheduling the DFG of the program
Figure 11 shows the ScheduleBasicBlock procedure that performs the scheduling and binding for each
basic block of a CDFG. In the main loop of this function (lines 3-16) the available output operations,
i.e. sub-tree roots that can generate their results at clock cycle clk, are collected and sorted based on a
priority function, such as operation mobility. The algorithm tries to schedule as many of these
operations as possible at clock cycle clk. During scheduling of each of these output operations, some
internal outputs may be generated. If the schedule of the operation is successful, then the operation is
removed from the set of sub-tree roots (Roots) and the newly generated internal outputs are added to the
list in order to be processed later (lines 14-15). In each iteration of the loop, the clk is decremented and
available output operations are collected and scheduled until all sub-trees in the block are processed.

 11

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16

ScheduleBasicBlock(block blk, clock lastClock)
 Roots = {output operations in blk.DAG};
 clk = lastClock;
 while(Roots ≠ ∅)
 AvailableOutputs = ∅;
 foreach (operation op ∈ Roots)
 if (all successor of op are scheduled after clock clk)
 AvailableOutputs = AvailableOutputs + {op};
 Sort AvailableOutputs by OperationPriorities;
 foreach (operation op ∈ AvailableOutputs)
 internalOutputs=∅;
 if (op.result is not pre-bound to a storage)
 bind op.result
 destination dst = storage of op.result
 if (ScheduleOperation(op, clock ,blk.ss, dst))
 Roots = Roots – {op} + internalOutputs;
 clk=clk-1;
Figure 11- The ScheduleBasicBlock procedure.

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

bool ScheduleOperation(operation op, clock clk, schedule status ss, destination dst)
 if (op is pre-bound to a functional unit)
 F = functional unit to which op is pre-bound;
 else
 F = functional units that implement op sorted by UnitPriorities;
 foreach(FU ∈ F)
 P = paths from FU.output to dst sorted by PathPriorities;
 foreach(p ∈ P)
 p.timings.end = clock;
 calculate p.timings.start;
 if (resources of p are not reserved in ss.resTable)
 FU.timing.end = p.timings.start;
 calculate FU.timing.start;
 if (FU is not reserved in ss.resTable)
 copyStatus = ss;
 if (ScheduleOperands(op, FU.timing.start, copyStatus, FU))
 ss = copyStatus;
 reserve FU and p in ss.resTable;
 add corresponding RTAs to ss.RTAs;
 return TRUE;
 bind op.result;
 if (ScheduleRead(op.result, clk, ss, dst));
 internalOutputs = internalOutputs + {op};
 return TRUE;
 return FALSE;

Figure 12- The ScheduleOperation function.
The ScheduleOperation function (Figure 12) tries to schedule an operation op so that its result is
available at dst at clock cycle clk. If op is not pre-bound to a specific functional unit, then the list of
functional units that can execute op is stored in F and sorted by the UnitPriorities (lines 2-5). This
priority function depends on the delay of the unit as well as the paths from output of the unit to the
destination dst. After selecting a functional unit FU, all paths from FU to dst are stored in P and sorted

 12

by a PathPriority. The timings of FU and a selected path p are calculated so that the output of FU is
available at dst at clock cycle clk (lines 8-13). If FU and all of the resources on the path p are not
reserved in the ss.resTable at the corresponding calculated times, then algorithm tries to schedule the
operands of op by calling the ScheduleOperands function. If the schedule of operands succeeds, then
selected functional unit FU and path p are reserved (operation and interconnect binding) (lines 16-20).
We pass a copy of scheduling status (copyStatus) to function ScheduleOperands to make sure that
original status changes only if all operands are successfully scheduled. If scheduling failed after trying
all functional units, the ScheduleOperation function tries to bind the result of operation to a storage and
schedule a read from that storage. If the read succeeds, the operation is added to the internalOutputs for
later processing.

The ScheduleOperands function (Figure 13) schedules the operands of an operation op on a selected
functional unit FU so that their values are available on corresponding input ports of FU at clock cycle
clk. If an operand is a variable or a constant, then this function tries to schedule a read from the
corresponding storage. Otherwise, it calls the ScheduleOperation function. The function succeeds only
if all operands can be scheduled.

00
01
02
03
04
05
06
07
08
09
10
11

bool ScheduleOperands(operation op, clock clk, schedule status ss, functional unit FU)
 foreach(operand o ∈ op.operands)
 destination dst = FU.inputs corresponding to o;
 if (o is a variable or a constant)
 if (o is not pre-bound to a storage)
 bind o to a storage;
 if (! ScheduleRead(o, clk, ss, dst))
 return FALSE;
 else if (! ScheduleOperation(o, clk, ss, dst))
 return FALSE;
 return TRUE;

Figure 13- The ScheduleOperands function.
In the ScheduleRead function (Figure 14), the best available path that can transfer a value from its
storage to the specified destination at clock cycle clk is selected and scheduled.

00
01
02
03
04
05
06
07
08
09

bool ScheduleRead(value v, clock clk, schedule status ss, destination dst)
 P = paths from storage of v to dst sorted by PathPriorities
 foreach(p ∈ P)
 p.timings.end = clk;
 calculate p.timings.start;
 if (resources of p not reserved in ss.resTable)
 reserve p in ss.resTable;
 add corresponding RTAs to ss.RTAs
 return TRUE;
 return FALSE;

Figure 14- The ScheduleRead function.

6. Experiments
In this section we report results of implementing our algorithm in a NISC compiler that is being
developed as part of the NISC based design tool set. The input to the compiler is the netlist of datapath
components as well as the application written in ANSI C. To evaluate our algorithm we performed two
sets of experiments. First, we compiled a set of benchmarks on a set of architectures and evaluated the
schedules. We reused the same datapath to compile and implement different benchmarks. Next, for

 13

DCT algorithm, we started from a simple architecture and iteratively refined and customized it to
improve the performance, power, energy and area.

6.1 Reusing datapath for different benchmarks
For benchmarks, we used the bdist2 function (from MPEG2 encoder), DCT 8x8, FFT, and a sort
function (implementing the bubble sort algorithm). The FFT and DCT benchmarks have data
independent control graphs. The bdist2 benchmark works on a 16×h block and we used h=10 in our
experiments. For the sort benchmark, we calculated the best-case and worst-case results for sorting 100
elements. Among these benchmarks, FFT has the most parallelism and sort is a fully sequential code.

Figure 15- Datapath with simple interconnects.
To evaluate the effect of interconnects, we used a set of architectures that had the same number and type
of functional units and storages but had different interconnect configuration. We started with an
architecture with no pipelining (NP) similar to Figure 15. Then we added controller pipelining (CP) by
adding CW and status registers in front of control memory and address generator (AG), respectively.
We then added datapath pipelining (CDP) by adding registers to the input/output ports of functional
units and data memory. At the end, we added data forwarding (CDP+F) by adding interconnects from
output of functional units to the input registers of other functional units. The final architecture is similar
to what is shown in Figure 16.

Figure 16- Datapath with complex interconnects.
We scheduled the benchmarks on the above datapaths and verified the results by simulating the
generated Verilog files. The number of execution cycles of each benchmark on different architecture is
shown in Table 1. While adding pipelining reduces the clock period, it may increase the cycle counts
especially if there is not enough parallelism in the benchmark. Therefore, except for FFT, the cycle
count of other benchmarks increases when we move from NP, to CP and CDP. The considerable

 14

decrease of execution cycle counts from CDP to CDP+F shows that the data forwarding paths between
components are utilized well by our scheduling algorithm.

Table 1- Execution cycles counts of benchmarks.
 NP CP CDP CDP+F

Bdist2: block 16x10 6143 6326 7168 5226
DCT 8x8 5225 5882 7146 6570
FFT 219 220 218 166
Sort: Best case (N=100) 25447 35349 84161 74162
Sort: Worst case (N=100) 35149 49902 98714 88715

We also evaluated the schedule of benchmarks on two processor-like NISC architectures. The datapath
of NM1 architecture is the same as a MIPS M4K Core [21]. The NM2 architecture extends the datapath
of NM1 by adding one more ALU and 2 more register file read ports. Because of their similar datapath,
the clock periods of these architectures are similar. The second, third and forth columns in Table 2 show
the execution cycle counts of benchmarks on MIPS, NM1, and NM2, respectively. The last three
columns show the corresponding speedups vs. MIPS. We used a gcc-based cross compiler to compile
and optimize the benchmarks for MIPS. Note that although NM1 and MIPS have the same datapath, the
benchmarks run up to 70% faster on NM1. The parallelism in NM1 (and MIPS) is limited by the
number of register file read/write ports. However, our algorithm has well utilized the pipelining and data
forwarding paths between components and achieved the speedup by avoiding unnecessary accesses to
the register file. Our scheduling algorithm did utilize the extra resources in NM2 (especially for FFT)
and the result was up to 100% faster than MIPS.

Table 2- Execution cycle counts and speedups on MIPS and MIPS-like NISCs.
 Cycle count Speedup vs. MIPS
 MIPS NM1 NM2 MIPS NM1 NM2

bdist2: block 16x10 6727 5204 4363 1.00 1.29 1.54
DCT 8x8 6529 5386 5322 1.00 1.21 1.23
FFT 277 162 133 1.00 1.71 2.08
Sort: Best case (N=100) 45642 40103 40004 1.00 1.14 1.14
Sort: Worst case (N=100) 50493 54656 54557 1.00 0.92 0.93

To evaluate the effect of each architecture modification on the clock period and the overall execution
delay of benchmarks, we synthesized the architectures on a Xilinx VertixProII FPGA package using the
Xilinx ISE tools. The clock period of each architecture after placement and routing, retiming, and buffer
to multiplexer conversion; is reported in Table 3.

Table 3- Clock period of architectures after synthesis.
architecture NP CP CDP CDP+F NM1 NM2

clock period (ns) 12.4 9.8 5.4 6.7 8.6 8.7
In Table 4 under each architecture column, the first element shows the execution delay (cycle count ×
cycle period) of the benchmark and the second element shows the speedup vs. architecture NP.
Although, for each benchmark, the number of cycles in Table 1 increases from architecture NP to CP
and CDP, the execution times have decreased due to improvements of cycle periods.

Table 4- Execution delay (us) of benchmarks and speedup vs. NP.
 NP CP CDP CDP+F NM1 NM2

bdist2 76.2 1.0 62.0 1.2 38.7 2.0 35.0 2.2 44.8 1.7 38.0 2.0
DCT 64.8 1.0 57.6 1.1 38.6 1.7 44.0 1.5 46.3 1.4 46.3 1.4
FFT 2.7 1.0 2.2 1.3 1.2 2.3 1.1 2.4 1.4 1.9 1.2 2.3
Sort: Best 315.5 1.0 346.4 0.9 454.5 0.7 496.9 0.6 344.9 0.9 348.0 0.9
Sort: Worst 435.8 1.0 489.0 0.9 533.1 0.8 594.4 0.7 470.0 0.9 474.6 0.9

 15

Note that in these experiments, we neither used any optimization (such as loop unrolling) nor modified
the source code of benchmarks to increase the parallelism. The main goal of these experiments was to
show that our algorithm can schedule and generate control words for each clock and execute programs
correctly.

6.2 Case study: DCT implementation
In this section, a short introduction on DCT is presented, and then a custom datapath for the DCT is
designed and refined using NISC methodology. The Discrete Cosine Transform (DCT) [22] and Inverse
Discrete Cosine Transform (IDCT) are important parts of JPEG [25] and MPEG [26] standards. MPEG
encoders use both DCT and IDCT, whereas MPEG decoders only use IDCT. The definition of DCT for
a 2-D 8×8 matrix of pixels is as follows:

 ∑∑
−

=

−

=

++
=

1

0

1

0
2 2

)12(cos
2

)12(cos],[1],[
N

m

N

n N
vn

N
umnmf

N
vuF ππ

Where u, v are discrete frequency variables (0≤u, v≤7), f[i, j] gray level of pixel at position (i, j), and
F[u,v] coefficients of point (u, v) in spatial frequency. Assuming N=8, matrix C is defined as follows:

16

)12(cos
8
1]][[πunnuC +

=

Based on matrix C, an integer matrix C1 is defined as follows:

 C1 = round(factor × C)

The C1 matrix is used in calculation of DCT and IDCT:

 F = C1 × f × C2

where, C2= C1T. As a result, DCT can be calculated using two consecutive matrix multiplications.

6.2.1 Implementing DCT using general-purpose datapaths

Figure 17 shows the C code for multiplying two given matrix A and B using three nested loops. Using a
MIPS M4K Core processor [27], the matrix-multiplication-based DCT takes 13058 cycles to
compute [24]. However, given the MIPS datapath, the NISC implementation takes 10772 cycles. The
20% reduction in number of cycles is because of the finer-grained control that NISC compiler has over
the datapath compared to traditional compilers that use instruction-set abstraction. We generated the
synthesizable hardware description for our NISC-style MIPS (NMIPS), and synthesized it using Xilinx
ISE 6.3. In our implementation, the bus-width of the datapath is 16-bit, and it does not have any integer
divider or floating point unit. The clock frequency of 78.3MHz was achieved after synthesis and
Placement-and-Routing.

for(int i=0; i<8; i++)
 for(int j=0; j<8; j++){
 sum=0;
 for(int k=0; k<8; k++)
 sum = sum + A[i][k] ×B[k][j];
 C[i][j] = sum;
 }
Figure 17- C-Code of matrix multiplication.

All the experiments in this section are synthesized on Xilinx FPGA package Virtex2V250-6 using
Xilinx ISE 6.3 tool. Two synthesis optimizations of retiming and buffer-to-multiplexer conversions are

 16

applied during optimization to improve the performance. In these experiments, we set the PAR effort to
the highest level possible for maximum clock speed.

Figure 18 shows a simple general-purpose datapath (GPD) that includes an ALU, a Register File (RF), a
multiplier (Mul), a data memory (Mem), a Comparator (Comp), and three buses. The RF has 32
registers, and ALU and Comp are designed to execute various C operations listed in Table 5. In NISC,
the controller has a fixed structure and includes an Address Generator (AG), a Program Counter (PC),
and a Control Memory (CMem). To support function call, a Link Register (LR) is added to the
controller. The control and data memories are implemented using FPGA Block RAMs. The Block
RAMs are synchronous and need to be driven by the clock. On each FPGA package, 24 Block RAMs
exist where each has 16-Kb capacity. In our experiments, only two Block RAMs per architecture are
used. Also, the FPGA package has 24 pre-synthesized multipliers, which only one is used.

Component Operations
ALU Add, Sub, And, Or, Xor, Shift-right, Shift-left, Shift-right-unsigned, Negate, Not

Comparator Equal, Not-equal, Greater-or-equal, Greater-than, Less-than, Less-or-equal, Greater-or-equal-
unsigned, Greater-than-unsigned, Less-than-unsigned, Less-or-equal-unsigned

Table 5- ALU and Comparator operations.
To support constant-based operations and jumps, a 10-bit constant and a 10-bit offset is added. The total
number of bits in a single control word, including the constant and the offset bits, is 61. The NISC
compiler generates about 50 control words. The clock frequency of GPD is 92.6 MHz.

Figure 18- Block diagram of GPD.

In the rest of this section, we use different techniques to improve performance, area and power of the
design. The techniques include:

1. Software transformations: unrolling the matrix multiplication loops to increase the parallelism in
the code, and applying simple code transformations to reduce costly operations.

2. Using Multiply-and-Accumulate (MAC) unit: this technique improves the performance by chaining
the two operations without accessing the Register File.

3. Adding pipeline registers to the datapath: if applied properly, this technique decreases the overall
delay by reducing the clock period and increasing parallelism. Additionally, the power consumption
decreases due to the reduction in switching activity.

4. Adding pipeline registers to the controller: although this technique increases branch delay (and
hence the total number of cycles), the controller pipelining can help in reducing the critical path

 17

5. Removing unused parts of ALU, comparator and register file: in a general-purpose datapath, all the
operations supported in C, must be handled by the datapath. However, in a customized datapath,
only the operations used by a specific application are supported. This optimization improves the
area and performance.

6. Reducing the bit-width of some components without affecting the precision of the DCT
calculations: this optimization reduces the area.

6.2.2 Designing a custom hardware for DCT

In general, customization of design involves both software and hardware transformations. In this
section, we first apply the software transformations, and then customize and refine the datapath
accordingly. Currently, the transformations are applied manually. In future, they can be applied
automatically by tools.

6.2.2.1 Software transformations

To increase the parallelism, we unroll the inner-most loop of the matrix multiplication code. The
transformed code is shown in Figure 19. Note that operation “*” represents accessing the value of a
pointer (i.e. loading from memory). Next, we apply other software transformations to reduce the costly
operations: To decrease the number of multiplications, we replace i × 8 with i<<3 (i shift left three
times). Additionally, to calculate the address, we need two consecutive additions, which may require
two chained adders. However, if we replace one of the additions with an OR operation, then we can
chain one adder with an OR unit, which is less costly than an extra adder. The conversion is possible in
this particular application because of the special values of the constants. For example, i8+const is equal
to i8|const, because 0≤const≤7 at all time and the first three bits of i8 is always zero. Additionally, the
two for loops can be merged to one, by combining the loops’ counters. The new counter is represented
by variable ij. Figure 20 shows the transformed code after the above modifications.

for(int i=0; i<8; i++)
 for(int j=0; j<8; j++){
 i8 = i × 8;
 sum = *(A + i8) × *(B + j);
 sum += *(A + i8 + 1) × *(B + 8 + j);
 sum += *(A + i8 + 2) × *(B + 16 + j);
 sum += *(A + i8 + 3) × *(B + 24 + j);
 sum += *(A + i8 + 4) × *(B + 32 + j);
 sum += *(A + i8 + 5) × *(B + 40 + j);
 sum += *(A + i8 + 6) × *(B + 48 + j);
 sum += *(A + i8 + 7) × *(B + 56 + j);
 C[i][j] = sum;
 }
Figure 19- C-code of unrolled matrix multiplication.

 18

ij=0;
do {
 i8 = ij & 0xF8;
 j = ij & 0x7;
 aL = *(A+ (i8|0)); bL = *(B + (0|j)); sum = aL × bL;
 aL = *(A+ (i8|1)); bL = *(B + (8|j)); sum += aL × bL;
 aL = *(A+ (i8|2)); bL = *(B + (16|j)); sum += aL × bL;
 aL = *(A+ (i8|3)); bL = *(B + (24|j)); sum += aL × bL;
 aL = *(A+ (i8|4)); bL = *(B + (32|j)); sum += aL × bL;
 aL = *(A+ (i8|5)); bL = *(B + (40|j)); sum += aL × bL;
 aL = *(A+ (i8|6)); bL = *(B + (48|j)); sum += aL × bL;
 aL = *(A+ (i8|7)); bL = *(B + (56|j)); *(C + ij) = sum + (aL × bL);
 ++ij;
} while(ij!=64);

Figure 20- Transformed matrix multiplication C-code.

6.2.2.2 Initial Custom datapath: CDCT1

By looking at the body of loop in Figure 20, four steps of computation can be identified:

• Calculation of the memory addresses of the relevant elements

• Loading the values of those elements from data memory,

• Multiplying the two values,

• Accumulating the multiplication results.

Figure 21- Block diagram of CDCT1.

 19

We design our custom datapath in a way that each of these steps is a pipeline stage. Figure 21 shows the
proposed custom pipelined datapath (CDCT1). The datapath includes four major pipeline stages that are
marked in the figure. We have used operation chaining to reduce RF file accesses and decrease register
pressure. Chaining the operations improves the energy consumption and performance. The OR and
ALU are chained, as well as the Mul and Adder. Note that the chaining of multiply and add forms a
MAC unit in the datapath. To assure proper usage of the MAC unit, we enforce mapping the aL, bL,
and sum variables, to aL, bL and SUM registers in the datapath. After compilation, the total number of
cycles of the DCT is 3080, and the maximum clock frequency is 85.7MHz.

Component CMem+CW RF+RF_o ALU+ALU_o RF setuptime
Delay (ns) 3.28 2.39 5.4 0.58

Table 6- Critical-path delay breakdown of CDCT1.
Table 6 shows the critical-path breakdown of CDCT1. Each column in the table shows the sum of a
component delay and its output-interconnect delay. The critical path goes through CMem, RF, B2, B4,
ALU, B5, and back to RF.

 CDCT2: Bus customization and adding a pipeline register to the datapath

According to Table 6, ALU and the wire that connects ALU to RF are in the critical path. To reduce the
critical path delay, we insert an additional pipeline register (i.e. reg1) in the output of the ALU, and call
the new design CDCT2 (Figure 22). We also replace all the global buses, including B5, with point-to-
point connections. Only the connections that are used by the DCT application are kept. Since there is no
function call in DCT, the LR register can be removed. The NISC compiler automatically analyzes the
new datapath and regenerates the control words to correctly handle the flow of the data. CDCT2 runs
the DCT algorithm in 2952 cycles at the maximum clock frequency of 90MHz. The reduction in
number of cycles is due to additional parallelism created by the separation of interconnects. Table 7
shows the breakdown of the critical path of CDCT2. Note that, in CDCT2, the critical path goes through
the comparator instead of the ALU. In general, adding pipeline registers combined with retiming
optimization is more effective; because, retiming balances the delay of the pipeline stages by moving
some of the logic across the pipeline registers. In all the experiments here, we enabled retiming
optimization to improve the clock frequency.

 20

offset

status

CMem

AG

const

RF

Comp

ALU

OR

reg1
DMem

Mul

Adder

aL bL

P

SUM

M3

ar

M2

M1

Figure 22- Block diagram of CDCT2.

Component CMem+CW RF+RF_o Comp+comp_o AG+PC setup
Delay (ns) 2.93 2.45 3.726 2.06

Table 7- Critical-path delay breakdown of CDCT2.

6.2.2.3 CDCT3: Eliminating the unused parts of ALU, comparator and RF

Next, we customize the ALU and comparator for the DCT application. In Figure 20, only Add, And,
Multiply and Not-equal (!=) operations are used. The first two operations are executed by ALU, the
third by Mul, and the last by Comp. We can simplify the ALU and comparator by eliminating the
unused operations. NISC compiler allocates and uses nine registers in RF. Therefore, we reduce number
of registers in RF from 32 to 16. The new architecture (CDCT3) runs much faster at the clock frequency
of 114.4MHz. The breakdown of critical path delay (Table 8) shows a considerable reduction in the
delay of the comparator. Also, the number of fanouts of RF output wires is reduced, and hence its
interconnect delay is reduced. These modifications, also, reduce the area significantly.

Component CMem+CW RF+RF_o Comp+comp_o AG+PC setup
Delay (ns) 2.76 1.64 2.29 2.06

Table 8- Critical-path delay breakdown of CDCT3.

6.2.2.4 CDCT4 and CDCT5: Controller pipelining

Looking at the critical paths of the architectures, it is evident that the controller contributes to a major
amount of the delay. The CMem, CW, and Address Generator (AG) delays are part of the critical path
of CDCT3. To reduce the effect of the controller delay, we insert one pipeline register (i.e. CW register)
in front of the CMem. The new architecture (CDCT4) can run much faster at the clock frequency of
147MHz. Table 9 shows a reduction in the critical path delay. On the downside however, the number of
cycles of DCT increases to 3080 because of an extra branch delay cycle. Note that the NISC compiler

 21

automatically analyzes the datapath and notices the extra branch delay. So, the user does not need to
change the compiler manually.

Component CMem+CW RF+RF_o Comp+comp_o AG+PC setup
Delay (ns) 1.39 1.6 1.74 2.06

Table 9- Critical-path delay breakdown of CDCT4.
To further reduce the effect of controller’s delay on the clock cycle, we insert another pipeline register
(called status register) at the output of the Comp. This register eliminates the AG’s delay from the
critical path. Table 10 shows the breakdown of the critical path delay of the new architecture (CDCT5).
In CDCT5, the critical path goes through the multiplier. Since the multiplier is a pre-synthesized unit in
the FPGA package, it is not possible to reduce the critical path delay any further. Note that, CDCT5 has
a branch delay of two and runs at the clock frequency of 170MHz. The total number of cycles of DCT
has increased to 3208. CDCT4 and CDCT5 occupy larger area than CDCT3 due to the additional CW
and status registers.

Component bL+bL-o Mul+Mul-o P setuptime
Delay (ns) 1.29 4.25 0.3

Table 10- Critical-path delay breakdown of CDCT5.

6.2.2.5 CDCT6: bit-width reduction

In the final optimization, we reduce the bit-width of some of the components without affecting the
precision of the calculations. The goal of this optimization is further reducing the area. We observed
that the address-calculation pipeline stage does not need the 16-bit operations. In fact, all the address
values are in the range of 0 to 255. Therefore, the bit width of RF, OR, ALU, and Comp are reduced to
8 bits. In this case, the clock frequency remains fixed at 170MHz. Figure 23 shows final design
(CDCT6) after all the transformations.

Figure 23- Block diagram of CDCT6.

 22

6.2.3 Comparing performance, power, energy and area of the NISCs

Table 11 summarizes all the experiments in Section 6.2. The second column briefly describes the
experiments, and the third column shows the bit-width of Control Words. In these experiments, we first
mapped DCT to two general-purpose datapaths (NMIPS and GPD). Then, we designed a custom
pipelined datapath for DCT called CDCT1. Next, we added an additional pipeline register to CDCT1,
simplified the functional units, and added controller pipelining. Finally, we optimized the bit-width of
address-calculation pipeline stage and generated CDCT6.

 General Description CW bit width
NMIPS NISC with MIPS datapath 76

GPD A general-purpose NISC architecture 61
CDCT1 Custom NISC for DCT 59
CDCT2 CDCT1 + additional pipeline register + bus transformation 60
CDCT3 CDCT2 with a simplified ALU, comparator and RF 50
CDCT4 CDCT3 + CW register 50
CDCT5 CDCT4 + status register 51
CDCT6 CDCT5 with a 8-bit-width address calculation pipeline stage 51

Table 11- Summary of the experiments.
Table 12 compares the performance, power, energy, and area of the all NISC implementations. We
synthesized all the NISC architectures on FPGA. After placement and routing and based on the critical
path delays, we extracted the maximum clock frequency of each design (shown in the third column).

In Table 12, column fourth shows the total execution time of the DCT algorithm calculated based on
number of cycles and the clock frequency. Note that although in some cases (such as CDCT4 and
CDCT5) the number of cycles increases, the clock frequency improvement compensates for that. As a
result, the total execution delay maintains a decreasing trend.

Column fifth shows the average power consumption of the NISC architectures while running the DCT
algorithm. All the designs are stimulated with the same data values. We used Post-Placement and
Routing simulation to collect the signal activities, and computed the power consumption using Xilinx
XPower tool. Figure 24 shows the power breakdown of different designs in terms of the clock, logic
and interconnect power. Column sixth shows the total energy consumption calculated by multiplying
power and execution time.

 No. of cycles Clock freq DCT exec. time(us) Power (mW) Enegy (uJ) Normalized area
NMIPS 10772 78.3 137.57 177.33 24.40 1.00

GPD 11764 79.5 147.97 150.33 22.24 1.00
CDCT1 3080 85.7 35.94 120.52 4.33 0.81
CDCT2 2952 90.0 32.80 111.27 3.65 0.71
CDCT3 2952 114.4 25.80 82.82 2.14 0.40
CDCT4 3080 147.0 20.95 125.00 2.62 0.46
CDCT5 3208 169.5 18.93 106.00 2.01 0.43
CDCT6 3208 171.5 18.71 104.00 1.95 0.34

Table 12- Performance, power, energy, and area of the DCT implementations.
In these experiments, GPD consumes lower power than NMIPS because it does not have any
forwarding path. Also, CDCT1 consumes less power than GDP because CDCT1 controls the activation
of multiplier by aL and bL registers, while GDP wastes power by always activating ALU, Mul and
Comp simultaneously.

CDCT2 consumes less power compared to CDCT1 because of the replacing shared bus B5 with short
point-to-point connections. Instead of having a B5 with two fanins and four fanouts, three point-to-point

 23

connections are used. This optimization reduces the total bus capacitance and hence, the total power
consumption. The diagram of Figure 24 confirms the reduction in interconnect power consumption of
CDCT2.

0
20
40
60
80

100
120
140
160
180
200

NMIPS GPD CDCT1 CDCT2 CDCT3 CDCT4 CDCT5 CDCT6

P
ow

er
 (m

W
)

clock logic interconnect

Figure 24- Power breakdown of the DCT implementations.

Power consumption of CDCT3 is lower than CDCT2 because of the elimination of unused operations in
ALU and comparator. Elimination of operations reduces number on fan-outs of the RF output wires.
Therefore, reduction in interconnect power, as well as logic power is achieved. The power breakdown
of CDCT3 confirms this fact. Note that as the clock frequency goes up, the clock power gradually
increases.

In CDCT4, the power consumption further increases, because of: (1) the higher clock power due to
higher clock frequency and higher number of pipeline registers; (2) the higher logic power due to CW
register gates; and more importantly, because of (3) the power consumption of logic and interconnects
added by retiming algorithm. Since the difference between the delays of the two pipeline stages located
before and after CW register is high, the retiming works aggressively to balance the delay. As a result it
adds extra logic to the circuit.

In CDCT5, we added the status register to the output of Comp and reduced the critical path. In this case,
the retiming algorithm works less aggressive because the delays of the pipeline stages are less
imbalanced. As a result, we observe a reduction in logic and interconnect power. The last column of
Table 12 shows the normalized area of different designs calculated based on the number of FPGA slices
that each design (including memories) occupies. The area trend also confirms the increase in area in
CDCT4 followed by a decrease in CDCT5, which we believe is because of the retiming.

Figure 25 shows the performance, power, energy and area of the designs normalized against NMIPS.
The total execution delay of DCT algorithm has a decreasing trend except for the GPD that takes many
cycles to finish the execution. The power consumption decreases up to CDCT3 and then increases. The
energy consumption significantly drops at CDCT1, because of the reduction in number of cycles and
power consumption. From CDCT1 to CDCT6, the energy decreases gradually in a slow paste.

As shown in Figure 25, CDCT6 is the best design in terms of delay, energy consumption and area.
However, CDCT3 is the best in terms of power consumption. As a result, CDCT3 and CDCT6 are
considered the pareto-optimial solutions. Compared to NMIPS, CDCT6 runs 7.14 times faster,
consumes 1.69 times less power and 12.51 times less energy. Also CDCT6 occupies 3 times less area
than NMIPS. Note that performance of NMIPS is 20% better than performance of a MIPS core. Also,
since NMIPS does not have instruction decoder, its area is less than MIPS. In our experiments, we
compared the results to NMIPS which is conservative relative to MIPS core.

 24

0

0.2

0.4

0.6

0.8

1

1.2

NMIPS GPD CDCT1 CDCT2 CDCT3 CDCT4 CDCT5 CDCT6

N
or

m
al

iz
ed

 v
al

ue
s

Normalized exec. Time Normalized power
Normalized area Normalized energy

Figure 25- Comparing different DCT implementations.

The experiments show that using NISC methodology, a designer (or a tool) can start from a simple
general-purpose datapath and iteratively refine and customize it for one or more applications. If properly
designed, the custom hardware can be shared by several applications. It is also possible to trade some of
the customizations for post-implementation re-programming by maintaining some of the general-
purpose features of the initial design.

6.2.4 Comparison with a manual design

We have also compared the quality of our final design (CDCT6) with a commercial manual design [28].
In [28], the quality of a manual design after mapping to Xilinx Virtex2V250-6 package is reported. We
also used the same package in our experiments to enable the comparison. Their design takes 82 cycles
to compute an 8×8 DCT with a 15-bit precision (ours has a 16-bit precision). They have achieved
maximum clock frequency of 74MHz on the FPGA package (we achieved 170MHz). Therefore, their
total execution time of an 8×8 DCT is 1.1us. Compared to NMIPS that takes 137.57us, the manual
design is 125 times faster. This clearly shows two orders of magnitude performance gap between the
manual design and software implementation. Compared to CDCT6 that takes 18.71us to compute DCT,
the manual design is 17 times faster. These results show that a custom NISC architecture can serve as an
intermediate point between software and hardware implementations.

On the other hand, the total area of the manual design is 1365 FPGA slices, while the area of CDCT6 is
169 slices. Note that the low area of CDCT6 allows fitting eight of CDCT6 in the same area as of the
manual hardware design. Since the DCT algorithm can usually run on different parts of an image in
parallel, the performance of eight CDCT6 is almost eight times of the performance of one. This makes
the CDCT6 only two times slower than the manual hardware design. Figure 26 compares the
performance and normalized area of the two designs (power is not reported in [28]). Note that it took us
about one week to explore different design alternatives while it usually takes significantly longer time to
implement and verify a manual designs.

1.1

18.71

0

5

10

15

20

Manual Design CDCT6

DC
T

ex
ec

. t
im

e
(u

s)

8.1

1

0

2

4

6

8

10

Manual Design CDCT6

No
rm

al
iz

ed
 A

re
a

Figure 26- Comparing CDCT6 with a commercial manual design [28].

 25

7. Related works
Because the architecture style of NISC is new, little research has been done on the mapping algorithms
for NISC. However, there has been an extensive body of work on scheduling and binding algorithms in
the area of high level synthesis and retargetable compilers.

Force directed scheduling (FDS) [1], [2] is commonly used to solve the timed constrained scheduling
problem. This algorithm, distributes the execution of similar operations in different control steps in
order to achieve high utilization of functional units while meeting the time deadline. Path-based
scheduling algorithm [3] tries to minimize the number of control steps needed to execute the critical
paths that exist in the given CDFG. To do so, the algorithm gives emphasis to conditional branching i.e.
it starts by extracting all possible execution paths from the given CDFG and schedules them
independently. Then the schedules of different paths are combined to generate the final schedule for the
whole design. However, the path-based approach restricts the execution order of the operations before
scheduling.

List-based scheduling techniques [5] are used to solve resource constrained scheduling problem in
which the number of resources of different types are limited. List scheduling processes each control step
sequentially. At each control step, it tries to choose the best operation from the list of candidate
operations, subject to resource constraints. List scheduling uses a ready-list, which keeps all nodes that
their predecessors are already scheduled. The ready-list is always sorted with respect to a priority
function. The priority function always resolves the resource contention among operations, i.e.
operations with lower priority will be deferred to the next or later control steps. The quality of the
results produced by a list-based scheduler depends predominantly on its priority function.

Mobility of the operation, i.e. the difference between ASAP (as soon as possible) and ALAP (as late as
possible) times, is commonly used as the priority function in many HLS systems. Different priority
functions and heuristics have been proposed to improve the quality of list scheduling. The proposed list
scheduling algorithms in [6] and [7] uses mobility as the primary priority functions. To break the tie
among a set of available operations with similar mobility, they assign higher priority to those operations
that contribute to the same output. Before scheduling begins, they analyze the outputs of operations in
the DFG by constructing a set of trees (cones) that start from output nodes as roots. However, they use a
conventional scheduler that starts from inputs and proceeds forward, and the output trees are only used
to break the tie during schedule. A similar approach is used in [8] and [9] for scheduling on VLIW
architectures. Output trees in DFG are also used for instruction selection using the maximal-munch
algorithm. Processing the DFG backward, from outputs towards inputs, has proven to be very fruitful.
However, this idea has been mainly used in priority functions but not the scheduling algorithm itself.

Many researchers ([10], [11], [12], [13], [14]) have also attempted to incorporate layout information in
the synthesis process, especially in scheduling. However, similar to traditional HLS, these approaches
generate the datapath after scheduling and therefore they can only predict or estimate layout information
during scheduling.

While most HLS techniques use list-based scheduling and perform allocation and binding separately,
some approach, such as [15] and [16], try to perform scheduling, allocation and binding simultaneously
using integer linear programming or branch-and-bound algorithms. Although they may achieve optimal
results, complexity restrains the practical applicability of such approaches.

Getting a fixed architecture model as input is a common assumption in retargetable compilers, mostly
used for Application Specific Instruction set Processors (ASIPs). But usually in these compilers the
architecture model is described in terms of instructions, which is a much higher level of abstraction than
the structural details of the architecture. Even compilers such as RECORD [17] and CHESS [19] that

 26

use a structural description of architecture, extract the higher level instruction information for using in
the compiler. The RECORD compiler extracts behavioral model of instructions from MIMOLA HDL
 [18]. They assume a horizontal microcode machine with single cycle operation. They process the
structure of the datapath from destination storages towards source storages to extract valid register
transfers (RTs). After analyzing the controller, they reject illegal RTs that do not correspond to an
instruction, and use the remaining RTs in the compiler. The CHESS compiler uses the nML language
 [20] to extract the instruction set graph (ISG) that captures structural resources in the architecture that
are used by each instruction.

Regardless of the approaches, every compiler generates a stream of processor instructions and assumes
that the processor itself deals with the control signals of its component. Since there is no instruction in
NISC, the compiler directly maps the program to the datapath. In this way, compiler has complete fine-
grained control over datapath and can achieve better parallelism and resource utilization. However, not
only the compiler should generate the schedule, it should also generate the control values of architecture
component in each cycle. Therefore, the NISC compiler must deal with much more structural details
and solve a more complex problem than traditional processor compilers.

In all HLS approaches scheduling is done mainly based on the delay of functional units, while all or part
of binding (especially interconnect binding) is done afterwards. This is not possible in NISC and
scheduling and binding must be done simultaneously (see Section 4).

8. Conclusion
We introduce No-Instruction-Set-Computer (NISC) to enable design reuse and refinement. The NISC
compiler has complete fine-grained control over the datapath and generates the controller by specifying
the control values of components in each cycle. We also presented a scheduling and binding algorithm
for compiling a program on a NISC.

Our algorithm is different from HLS techniques because it assumes that the datapath is fixed and
performs the scheduling and binding simultaneously while processing the DFGs backward. It is also
different from conventional instruction-set based compiler techniques because it directly maps the
program on a given datapath without using any instruction abstraction. Consequently, it must deal with
all structural details of the architecture and solve more complex problems.

Our experiments indicate that the algorithm efficiently supports features such as controller / datapath
pipelining, data forwarding, multi-cycle and pipeline units, and operation chaining. We ran several
benchmarks through our prototype compiler and simulated and synthesized the results on Xilinx FPGA
using the Xilinx ISE tools. We showed that a NISC with a datapath similar to that of a MIPS M4K can
perform comparably or better (up to 70%). We predict the same applies when using datapath of other
embedded processor cores. We also presented a case-study of designing a custom datapath for DCT
application using NISC. We started from a general-purpose pipelined datapath and iteratively refined it
to achieve better performance, power and area. Our results show 7.14 times performance improvement,
1.64 times power reduction, 12.5 times energy savings, and more than 3 times area reduction compared
to a soft-core MIPS implementation. We also compare the quality of our designs to a state-of-the-art
commercial manual design.

Future works focuses on applying more optimizations in the compiler and simultaneous optimization of
datapath for multiple applications.

9. Acknowledgements
This work is in part supported by SRC contact 1118.001.

 27

10. References
[1] P. G. Paulin, J. Knight, "Algorithms for High-Level Synthesis", IEEE Design & Test of

Computers, 1989.
[2] P. G. Paulin, J. P. Knight, "Force-Directed Scheduling for the Behavioral Synthesis of ASIC’s",

IEEE Transactions on Computer-Aided Design, 1989.
[3] R. Camposano, "Path-Based Scheduling for Synthesis", IEEE Transactions on Computer-Aided

Design, 1991.
[4] A. Orailoglu and D.D. Gajski, “Flow graph representation”, Design Automation Conference, 1986.
[5] D. Gajski, N. Dutt, A. Wu, S. Lin, "High-Level Synthesis Introduction to Chip and System

Design", Kluwer Academic Publishers, The Netherlands, 1994.
[6] S. Govindarajan, R. Vemuri, "Cone-Based Clustering Heuristic for List-Scheduling Algorithms",

Proceedings of European Design & Test Conference (ED&TC), 1997.
[7] A.M. Sllame, V. Drabek, "An efficient list-based scheduling algorithm for high-level synthesis",

Proceedings of the Euromicro Symposium on Digital System Design, 2002.
[8] E. Ozer, S. Banerjia, “Unified Assign and Schedule: A New Approach to Scheduling for Clustered

Register File Microarchitectures”, MICRO-31, 1998.
[9] J. R. Ellis, “Bulldog: A compiler for VLIW architectures”, Cambridge, MA: The MIT Press, 1986.
[10] M. Xu, F. J. Kurdahi, "Layout-driven high level synthesis for FPGA based architectures", DATE,

1998.
[11] S. Y. Ohm, F. J. Kurdahi, N. Dutt, M. Xu, "A comprehensive estimation technique for high-level

synthesis", International Symposium on Systems Synthesis, 1995.
[12] D. Kim, J. Jung, S. Lee, J. Jeon, K. Choi, "Behavior-to-placed RTL synthesis with performance-

driven placement", International Conference Computer Aided Design, 2001.
[13] J. Zhu, D. Gajski, "Soft scheduling in high level synthesis", Design Automation Conference, 1999.
[14] W.E. Dougherty, D.E. Thomas, "Unifying behavioral synthesis and physical design", Design

Automation Conference, 2000.
[15] B. Landwehr, P. Marwedel, and R. Dömer, "OSCAR: Optimum Simultaneous Scheduling,

Allocation and Resource Binding Based on Integer Programming", Proc. of European Conference
on Design Automation, 1994.

[16] N. Berry, B.M. Pangrle, "SCHALLOC: an algorithm for simultaneous scheduling & connectivity
binding in a datapath synthesis system", Design Automation Conference, 1990.

[17] R. Leupers, P. Marwedel, "Retargetable Generation of Code Selectors from HDL Processor
Models", European Design and Test, 1997.

[18] P. Marwdedel, “The MIMOLA Design System: Tools for the Design of Digital Processors”,
Design Automation Conference, 1984.

[19] J. Van Praet, D. Lanneer, G. Goossens, W. Geurts, H. De Man, "A Graph Based Processor Model
for Retargetable Code Generation", European Design and Test Conference, 1996.

[20] A. Fauth, J. Van Praet, M. Freericks, "Describing instruction set processors using nML", European
Design and Test Conference, 1995.

[21] MIPS32® M4K™ Core, http://www.mips.com
[22] N. Ahmed, T. Natarajan, and K.R. Rao, Discrete Cosine Transform, IEEE Trans. On Computers,

vol. C- 23, 1974.
[23] M.K. Jain, M. Balakrishnan, and A. Kumar, ASIP Design Methodologies: Survey and Issues, In

Proc. of International Conference on VLSI Design, 2001.
[24] M. Reshadi, D. Gajski, An Algorithm for Compiling Programs to Custom Pipelined Datapaths, In

Proc. International Symposium on System Synthesis (ISSS05), 2005.
[25] ISO/IEC JTC1 CD 10918. Digital Compression and Coding of Continuous-tone Still Images - part

1, requirements and guidelines, ISO, 1993 (JPEG)

 28

[26] ISO/IEC JTC1 CD 13818. Generic Coding of Moving Pictures and Associated Audio: Video, ISO,
1994 (MPEG-2 standard)

[27] MIPS32® M4K™ Core, http://www.mips.com
[28] http://www.cast-inc.com/cores/dct/cast_dct-x.pdf

