
HW-SW partitioning for architectures with partial dynamic
reconfiguration

Sudarshan Banerjee Elaheh Bozorgzadeh Nikil Dutt
Center for Embedded Computer Systems
University of California, Irvine, CA, USA
Irvine, CA 92697-3425,USAfbanerjee,eli,duttg@ics.uci.edu

CECS Technical Report #05-#02

April, 2005

Abstract
Partial dynamic reconfiguration is a key feature of modern reconfigurable architectures such as

the Xilinx Virtex series of devices. However, this capability imposes strict placement constraints
such that even exact system-level partitioning (and scheduling) formulations are not guaranteed
to be physically realizable due to placement infeasibility. We first present an exact approach for
HW-SW partitioning that guarantees correctness of implementation by considering placement im-
plications as an integral aspect of HW-SW partitioning. Ourexact approach is based on ILP (in-
teger linear programming) and considers key issues such as configuration prefetch for minimizing
schedule length on the target single-context device. Next,we present a physically-aware HW-SW
partitioning heuristic that simultaneously partitions, schedules, and does linear placement of tasks
on such devices. With the exact formulation we confirm the necessity of physically-aware HW-SW
partitioning for the target architecture. We demonstrate that our heuristic generates high-quality
schedules by comparing the results with the exact formulation for small tests and with a popular,
but placement-uanaware scheduling heuristic for a large set of over a hundred tests. Our final
set of experiments is a case study of JPEG encoding – we demonstrate that our focus on phys-
ical considerations along with our consideration of multiple task implementation points enable
our approach to easily handle heterogenous architectures (with specialized resources distributed
between general purpose programmable logic columns). The execution time of our heuristic is
very reasonable- task graphs with hundreds of nodes are processed (partitioned, scheduled, and,
placed) in a couple of minutes.

1

Contents

1 Introduction 4

2 Related work 5

3 Problem description 6

4 Key issues in scheduling on target architecture 8
4.1 Criticality of linear task placement 8
4.2 Heterogeneity considerations in scheduling 10
4.3 Scheduling for configuration prefetch 11

5 Approach 11
5.1 Notation .11
5.2 ILP formulation .. . 11

5.2.1 ILP variables . 12
5.2.2 Constraints . 12
5.2.3 Extending the ILP for multiple, heterogenous implementations 15

5.3 Heuristic approach 16
5.3.1 Heuristic formulation 16
5.3.2 Placement and EST computation 18
5.3.3 Heterogeneity .20
5.3.4 Worst-case complexity .. . 20

6 Experiments 21
6.1 Experimental setup 21
6.2 Experiments on feasibility 22
6.3 Experiments on heuristic quality 22

6.3.1 First-fit Vs best-fit .. 24
6.3.2 Run-time of heuristic .. . 25

6.4 Case study of JPEG encoder 25

7 Conclusion 27

8 Acknowledgements 28

List of Figures

1 Dependency task graph .. 6
2 System architecture .. . 6
3 Heterogenous FPGA with partial RTR 7

2

4 Simple infeasible .. 10
5 Detailed infeasible .. . 10
6 Moves in HW-SW partitioning with multiple implementationpoints 17
7 Task parameters .18
8 Optimally placed .18
9 Synthetic experiments 23
10 Sample experiments for v60 23
11 Task graph for jpeg encoder 26

3

1 Introduction

Dynamic reconfiguration, often referred to as RTR (run-timereconfiguration) provides the abil-
ity to change hardware configuration during application execution. This enables a larger percentage
of the application to be accelerated in hardware, hence reducing overall application execution time
[16]. Modern-day SRAM-based FPGAs are examples of such hardware devices. Additionally,
some FPGAs such as the Virtex devices from Xilinx [25] allow modification of only a part of the
configuration (partial RTR). This is a very powerful featurespecially for single-context FPGAs, by
enabling the possibility of overlapping computation with reconfiguration to reduce the significant
reconfiguration time overhead. Multicontext devices such as Morphosys [8] incur a lower over-
head by paying a very significant area penalty to simultaneously store multiple contexts. Our work
focuses on single-context devices where the dynamic reconfiguration overhead is very significant.

In this work, we consider the problem of task level HW-SW partitioning for a resource-constrained
system, where the HW unit has partial RTR capability. Given an application represented as a task
DAG (directed acyclic graph), our goal is to maximize application performance (minimize sched-
ule length) when there exists a a hard resource constraint onthe amount of available configurable
logic.

In a traditional codesign flow, HW-SW partitioning optimizes the design latency and is followed
by the physical design stage that places the tasks scheduledto HW on the underlying device. How-
ever, for tasks mapped onto our target architecture, partial RTR capability imposes strict linear
placement constraints. Under such constraints, an optimalschedule generated by a HW-SW par-
titioning approach that does not consider the exact physical location of the task while scheduling
[10], may be physically unrealizable because ofplacement infeasibility.

Another key aspect of modern reconfigurable architectures like the Virtex-II isheterogeneity.
Such architectures contain dedicated resource columns of multipliers, block memories, etc., dis-
tributed between general purpose programmable logic columns. Such dedicated resources often
lead to more efficient implementations that operate at a higher frequency. It is important to con-
sider the area-execution time trade-offs arising from heterogeneity during HW-SW partitioning-
for our problem, the placement restrictions due to heterogeneity pose an additional challenge.
Feasibility issue, Exact approach: With the above two factors in mind, we first demonstrate
that existing partitioning (and scheduling) approaches that do not consider physical task layout
can result in unrealizable (infeasible) designs. This motivates us to present an exact approach to
study the solution space. Our exact approach is an ILP (integer linear programming) formulation
that incorporates physical layout into the HW-SW partitioning (and scheduling) problem. Our ap-
proach additionally integrates the key feature of configuration prefetch [13] – given the significant
reconfiguration overhead of our target architecture, this feature is critical for minimizing schedule
length.
Heuristic approach: While the ILP formulation is a key first step in exploring theproblem space,
the significant run-time makes it impractical for all but thesimplest problems. So, we next present
a KLFM-based heuristic (Kernighan-Lin/Fiduccia-Matheyes) that considers detailed linear place-
ment as an integral part of scheduling. Our heuristic additionally considers the existence ofmul-
tiple task implementation points, potentially arising from compiler optimizations. We compare

4

our approach with the exact approach as well an approach thatis insensitive to placement impli-
cations during scheduling – the experimental data over a large set of benchmarks (more than a
hundred data points) confirms the necessity of considering placement implications as an integral
part of scheduling on our target architecture. The run-timeof our heuristic is very reasonable –
task graphs with hundreds of nodes arepartitioned, scheduled, placedin a couple of minutes.
Heterogeneity: A key benefit of considering placement and multiple task implementations is the
ability to extend our approach to consider heterogeneity with relatively minor modifications. In a
detailed case study of mapping a jpeg encoder task graph under resource constraints, we explore
the benefits and issues with dynamic task implementations using heterogenous resources on such
architectures.

2 Related work

HW-SW partitioning is an extensively studied problem with aplethora of approaches. This in-
cludes ILP (Integer Linear Programming)-based exact approaches [17], GA (genetic algorithm)
based approaches [5], and, multiple KLFM-based approaches(Kernighan-Lin/Fiduccia-Matheyes
[22], [21]) such as [11], [15]. Of course, most of the existing work does not consider the special
challenges posed by dynamic reconfiguration– the traditional HW-SW partitioning formulations
implicitly assume that HW isstatic, i.e., the HW functionality can not be modified during appli-
cation execution. Partial RTR imposes additional placement constraints that need to be explicitly
incorporated into the problem formulation.

Recently there has been work on simultaneous scheduling andplacement for partially reconfig-
urable devices [2], [7]. However, they do not consider key issues in run-time reconfiguration such
as prefetch to overcome latency, the resource contention due to single reconfiguration controller,
etc. In such work, the task reconfiguration is bundled along with task execution and treated as a
single process – while such simplifications makes the problem closer to rectangle packing [18], the
proposed strategies are not applicable tosingle-contextarchitectures with resource contention for
reconfiguration, and, significant reconfiguration overheads.

There have been different proposals such as configuration compression, configuration caching
[4], etc., to reduce the effect of large reconfiguration delays on such architectures. One of the
popular approaches is configuration reuse, where the work often considers all tasks to be of equal
area and focuses on exploiting similarity between a given set of scheduled tasks [3]. In our work,
we currently do not exploit such resource-sharing across tasks. We focus on integrating key ar-
chitectural constraints and placement considerations into the scheduling formulation for the more
realistic scenario of varying task sizes.

Our work is most closely related to [9] and [10]. Mei et al. [9]present a genetic algorithm for
partial RTR that considers columnar task placement. However, their approach does not consider
prefetch or the single reconfiguration controller bottleneck. Jeong et al. [10] present an exact
algorithm (ILP) and a KLFM-based approach. Their ILP considers prefetch and the single recon-
figuration controller bottleneck– however, while scheduling, they do not consider the critical issue
of physical task placement. We will demonstrate that an optimal formulation that does not simulta-
neously consider placement while scheduling can generate schedules which can not be placed and

5

v

v

v

v

v v

3

6

5

4

1 2

Figure 1. Dependency task graph

 SW

memory

FPGA
Shared memory

HW-SW communication

Figure 2. System architecture

hence are not physically realizable.
Last but not the least, a distinctive feature of our work compared to existing work is our consid-

eration of heterogeneity in resources, a key feature of modern reconfigurable architectures.

3 Problem description

We consider the problem of HW-SW partitioning of an application specified as a task depen-
dency graph extracted from a functional specification in a high-level language like C, VHDL, etc.
In a task dependency graph (Figure 1), each vertex represents a task. Each edge represents data
that needs to be communicated from a parent task to a child task. Each task in the task graph can
start execution only when all its immediate parents have completed,and, it has received all its
input data from its parents.

Target system architecture

Our target system architecture as shown in Figure 2 consistsof a SW processor and a dynam-
ically reconfigurable FPGA with partial reconfiguration capability. The processor and the FPGA
communicate by a system bus. We assume concurrent executionof the processor and the FPGA.
We assume that the dynamically reconfigurable tasks on the FPGA communicate via a shared mem-
ory mechanism– this shared memory can be physically mapped to local on-chip memory and/or
off-chip memory depending upon memory requirements of the application. Under this abstrac-
tion, communication time between two tasks mapped to the FPGA is independent of their physical
placement. Thus, when adjacent tasks in the task graph are mapped to the same processing unit
(processor or FPGA), the communication overhead is considered insignificant, while tasks mapped
to different units incur a HW-SW communication delay.

Dynamically reconfigurable FPGA

Our target dynamically reconfigurable HW unit as shown in Figure 3 consists of a set of config-
urable logic blocks (CLB) arranged in a two-dimensional matrix. Additionally, a limited number
of specialized resource columns are distributed between CLB columns. The basic unit of config-
uration for such a device is a frame spanning the height of thedevice. A column of resources

6

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

����
����
����
����

����
����
����
����

H
ei

gh
t CLB

Width

Frameresource
Heterogenous

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

Figure 3. Heterogenous FPGA with partial RTR

consists of multiple frames. A task occupies a contiguous set of columns. Such a device is con-
figured through a bit-serial configuration port like JTAG or abyte-parallel port. However,only
onereconfiguration can be active at any time instant. The reconfiguration time of a task is directly
proportional to the number of columns (frames) occupied by the task implementation.

An example of such a dynamically reconfigurable HW unit is theXilinx Virtex architecture.
In this architecture, there are dedicated columns of embedded multipliers (MULTX18), and block
memories (BRAM) always placed adjacent to each other. In therest of this report, we consider the
(MULTX18,BRAM) column pair as a single resource column for the purpose of generating sample
numerical data on a representative architecture. Some of the Virtex devices (such as the Virtex-II
Pro), havehard SW processors such as the PowerPC. However, all the Virtex devices are capable
of instantiating thesoftMicroBlaze processor.

Problem parameters

On the target system architecture, a task can have multiple implementations: as a simple exam-
ple, compiler optimizations like loop unrolling often result in a faster implementation with more
HW area. Another example is the possibility of a area-efficient implementations using dedicated
resources like embedded memory. Thus, each implementationpoint of a task can be summarized
by the following set of parameters:� execution time� area occupied in columns (for HW implementation points only)� reconfiguration delay (for HW implementation points only)

and, the device-related constraints can be summarized as:

7

� columnar implementations of dynamic tasks� single reconfiguration process� location of specialized resource columns (for heterogenous devices only)

HW-SW partitioning objective

Our objective for HW-SW partitioning is to minimize the execution time of the application while
respecting the architectural and resource constraints imposed by the system architecture. Thus, our
desired solution is a task schedule where each task is bound to the HW unit or the SW processor,
along with a suitable implementation point for each task.

Before presenting our proposed approach to solve this problem, in the next section we take a
detailed look at key issues such as implementation feasibility that are addressed by our proposed
approach.

4 Key issues in scheduling on target architecture

In this section, we present a detailed discussion on the key issues we have addressed in our
formulation. First, we consider the criticality of considering physical constraints in a HW-SW
partitioning formulation for a system with partial RTR.

4.1 Criticality of linear task placement

In the target architecture, eachdynamictask is implemented on a set of adjacent columns on the
FPGA. Inter-task communication is realized through a shared memory accessible from each task
with the same latency and cost. Since this latency is identical for all the HW tasks and negligible
compared to runtime reconfiguration overhead and HW-SW communication delay, inter-task com-
munication delay for tasks mapped to the FPGA is not considered during HW-SW partitioning.
This simplifies the placement of the tasks on the device to simple linear placement. Of course,
since physical connectivity between tasks is not relevant under a shared memory abstraction, this
linear placement problem is simpler compared to the linear placement problem in physical design
where the objective is to minimize the total connectivity between the modules [24].

The linear task placement problem is formulated as:� Given a scheduled task graph under resource constraint, and
the size of the implementation for each task (in terms of the number of columns on a FPGA),� find afeasibleplacement on reconfigurable hardware.

We look at this problem for two different cases. In the first case, we assume that each task
occupies an identical number of columns. This assumption has been considered in previous work
in dynamic reconfiguration such as [3]. In this case, feasible placement is guaranteed after tasks
are scheduled on the FPGA under a total resource constraints.

Lemma 1 For a given scheduled task graph with inter-task communication via shared memory
and equal size tasks, a feasible and optimal placement is guaranteed and can be generated in
polynomial time.

8

Proof:The problem is same as track assignment on a set of intervalsand graph coloring on interval
graphs (which are perfect graphs) [6]. Each scheduled task represents an interval and each set of
columns (equal to the size of tasks) represents a track. Since the graph is scheduled under total
number of columns, the number of resources available at eachtime is equal to the density of the
tasks. Hence by applying efficient algorithms for graph coloring on interval graphs (e.g. left-edge
algorithm), a feasible placement can be found.

Thus, task placement is trivial for tasks with identical size and can follow HW-SW partitioning.
So, there is no need to integrate placement with HW-SW partitioning.

In the other case, we assume that tasks can occupy different number of columns during imple-
mentation. After the tasks are scheduled, the feasibility of placement is not guaranteed even if
it is checked with an exact algorithm. Similar to the first case, the placement problem is a track
assignment problem for a set of intervals under the constraint that each interval gets assigned to
a certain number of adjacent tracks. We can extend the aforementioned algorithm for track as-
signment based on a dynamic programming approach. While sweeping the time steps, we add the
current interval to all existing feasible arrangements of already visited intervals. Due to adjacency
constraint, some of those are not acceptable and the feasible assignments are pruned further. We
continue until the end of the tracks. All the feasible combinations are examples of feasible place-
ment. If no feasible combination is found, it implies that the current scheduled tasks do not have a
feasible placement. The algorithm is linear in terms of the number of intervals but has a factorial
growth on number of tracks. The complexity of this problem isstill an open problem. However, the
exact solution can be obtained by the proposed extension to track assignment or using ILP solvers
to check the feasibility of the placement. In this paper, ourfocus is on feasibility of placement
after scheduling. We thus apply an exact solver to check the feasibility of the placement in order
to show that the infeasibility in the placement comes from applying distinct consecutive stages of
partitioning and placement rather than using suboptimal placement algorithms.

Thus, for tasks that occupy a different number of columns in the implementation,linear place-
ment feasibility is not guaranteed even with an exact algorithm on a scheduled graph.

In Figure 4 we demonstrate an instance of such infeasibilityusing an exact approach for parti-
tioning and scheduling followed by linear placement for such multi-column tasks. This is a two-
dimensional view of the task schedule where the Y-axis (length) corresponds to time, the X-axis
(width) corresponds to number of columns. The FPGA has 4 columns and 3 tasks mapped onto it.
TasksT1, T2, T3 occupy columnsC1, (C2;C3), andC4 respectively. At timet2, a model that does not
consider placement information would indicate that 2 unitsof area were available. So a new task,
sayT4, that requires 2 columns, could be scheduled at timet2. However, this would be incorrect as
2 adjacent columns are not available att2.

In Figure 4, of course there is the opportunity for better placement by initially placing taskT2

into columns (C3;C4)– then, at timet2, 2 adjacent columns (C1;C2) would be available to place
a 2 column task. However, the more detailed example in Figure5 demonstrates that there are
schedules that can not be placed by an optimal placement tool. At time step 9, taskT10 needs
4 columns for execution- even though there are 6 columns available in the FPGA, 4 contiguous
columns are not available. Note that changing the task placement at prior time-steps (for example
swapping physical location of taskT3 with task T4) would only lead to placement failure at a

9

C4C3C2C1

11

E
xe

cu
tio

n
tim

e

2t

t1 ���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

T
T

T

2

3

Figure 4. Simple infeasible

1

Time

���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������

2

C9C8C7C6C5C4C3C2C1

 10

9

8

7

6

5

4

3

T

8T

7T

6T

5T

4T 3T

1T2T

10

9T

Figure 5. Detailed infeasible

previous time-step. To achieve a feasible placement, the task schedule itself needs to change.
Therefore, it is critical to integrate linear placement of the tasks into the scheduling formulation in
order to generate feasible solutions.

4.2 Heterogeneity considerations in scheduling

Modern FPGAs (such as the Xilinx Virtex-II) have heterogenous architectures containing columns
of dedicated resources like embedded multipliers, embedded memory blocks. Usage of such spe-
cialized resources usually leads to more area-efficient andfaster implementations. As an exam-
ple, we consider post-routing timing data obtained from synthesizing a 2-dimensional DCT (dis-
crete cosine transform) under columnar placement and routing constraints on the Virtex-II chip
XC2V2000. While the heterogenous implementation with 3 CLBcolumns and 1 resource column
has an operating frequency of 88 MHz, the homogenous implementation with 4 CLB columns is
able to operate at only 64 MHz (we consider the adjacent column pair of BRAM (embedded mem-
ory) and MULTX18 (embedded multiplier) as a single resourcecolumn for generating numerical
data).

However, these heterogenous resources are typically limited in number and present in specific lo-
cations. For instance, XC2V2000 has 48 CLB columns, but only4 heterogenous resource columns.
Since these resource columns are available only at fixed locations, they impose stricter placement
constraints. Depending on where a task is placed, the HW execution time and area may vary sig-
nificantly. This provides further motivation for considering linear placement as an integral aspect
of HW-SW partitioning on reconfigurable architectures.

10

4.3 Scheduling for configuration prefetch

Configuration pre-fetch [13] is a powerful technique that attempts to overcome the significant
reconfiguration penalty in single-context dynamically reconfigurable architectures by separating
a task into reconfiguration and execution components. Whilethe execution component is sched-
uled after data dependencies from parent tasks in the task graph are satisfied, the reconfiguration
component is not constrained by such dependencies. This poses a significant challenge to any
scheduling formulation that incorporates prefetch.

5 Approach

First, we modify the problem description to address the previous issues: We have a task graph
with n tasks, where each task has multiple possible implementations. Each HW implementation
of a task occupies a certain number of columns. We have one available SW processor, and a HW
resource constraint ofmHW columns for application mapping. Our objective is to find an optimal
schedule where each task is bound to HW or SW, the task implementation is fixed, and, for HW
tasks, the physical task location is determined. In the restof this section, we present an exact (ILP)
formulation that solves this problem and follow up with a KLFM-based heuristic.

5.1 Notation

The problem input is a directed acyclic task dependency graph G = (V, E).V is the set of graph
vertices andE the set of edges. Each edgeei j has 1 weightcti j . cti j represents the HW-SW com-
munication time, i.e, ifvi is mapped to SW and its childv j is mapped to HW (or vice-versa),cti j
represents the time taken to transfer data between the SW andthe HW unit. Each taskTi corre-
sponding to vertexvi has 4 weights (ts

i , th
i , ci , tr f

i). ts
i is the execution time of the task corresponding

to vi on the SW unit (processor).th
i , ci , tr f

i are the execution time, area requirement in columns,
and the reconfiguration overhead respectively, for taskTi on the FPGA.

Our problem objective is to obtain an optimal mapping with minimal latency when the FPGA
has at mostCf pga columns available for application execution.

5.2 ILP formulation

In this section, we present an ILP (integer linear program) that provides an exact solution to
our problem. For ease of understanding, we restrict the ILP formulation to homogenous devices
with single HW task implementation points only. As mentioned earlier, our work differs from
existing ILPs in HW-SW partitioning such as [17] in that we considerlinear task placement as a
key aspect – thus, our underlying model is essentially a two-dimensional grid where task placement
is modelled along one axis while time is represented on the other axis. While this model is similar
to existing ILP formulations for packing problems [20], issues such as configuration prefetch and
the reconfiguration controller are unique to our problem andhave not been considered in previous
work on packing.

11

5.2.1 ILP variables

We introduce the following set of 0-1 (decision) variables.
xi; j ;k = 1, if taskTi starts execution on FPGA at time-stepj,

andk is leftmost column occupied byTi .
= 0, otherwise

yi; j = 1, if taskTi starts execution on processor in time-stepj
= 0, otherwise

r i; j ;k = 1, if reconfiguration for taskTi starts at time-stepj,
andk is leftmost column occupied byTi .

= 0, otherwise
ini1;i2 = 1, if tasksTi1 andTi2 are mapped to different

computing units and thus incur a HW-SW =
communication delay.

= 0, otherwise
Some of the constraints necessitate introduction of additional binary variables to represent logi-

cal conditions. All such variables are represented asb.
The ranges of the variable indices are of course determined by the problem input. i.e,

i 2 (1 .. number of tasks)
j 2 (1 .. upper bound on schedule length)
k2 (1 .. number of FPGA columns)

5.2.2 Constraints

1. Uniqueness constraint
Each task can start (is executed) exactly once.8i; ∑ j(yi; j+ ∑k(xi; j ;k)) = 1 (1)

2. Processor resource constraint
Processor executes at most one task at a time8 j; ∑i ∑ j

m= j�ts
i +1(yi;m)� 1 (2)

3. Partial dynamic reconfiguration constraints
(a) Every task needs at most 1 reconfiguration; and, reconfiguration is not needed if taski exe-

cutes on processor.8i; ∑ j(yi; j+ ∑k(r i; j ;k))� 1 (3)

(b) Resource constraints on FPGA: total number of columns being used for task executions and
number of columns being reconfigured is limited by the total number of FPGA columns.8 j; ∑i ∑k(∑ j

m= j�th
i +1 ∑k

n=k�ci+1(xi;m;k)+∑ j

m= j�tr f
i +1

∑k
n=k�ci+1(r i;m;k))�

Cf pga (4)

12

(c) At every time-stepj , at most single task is being reconfigured.8 j; ∑i ∑ j

m= j�tr f
i +1

∑k(r i;m;k))� 1 (5)

Note that in this equation we do not need to consider the number of columns required for this
task.

(d) At every time-stepj, mutual exclusion of execution and reconfiguration for every column.8 j;8k; ∑i(∑ j
m= j�th

i +1∑k
n=k�ci+1(xi;m;n)+

∑ j

m= j�tr f
i +1

∑k
n=k�ci+1(r i;m;n))� 1 (6)

Note that this is a critical step that enforcescontiguity. The inner term∑k
n=k�ci+1(r i;m;n en-

sures that if a taskTi requiresci columns for reconfiguration (execution), it can proceed only when
a contiguous set ofci columns are available.

(e) If reconfiguration is needed for taskTi , execution of taskTi must start in same column. Ad-
ditionally, execution can start only after the reconfiguration delay.8i;8k; ∑ j(r i; j ;k) = 1=)

∑ j(j � r i; j ;k) + tr f
i <= ∑ j(j �xi; j ;k) (7)

We can rewrite the above constraint as the following set of constraints:

f(X) = ∑ j(r i; j ;k)> 0,

g(X) = ∑ j(j �xi; j ;k� j � r i; j ;k)� tr f
i � 0

if (f (X)> 0) theng(X)� 0

This enables us to apply theif-thentransformation as in [23]�g(X)�Mb
f (X)�M(1�b)
b2 (0;1)

where M is a large number such thatf (X)�M;�g(X)�M for X satisfying all other constraints.
An appropriate value forM is jmax� jmax.

Note that in this equation and equation 3a, we do not include the reconfiguration time for the
initial set of tasks placed on the device. This enables us to accurately compare results with a tradi-
tional HW-SW partitioning formulation where execution time does not include system setup time
of reconfiguration for the set of tasks placed on the device.

(f) When a task execution is using a column, the previous event on this column can never be an-
other execution. Note that this possibility arises becauseof the gap (idle interval) possible between
reconfiguration and execution, as discussed in the previoussection.

13

We solve this problem by computing the difference between the reconfiguration start times and
execution start times for all tasks that have used a column till a particular time-step. If this differ-
ence is more than the start time of the current executing task, then this column was previously used
by another execution just prior to this execution, but, not reconfigured in between- this situation
must never happen.8k;8 j; ∑i∑ j

m= j�th
i +1 ∑k

n=k�ci+1(xi;m;n) = 1=)
∑i∑k

n=k�ci+1 ∑ j
m=1(m�xi;m;n�m� r i;m;n)�

∑i∑k
n=k�ci+1 ∑ j

m= j�th
i +1

(m�xi;m;n) (8)

We can rewrite the above constraint as the following set of constraints:

f(X) = ∑i∑ j
m= j�th

i +1 ∑k
n=k�ci+1(xi;m;n)> 0,

g(X) = ∑i∑k
n=k�ci+1 (∑ j

m= j�th
i +1

(m�xi;m;n)+
∑ j

m=1(m� r i;m;n�m�xi;m;n)))� 0
if (f (X)> 0) theng(X)� 0

and apply theif-thentransformation as in the previous constraint.

(g) Simple placement constraint: a task can start executiononly if there are sufficient available
columns to the right.8i;8 j;8k2 (Cf pga�ci +1::Cf pga);

xi; j ;k = r i; j ;k = 0 (9)

4. Interface (communication) constraints
For each directed edgeei1;i2, communication (interface) overhead is incurred if tasksTi1 and

Ti2 are mapped to different computing units, i.e, one is mapped to the processor and the other is
mapped to the FPGA.

If taskTi1 is mapped to the processor,∑ j(yi1; j) = 1.
Thus, the communication overhead corresponding to the edgeei1;i2 is incurred under the following
set of conditions.

Either, (∑ j(yi1; j) = 1 and ∑ j(yi1; j) = 0)
Or, (∑ j(yi1; j) = 0 and ∑ j(yi1; j) = 1).
That is, if we introduce a new variable,

Pi1;i2 =∑ j(yi1; j)+∑ j(yi2; j)+ ini1;i2
Pi1;i2 can only belong to the setf0,2g.
Thus, the communication constraint is simply8edges(i1; i2);

Pi1;i2 = 2�b (10)

14

whereb is a binary 0-1 variable.

5. Precedence constraints
For each directed edgeei1;i2, the start time for taskTi2 is necessarily at least the sum of the start

time of taskTi1 and the HW-SW communication time if any.

i.e, 8edges(i1; i2);
∑ j((∑k(j �xi1; j ;k))+ j �yi1; j)+

∑ j(∑k(th
i1
�xi1; j ;k)+ ts

i1
�yi1; j)+cti1;i2 � ini1;i2 �

∑ j(∑k(j �xi2; j ;k)+ j �yi2; j) (11)

6. Objective function to minimize schedule length
This is equivalent to minimizing the start time of the sink task Tn.
minimize∑ j(j �yn; j+∑k(j �xn; j ;k))
Of course, by introducing simple additional constraints that force the taskTn to execute on the

processor and all tasks to have 0 communication delay with the sink task, the objective function
can be simply written as:

minimize∑ j(j �yn; j)
Along with the necessary constraints, we also introduceadditional constraints that help signif-

icantly in reducing the time the ILP solver needs to find a solution.

7. Tighter placement constraints
For columnk, at every time instantj,
total number of executions using this column so far is at most1 less than total number of recon-

figurations.8k; 8 j; ∑k
n=k�ci+1∑ j

m=1∑i(r i;m;n�xi;m;n)� 1 (12)

8. Tighter timing constraints
ASAP, ALAP constraints.

5.2.3 Extending the ILP for multiple, heterogenous implementations

While our ILP formulation is based on single homogenous taskimplementations, we believe that
it can be easily extended for single heterogenous task implementations by a simple preprocessing
step that adds extra placement constraints to the homogenous formulation. Extensions for handling
multiple task implementation points is more challenging. One crude but effective way would be to
represent eachxi; j ;k as a linear sum of a set of 0-1 variables representing the different possible task
implementations. Then all product terms of the formc= a�b obtained by substituting thexi; j ;k
terms in the homogenous implementation can be linearized byusing Fortet’s linearization method
[19].

15

5.3 Heuristic approach

While our ILP formulation enabled us to study the problem space, its implementation using a
commercial ILP solver (CPLEX) required an very significant amount of computation time to obtain
an optimal solution even for relatively small problem instances. This motivated us to develop
a heuristic approach that generates reasonably good-quality solutions with a computation effort
many orders of magnitude lower. We obtain quality solutionsto problems with hundreds of tasks
in a couple of minutes with our heuristic.

5.3.1 Heuristic formulation

Our approach is based on the well-known Kernighan-Lin/Fiduccia-Matheyes (KLFM) heuristic
[22], [21] that iteratively improves solutions to ”hard” problems by simple moves. At each step
of the KLFM heuristic, the quality of a move needs to be evaluated. Similar to previous work in
HW-SW partitioning such as [11], we evaluate the quality of amove by a scheduler. However, our
target platform requires that our scheduler is aware of the physical and architectural constraints of
the underlying device.

———————————————————————–
Code segment 1: KLFM loop

while (more unlocked tasks)
for each unlocked task

for each non-current implementation point
calculate makespan by physically aware list-scheduling

select & lock best (unlocked task, implementation point) tuple
update best partition if new partition is better

———————————————————————–

In Code segment 1we present our adaptation of the KLFM kernel. Essentially this is the outer
loop of the heuristic: while there are more unlocked tasks, the ”best” task is chosen in every
iteration of the loop. The kernel is itself repeatedly executedc times wherec is a small constant,
around 5-6. As can be seen above, our kernel considers multiple task implementation points. In
simple cases where each task has a single HW and a single SW implementation, a ”move” in
HW-SW partitioning implies moving the task to the other partition. In task implementations on
FPGAs, multiple area-time tradeoff points are very common.Restricting a move to onlyHW-
SW, or vice-versa would restrict the solution space. Thus we define a move as generic, possible
betweenany two implementation pointsof a task, including HW-HW, HW-SW. In Figure 6 (a)
we see an example of a traditional HW-SW partitioning move where a move consists of selecting
the SW implementationTs

i of the task instead of selecting the HW implementation of thetaskTh
i .

However, in Figure 6 (b) we see a move that consists of selecting an alternate HW implementation
pointTh

i ;k instead ofTh
i ; j because this leads to the most improvement in the objective function.

For the scheduler, we choose a simple list-scheduling algorithm as shown inCode segment 2.
In a list-scheduler, at each stage there is a set of ’ready’ nodes whose parents have been scheduled.
The scheduler chooses the ’best’ node based on some prioritymeasure– the schedule quality de-

16

h,k
SWHW

Ti
s

 (a) (b)

i

Ti
h

HW SW

Ti
h,j

T

Figure 6. Moves in HW-SW partitioning with multiple impleme ntation points

pends strongly on priority assignment of nodes. Note that the scheduler is embedded inside the
partitioner; thus, the scheduler always sees a bound graph where each task is assigned to HW or
SW and hence the HW-SW communication on each edge is known.

We do simultaneous scheduling and placement– once a node is selected for scheduling, it is
immediately placed onto the device. This ensures that all generated schedules are correct by con-
struction. Thus, at every KLFM step, along with task binding, we also have the placed schedule
available.

———————————————————————–
Code segment 2: Choose best schedulable task

For each schedulable task,
compute (EST), earliest start time of computation

(EFT), earliest finish time of computation
Choose task that maximizes f (EST, longest path, area, EFT)

———————————————————————–

In traditional resource-constrained scheduling, priority functions like ”nodes on critical path
first” are applied uniformly to all nodes. But, given the special characteristics of our target HW,
it is undesirable to use the same priority assignment function uniformly for nodes. Factors that
affect placement, such as configuration prefetch, play a keyrole in scheduling. So we propose
that during task selection, processor tasks are compared between themselves on the simple basis
of longest path, while FPGA tasks are compared using a more complex function. Key parameters
of any such function are EST (earliest computation start time of task), EFT (earliest finish time),
task area, and the longest path through the task, i.e, the function can be described as:

f (EST, longest path, area, EFT)

The EST computation embeds physical issues related to placement, resource bottleneck of single
reconfiguration controller in the configuration prefetch process, etc., as described in more detail
later.

Our observations indicate that it is usually more beneficialto first place tasks with narrower
width (fewer columns): this leads to the possibility of being able to accomodate more tasks without
needing dynamic reconfiguration. Similar considerations for other key parameters lead us to a
linear priority assignment function:

17

5

6

5

2

2

3

2

3

23

9

11

14

7

10

3

3

2

1

2

4

4

SW
time

HW
area

HW
time

Task

1

2

3

Figure 7. Task parameters

���
���
���

���
���
���

������
������
������
������
������

������
������
������
������
������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

����
����
����
����
����

����
����
����
����
����

�
�
�
�
�
�
�

�
�
�
�
�
�
�

����
����
����
����
����

����
����
����
����
����

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

Time ProcC6C5C4C3C2C1

 10

9

8

7

6

5

4

3

2

1

4R

3R

5R

5E

4E 3E

2E1E

P

�����
�����
�����

�����
�����
�����

65C

6

Figure 8. Optimally placed�A�columns�B�EST+C� pathlength�D�EFT

Note that components for which it is preferable to have smaller magnitude, such as earlier start
time (EST), or, fewer columns, have a negative weightage while pathlength has positive weightage.
Pathlength is of course the classical ’critical path’ priority function that is often used as the single
node selection criterion in list-scheduling.

5.3.2 Placement and EST computation

To illustrate the effectiveness as well as the challenge posed by configuration prefetch to place-
ment and scheduling, consider the task graph shown in Figure1, and its associated parameters in
Figure 7. The HW area is specified as the number of homogenous (CLB) columns. For this exam-
ple, we assume that any HW-SW communication incurs one unit of delay and the reconfiguration
overhead of a task is equal to the HW area of the task.

Under a resource constraint of 6 homogenous columns, the optimal solution to our problem of
minimizing latency is given by the task schedule and physical task location as shown in Figure 8.
In this schedule, each execution (and reconfiguration if needed) component of a task is represented
as a rectangle of fixed size, such that the length is the execution (or reconfiguration) time of the
task implementation while the width is the number of columnsrequired.

In Figure 8,Ei andRi represent the execution start time, and reconfiguration start time respec-
tively, for vertexvi . Ci j represents HW-SW communication between taskvi andv j . Pi represents

18

execution of taskvi on the processor. For this example, with static HW-SW partitioning, the sched-
ule length would be 36 with verticesv1 andv2 mapped to HW and the remaining vertices mapped
to SW. Since partial dynamic reconfiguration capability with prefetch improves the schedule length
to 10, prefetch is a key consideration.

However, a key challenge is posed by the gap betweenR3 and E3 illustrating the idle time
interval of columnsC5;C6 required for an optimal schedule: in this interval the FPGAcolumn has
been reconfigured, but the task can not start execution as itsdependencies have not been satisfied
yet. Note that the earliestE3 can start is at time step 6. So, if we forcedR3 to start at time step 4
and contiguous toE3, then eitherR4 would need to be separated fromE4 or, the schedule length
would increase.

This idle time interval is part of scheduling in that we wouldprefer to have a schedule with
minimum idle time where resource are underutilized. Since the extent of the interval can not be
determined apriori, placement is complicated: if we consider the aggregate(time X area) rectangle
occupied by a task in the two-dimensional view, where the aggregate rectangle consists of both the
execution and reconfiguration component of a task, this is a rectangle of unknown length. Thus,
with prefetch, we are unable to directly apply rectangular packing algorithms from work like [18].

Another key issue in EST computation is the resource bottleneck of a single reconfiguration
controller. The reconfiguration for a task can start only when enough area is available,and, the
reconfiguration controller is free. The goal is to complete reconfiguration before task dependencies
are satisfied, leading to minimization of schedule length. However, realistically, it is not possible to
hide the overhead for all tasks that need reconfiguration– insuch cases, task execution is scheduled
as soon as its reconfiguration ends.

In Code segment 3we present our approach to EST computation that addresses the issues we
discussed above.

———————————————————————–
Code segment 3: Compute EST for task bound to FPGA

find earliest time slot where task can be placed
reconfig start = earliest time instant space and reconfig controller

are simultaneously available.
if ((reconfig start + reconfig time)< dependency time)

// reconfiguration latency hidden completely: possibilityof
// timing gap between reconfig end and execution start

EST = earliest time parent dependencies satisfied
else // not possible to completely hide latency

EST = end of reconfiguration
———————————————————————–

Our goal is to find the earliest time slot when the task can be scheduled, subject to the various
constraints. We proceed by first searching for the earliest instant when we can have a feasible
task placement, i.e. enough adjacent columns are availablefor the task. Once we have obtained
a feasible placement, we proceed to satisfy the other constraints. If the reconfiguration controller
was available at the instant the space becomes available, then the reconfiguration component of the
task can proceed immediately. Otherwise, the reconfiguration component of the task has to wait

19

till the reconfiguration controller becomes free. Once the reconfiguration component is scheduled,
we check to see if the execution component can be immediatelyscheduled subject to dependency
constraints. As an example, we consider EST computation of taskT3 in Figure 8 when tasksT1

andT2 have been scheduled, and placed. The initial search shows a feasible placement starting at
time 3 and the reconfiguration controller is free, so reconfiguration forT3 can start immediately
and finishes at time 4. However, the execution component can be scheduled only at time 6 when
its dependency is satisfied. In this case, EST computation indicates that it is possible to completely
hide the reconfiguration overhead for the task.

The EST computation thus embeds the placement issues and resource constraints related to re-
configuration. As discussed earlier, the scheduler assignstask priorities based on this information,
leading to high-quality schedules, as shown in our experimental section.

Comments on current implementation

The first search for earliest feasible time instant is currently implemented as a a simple sweep
through all active time instants (when an event has been scheduled). At each time instant we
represent the resource constraint as a simple array with each array entry in one of two states- free
or used. Note that the number of active time instants isO(n). To search for space to fit a task, we
implemented various packing algorithms such as first-fit, best-fit, etc. Our initial set of experiments
indicated that first-fit worked well, so all our results in theexperimental section are based on first-
fit packing. A subsequent detailed set of experiments (also presented in the experimental section)
confirmed that the difference between first-fit and best-fit was negligible. However, best-fit needs
significantly more expensive computation during the space-search confirming that our choice of
first-fit is reasonable.

5.3.3 Heterogeneity

One key benefit of considering linear placement and multipletask implementations in our heuristic
is the ease with which we were able to extend our approach to consider scheduling onto heteroge-
nous devices.

To adapt our approach for heterogeneity, the primary changerequired is in the search for space
to fit a task. We achieve this by simply adding a type descriptor for each column in our resource
description . Thus all resource queries at a time instant check the type descriptor of a column while
looking for available space at that instant. Since the key implication of a heterogenous resource
is to constrain placement, we did some simple initial preprocessing to make our searches more
efficient.

5.3.4 Worst-case complexity

Consideration of placement as an integral part of HW-SW partitioning guarantees correctness of
implementation. However, it does increase the worst-case complexity of HW-SW partitioning.

For an area constraint of C columns, our current simplistic implementation of the EST computa-
tion has a worst-case complexity ofO(n2C). Thus, the worst-case complexity of each list-scheduler
invocation isO(n4C). For the simple case of one HW and one SW implementation of a task, the

20

HW unit similar to XC2V2000, organized as a CLB matrix of
56 rows and 48 columns

SW unit PowerPC processor operating at 400 MHz
Communication bus 64-bit wide PLB operating at 133 MHz
Frames/CLB column 22 frames (a total of 1456 frames on the entire device)
Reconfiguration time 17.01 ms for entire device (SelectMAP port at 50 Mhz);
Reconfiguration frequency 66 MHz (maximum suggested)
Reconfiguration overhead/CLB22/1456 * 17.01 * 50/66 = 0.19 ms

Table 1. Basis for numerical data

list-scheduler is calledO(n2) times in the main KLFM loop shown in Code Segment 1. Thus, the
overall worst-case complexity isO(n6C). While this seems to be a polynomial of significantly high
degree, execution time measurements presented in our experimental section indicate a run-time of
a couple of minutes for our largest experiments on graphs wthhundreds of nodes.

6 Experiments

We conducted a wide range of experiments to demonstrate the validity of our formulation and the
schedule quality generated by our heuristic. We also conducted a detailed case study of the JPEG
encoding algorithm, where we explored heterogeneity in thecontext of multiple task implementa-
tion points. Note that we are concerned with statically determining the best run-time schedule for
a HW-SW system under resource constraints, where the HW has partial dynamic reconfiguration
capability. Thus, while it is possible for example to fit all our JPEG tasks in a suitably-sized device,
for our experimental purposes we assume a resource constraint less than the aggregate HW size of
all tasks leading to the necessity of HW-SW partitioning.

6.1 Experimental setup

The following assumptions in Table 1 form the basis of our numerical data:
Area and timing data for key tasks like DCT, IDCT, was obtained by synthesizing tasks under

columnar placement and routing constraints on the XC2V2000, similar to the methodology sug-
gested for ”reconfigurable modules”. Software task execution time on the PowerPC processor is
typically 3 to 5 times slower than the HW implementation of the task. HW-SW communication
time was estimated by simply dividing the aggregate amount of data transfer by the bus speed. As
an example, data transfer time for a 256X256 block of 8-bit pixels in a typical image processing
application is estimated as:

256 * 256 * 8/64 cycles at 133 MHz = 0.06 ms.
Note that HW-SW communication time for even this significantvolume of data transfer is only
around 30% of the reconfiguration overhead for a single CLB column: thus, for generating syn-
thetic experiments, we assumed that HW-SW communication time was quite low compared to task
reconfiguration time.

21

Placement-UnawarePlacement-Aware
Testcase Tarea

opt Feas. Topt Theu

tg1 10 Y 10 11
tg5 25 NO 26 26
Mean-value 21 Y 21 21
tg7 20 Y 20 20
tg10 27 NO 28 29
FFT 25 Y 25 25
tg11 36 NO 38 41
tg12 14 NO 15 18
4-band eq 27 Y 27 27

Table 2. Feasibility results and heuristic quality for small tests

6.2 Experiments on feasibility

Table 2 shows experimental results on feasibility for a set of synthetic task-graphs and well-
known graph structures like FFT, meanval, etc. These test cases were reasonably small graphs
with between 10-15 vertices such that we could generate optimal results with the ILP. For each
test, we assumed that the number of columns available for task mapping was approximately 20-
30% of the aggregate area of all tasks mapped to hardware. Forthese tests, one unit of time is the
reconfiguration time for a single column.

In Table 2,Topt denotes the schedule length obtained with our ILP formulation, Tarea
opt denotes

the schedule length obtained from an exact formulation thatconsiders available HW area instead
of exact task placement (i.e, placement-unaware) [10]. As Table 2 shows, in some cases,Tarea

opt
is shorter thanTopt, but in these cases the schedules were physically unrealizablewith exact
placement, while our ILP (Topt) guarantees placement through correct by construction.

6.3 Experiments on heuristic quality

For each of the initial set of experiments we also generated results with our proposed heuristic,
as denoted byTheu in Table 2. The data indicates that for the small cases,Theu corresponds to
schedules that are reasonably close in quality to the exact solution.

For analysis of schedule quality generated by our heuristicon larger test-cases, we generated a
set of problem instances with suitable modifications to TGFF[14]. In these tests, each task had
a single homogenous implementation point. In subsequent discussions,v20, v80, etc, denote sets
of graphs that have approximately 20 nodes, 80 nodes, etc. These sets were generated by varying
the graph parameters such as indegree, outdegree. For each individual test case belonging to a set
like v20, we varied the area constraint from 8 to 20 columns in stepsof 4 to generate a problem
instance. The resulting space of over a hundred experimentsis shown in Figure 9.

For each generated problem instance, we compared the schedule length generated by our placement-
aware heuristic with that generated by the placement-unaware ”longest path first” (LPF) heuristic.
The LPF heuristic is widely used in resource-constrained scheduling to assign higher priorities to

22

Figure 9. Synthetic experiments

���
���
���

���
���
���

���
���
���
���
���

���
���
���
���
���

8 12 2016

S
ch

ed
ul

e
le

ng
th

 -
->

12 20168

Placement aware priority function

Testcase 1 Testcase 2

Placement unaware (longest path)

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

Figure 10. Sample experiments for v60

23

Test Few cols More Cols Avg gain
group (8,12) (16,20)
v20 6.07% 6.79% 6.43%
v40 5.44% 10.64% 8.04%
v60 10.36% 10.56% 10.46%
v80 11.68% 13.64% 12.66%
v100 16.68% 19.09% 17.89%
Avg gain 10.05% 12.15% 11.09%

Table 3. Aggregate improvements in schedule length

tasks on critical paths. Note: LPF is used only for priority assignment at each scheduling step–
once a task is selected, the same linear placement approach ensures correct schedules, and, hides
the reconfiguration latency, if possible.

In Figure 10 we present a sample of the tests we conducted. Fortwo test graphs in setv60 we
show schedule length data corresponding to a total of 8 problem instances. To present the aggregate
data for the complete set of experiments, we defineTlongest path as the schedule length generated
by LPF for a problem instance. And, the quality criterion indicating improvement (decrease) in
schedule length for each problem instance when our placement-aware priority function is used
compared to placement-unaware LPF as:

100� (Tlongest path�Theu)=Theu

Figure 10 shows that our placement-aware priority functionconsistentlygenerates better sched-
ules. Table 3 summarizes the result for 120 problem instances. Each entry in the table represents
data from a set of instances. As an example, the entry corresponding to the row labelledv60 and
column labelled ”Avg gain (16,20)” is 10.56%. This implies that for a set of problem instances
where the graph size is approximately 60 nodes and the resource constraint was set at 16 and 20
columns, the average improvement in schedule length generated by our heuristic over LPF was
6.86%.

As is clear from Table 3, while a simple longest path heuristic works reasonably well with small
graphs and few columns, our heuristic clearly generates superior (shorter) schedules, both with
increasing problem size. The key difference is that LPF alsotries to improve schedule length by
prefetch, but only after selecting the task to be scheduled,while our heuristic considers placement
implications in task selection.

6.3.1 First-fit Vs best-fit

Similar to our previous table, we compare the quality difference between first-fit placement and
best-fit placement by the measure:

100� (Tbest�Tf irst)=Tf irst

24

Test Few cols More Cols Avg gain
group (8,12) (16,20)
v20 0.0% 0.0% 0.0%
v40 0.0% -0.25% -0.12%
v60 0.14% -0.02% 0.06%
v80 -0.26% -0.07% -0.17%
v100 0.26% 0.55% 0.40%
Avg gain 0.03%

Table 4. Comparison of first-fit Vs best-fit

Test Average run-time(s)
group 20 columns
v20 0.2
v40 2.0
v60 22
v80 90
v100 180

Table 5. Run-time of proposed approach

Table 4 indicates that the quality difference between usinga first-fit placement policy and a best-
fit placement policy is negligible. However, the best-fit placement incurs additional computational
overhead in the EST computation. This confirms our choice of the first-fit placement policy as
suitable.

6.3.2 Run-time of heuristic

Table 5 shows the average run-time of our approach (in seconds) for the experiments with an area-
constraint of 20 columns. The measurements were done on a 502Mhz Sparcv9 processor (SunOS
5.8). While the run-time of our placement-aware approach grows with increase in area-constraint,
we believe that the data, corresponding to our largest experiments, is a fair representation of the
expected run-time in reasonable scenarios.

6.4 Case study of JPEG encoder

We next conducted a detailed analysis for the JPEG encoding algorithm Figure 11 under re-
source constraints. We obtained data for tasks like quantize, huffman, by synthesizing the tasks
under placement and routing constraints. For each task, we obtained implementation points with
only homogenous resources, and with heterogenous resources. We assumed that the SW imple-
mentation for each task was approximately 4 times slower than the HW implementation using only
homogenous resources. With only homogenous implementations, the total area occupied by the
tasks in the coarse grain task graph in Figure 11 was 11 columns. We assumed a resource constraint
of 8 columns was available for mapping the task set.

25

RGB2YCbCr

 DCT

Huffman

Quantize

 Colour image

 Compressed image

R

Q

R R

DD

Q

H

Coarser grain Finer grain

2

8

1

76

4 5

3

Figure 11. Task graph for jpeg encoder

Experiment Latency (ms)
Coarse-grain HW-SW partitioning (no dynamic reconfiguration) 16.74
graph HW-SW + partial RTR 9.9

HW-SW + partial RTR + perfect prefetch 9.04
Fine-grain HW-SW + partial RTR (single homogenous implementation) 7.51
graph Multiple implementation points 6.82

Best implementation points 9.58

Table 6. Schedule length for different HW-SW partitioning of JPEG encoder

Numerical data on the significant reconfiguration time for a CLB column confirms observations
from previous researchers [1] that execution time for a taskoperating on a 8�8 block of 8-bit data
is orders of magnitude lower than the reconfiguration overhead of such tasks. So, all our schedule
length data is for processing a larger block corresponding to a 256X256 colour image.

Table 6 presents a summary of schedule length estimates (in ms) we generated from various ex-
periments. The first row (16.74ms) represents our initial experiment of HW-SW partitioning of the
coarse-grain graph – in this experiment the HW doesnot have dynamic reconfiguration capability.
The next row (9.9ms) represents the experiment where we consider the HW to have partial RTR
capability. It clearly demonstrates the potential for performance improvement with partial RTR.
For this experiment, we assumed that there was no configuration prefetch, i.e., reconfiguration for
a task was done exactly before its execution. In the third experiment (9.04ms), where we add
configuration prefetch to partial RTR capability, there is additional performance improvement.

We subsequently exposed more parallelism by making multiple copies of tasks like DCT based
on our knowledge that data blocks can be independently processed by such tasks. The remaining
results from the fourth row onwards corresponds to experimental data for the finer-grain task graph.
The fourth row (7.21ms) represents the results generated by our heuristic on the finer-grain graph-
this is optimal for this representation.

26

Experiment on heterogeneity

For the next experiment in the fifth row (6.82ms) we considered that the resource constraint of
8 columns now included one specialized resource (heterogenous) column, i,e, the new resource
constraint was a set of 7 CLB columns and 1 resource column. Each task was allowed to have
either a homogenous implementation or a heterogenous implementation.

In the schedule generated by our heuristic, some of the tasksare bound to their faster het-
erogenous implementations while others are bound to slowerhomogenous implementations. This
experiment demonstrates the exploration capability of ourheuristic in considering multiple task
implementations while mapping onto a heterogenous device with partial dynamic reconfiguration.

One important observation from our experiment with heterogeneity was that the relative location
of the specialized resource column strongly affects the schedule length. Specifically for our first-fit
placement policy, we observed that specialized resource columns located near the left edge of the
device (where the first fit algorithm initially tries to placetasks) lead to inferior schedule lengths.

Best implementation points only

For the final experiment in row 6 (9.58ms) we restricted tasks to only their best implementation
points. Since the best implementation points are often heterogenous, the schedule length showed
significant degradation because of contention for the dedicated resources.

Overall, our case study confirms the importance of considering physical and architectural (het-
erogenous) constraints in a HW-SW partitioning algorithm for a partially reconfigurable device. It
additionally confirms that partitioning (and scheduling) algorithms targeted towards such devices
need to have the capability of selecting between multiple task implementations, some of which
might be using specialized resources.

7 Conclusion

In this paper, we focussed on physical and architectural constraints imposed on dynamically re-
configurable architectures by partial reconfiguration feature. We first formulated an exact approach
bsaed on ILP (integer linear programming). With the help of this exact approach, we demonstrated
that ignoring linear task placement constraints imposed bypartial dynamic reconfiguration can
result in optimal, but physically unrealizable schedules.Unlike existing ILP-based approaches
to HW-SW partitioning, our formulation simultaneously places tasks while scheduling – it also
considers the key feature of configuration pre-fetch for maximizing performance along with the
resource contention due to a single reconfiguration mechanism.

Next, we proposed a placement-aware HW-SW partitioning heuristic based on the well-known
Kernighan-Lin/Fiduccia-Matheyes paradigm for partitioning. Our proposed heuristic simultane-
ously partitions, schedules and does linear placement of tasks on the target device. As a key step
of partitioning, our approach selects among multiple task implementation points. A wide range of
synthetic experiments and a detailed case study of JPEG encoding validates the quality of solutions
generated by our proposed heuristic.

Placement and consideration of multiple implementations in partitioning make it easy to extend
our approach to heterogeneity, a key feature in modern FPGAs. The case study on JPEG encoding

27

demonstrates the capability of our approach in selecting between heterogenous and homogenous
task implementations while mapping a given application onto a heterogenous device. Finally,
the run-time of our approach is reasonable: task graphs withhundreds of nodes are processed
(partitioned, scheduled, placed) in a couple of minutes.

Our approach has powerful capabilities, but there is scope for improvement in our current im-
plementation in both solution quality and in the theoretic algorithmic complexity by investigating
sophisticated placement techniques and data structures. Also, our heuristic currently is focused
on homogenous implementations. In the future, we will focuson issues leading to high-quality
solutions in heterogenous scenarios.

8 Acknowledgements

This work was partially supported by NSF Grants CCR-0203813and CCR-0205712.

References

[1] J. Noguera, R. M. Badia, ”Power-Performance trade-offsfor reconfigurable computing”, CODES+ISSS, 2004

[2] P-H Yuh, C-L Yang, Y-W Chang, H-L Chen, ”Temporal floorplanning using the T-tree formulation”, ICCAD,
2004

[3] S. Ghiasi, M. Sarrafzadeh, ”Optimal Reconfiguration Sequence Management”, ASPDAC, 2003.

[4] Z.Li, ”Configuration management techniques for reconfigurable computing”, Ph.D. Thesis, Northwestern Uni-
versity, 2002

[5] K Ben Chehida, M Auguin, ”HW/SW partitioning approach for reconfigurable system design”, CASES 2002

[6] J. L. Ramirez-Alfonsin, B. A. Reed (Eds.), ”Perfect Graphs”, John Wiley and Sons, 2001.

[7] S.P. Fekete, E.Kohler, J.Teich, ”Optimal FPGA module placement with temporal precedence constraints”, DATE,
2001

[8] H. Singh, G. Lu, E. M. C. Filho, R. Maestre, M-H. Lee, F. J. Kurdahi, N. Bagherzadeh, ”MorphoSys: case study
of a reconfigurable computing system targeting multimedia applications”, DAC, 2000.

[9] B. Mei, P. Schaumont, S. Vernalde, ”A hardware-SoftwarePartitioning and scheduling algorithm for dynamically
reconfigurable embedded systems”, ProRisc workshop on Ckts, Systems and Signal processing, Nov 2000.

[10] B. Jeong, S. Yoo, S. Lee, K. Choi, ”Hardware-Software Cosynthesis for Run-time Incrementally Reconfigurable
FPGAs”, ASPDAC, 2000.

[11] K. S. Chatha, R. Vemuri, ”An iterative algorithm for Hardware-Software partitioning, Hardware design Space
Exploration, and scheduling”, Jrnl Design Automation for Embedded Systems, V-5, 2000

[12] M Kaul, R Vemuri, ”Optimal temporal partitioning and Synthesis for reconfigurable architectures”, DATE 1998

[13] S. Hauck, ”Configuration pre-fetch for single context reconfigurable processors”, FPGA, 1998.

[14] R P Dick, D L Rhodes, W Wolf, ”TGFF: task graphs for free”,CODES 1998

[15] F. Vahid, T. D. Le, ”Extending the Kernighan-Lin heuristic for Hardware and Software functional partitioning”,
Jrnl Design Automation for Embedded Systems, V-2, 1997

[16] M. J. Wirthlin, ”Improving functional density throughRun-time Circuit Reconfiguration”, PhD Thesis, Electrical
and Computer Engineering Dept, Brigham Young Univesity, 1997.

28

[17] R Niemann, P Marwedel, ”An Algorithm for Hardware/Software Partitioning using mixed Integer Linear Pro-
gramming”, Jrnl Design Automation for Embedded Systems, 1997

[18] H. Murata, K. Fujiyoshi, S. Nakatake, Y. Kajitani, ”Rectangle-packing based module placement”, ICCAD, 1995

[19] P.Hansen, B. Jaumard, V. Mathon, ”Constrained Non-linear 0-1 programming”, ORSA Journal of Computing,
Vol 5, No 2, 1993

[20] J.E. Beasley, ”An exact two-dimensional non-guillotine cutting tree search procedure”, Op. Researchm V-33,
1985

[21] C. M. Fiduccia, R. M. Mattheyes, ”A Linear-time heuristic for improving network partitions”, DAC, 1982

[22] B Kernighan, S Lin, ”An efficient heuristic procedure for partitioning graphs”, The Bell System Technical Jour-
nal, V-29, 1970

[23] W L Winston, M Venkataraman, ”Introduction to Mathematical Programming”, Thomson Brooks Cole Publish-
ers, 4’th edition, 2003

[24] M. Sarrafzadeh, C. K. Wong, ”An Introduction to VLSI Physical Design” McGraw Hill, 1994.

[25] www.xilinx.com

29

