
System Level Verification with Model Algebra

Samar Abdi and Daniel Gajski

Technical Report CECS-04-29
November 9, 2004

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

{sabdi,gajski}@cecs.uci.edu

Abstract

This paper introduces Model Algebra (MA), a formalism for representing SoC designs at system level. We present the
definition of Model Algebra and show how system level models can be represented as expressions in this formalism. We
follow a system level design methodology, where design decisions gradually refine the functional specification model of the
system to an architectural model with components and communication structure. The various design decisions are verified
by checking the functional equivalence of models, before and after the design decision is implemented. For this purpose, we
define the execution semantics and a notion of functional equivalence for system level models. Then, we present well defined
rules for reducing a given model to a corresponding normal form. These rules are shown to be sound with respect to our
notion of equivalence. We claim that two models are equivalent if they can be reduced to identical normal forms. As a result,
it is possible to develop equivalence checkers to compare system level models for functional equivalence. Our approach
promises significant savings in functional verification of system level models, because we require simulation for only the
specification model. All models derived from the specification can be verified using equivalence checking and property
verification.

1

Contents

1 Introduction 1

2 System Level Design and Verification Methodology 2

3 Modeling Elements 2

4 Model Algebra 3
4.1 Ports . 3
4.2 Addressing . 3
4.3 Composition Rules. 3

4.3.1 Control flow . 3
4.3.2 Non-blocking write . 3
4.3.3 Non-blocking read . 4
4.3.4 Channel transaction . 4
4.3.5 Blocking write . 4
4.3.6 Blocking read . 4
4.3.7 Grouping .. 4

4.4 Visualization of Objects and Composition Rules. 4
4.4.1 Control flow . 5
4.4.2 Data flow . 5

5 Model Construction with MA 6
5.1 Hierarchy . 6
5.2 Parallel and Conditional Execution . 6
5.3 Variable Access via Ports .. 7
5.4 Channel Access via Ports .. 7
5.5 Using Identity Behaviors .. 8

6 Hierarchical Modeling in MA 9
6.1 Internal and Interface Terms . 9
6.2 Multiple Levels of Hierarchy 9
6.3 Flattening of Hierarchical Behaviors . 10
6.4 Granularity of Leaf Behaviors . 10

7 Channel Semantics 11
7.1 Channel with Single Virtual Link . 11
7.2 Channels with Multiple Virtual Links .. 12
7.3 Control Flow Resolution of Links . 13

8 Execution Semantics 13
8.1 Behavior Control Graph . 13
8.2 Deriving BCG from MA Expression . 14
8.3 Port Connection Network . 14
8.4 Deriving PCN from MA Expression . 15

9 Equivalence Checking of Models 15
9.1 Notion of Functional Equivalence . 15
9.2 Graph Reduction . 15

9.2.1 Identity elimination. 16
9.2.2 Redundant control dependency elimination . .. 17
9.2.3 Control relaxation . 17

9.3 Comparison of MA Models . 18

i

10 System Level Verification Methodology 18
10.1 Behavior Partitioning 18
10.2 Static Scheduling . 19
10.3 RTOS Insertion . 19
10.4 Bus Insertion . 19

11 Case Study: Verification of Behavior Partitioning 20
11.1 Specification and Architecture Models . 20
11.2 Flattening of Models . 21
11.3 Reduction to Normal Form . 21

12 Related Work 21

13 Conclusions 23

ii

List of Figures

1 A possible system level design methodology . .. 2
2 Visualization of various objects in MA . 4
3 Visualization of control flow relations in MA . 5
4 Visualization of data flow via ports . 5
5 Visualization of multi-cast channel transaction .. 5
6 Control flow within hierarchical behaviors . 6
7 (a)Parallel and (b)FSM style compositions of behaviors . 6
8 Using ports for non-blocking data flow in hierarchical behaviors . .. 7
9 Blocking data flow bound to channel . .. 7
10 Sharing channel for transactions with different addresses . 7
11 Various manifestations of the identity behavior. 8
12 A hierarchical behavior with local objects and relations . 9
13 Hierarchical behaviorbpar with a parallel composition . 9
14 Behaviorbpar after flattening ofbhier . 10
15 Leaf level behaviors communicating using channelc . 11
17 Timing diagram of a transaction on a channel . 11
16 Different scenarios for transaction overc (a)b12 executing beforee1, and (b)b12 executing aftere1 12
18 Multiple simultaneous transactions on a single channel. 12
19 Resolution of channels into control dependencies . 13
20 The firing semantics of BCG nodes 14
21 Port connection network showing data dependencies . 14
22 Parts of BCG and PCN before and after identity elimination 16
23 BCG before and after redundant control elimination . .. 16
24 Control relaxation for edge(b2,q2) . 17
25 Control relaxation for edge(b2,q2) without in and out-degree restrictions 17
26 Automatic equivalence checking of system level models . 18
27 Model generation after behavior partitioning . .. 19
28 Different communication schedules for transaction over channelc. 19
29 Example of a simple specification model and its graph representations . 20
30 Architecture model derived after partitioning .. 20
31 Reduction of architecture model BCG, PCN pair to normal form . 22

iii

System Level Verification with Model Algebra

Samar Abdi and Daniel Gajski
Center for Embedded Computer Systems

University of California, Irvine

Abstract

This paper introduces Model Algebra (MA), a formalism
for representing SoC designs at system level. We present
the definition of Model Algebra and show how system level
models can be represented as expressions in this formalism.
We follow a system level design methodology, where de-
sign decisions gradually refine the functional specification
model of the system to an architectural model with compo-
nents and communication structure. The various design de-
cisions are verified by checking the functional equivalence
of models, before and after the design decision is imple-
mented. For this purpose, we define the execution seman-
tics and a notion of functional equivalence for system level
models. Then, we present well defined rules for reducing a
given model to its corresponding normal form. These rules
are shown to be sound with respect to our notion of equiva-
lence. We claim that two models are equivalent if they can
be reduced to identical normal forms. As a result, it is possi-
ble to develop equivalence checkers to compare system level
models for functional equivalence. Our approach promises
significant savings in functional verification of system level
models, because we require simulation for only the speci-
fication models. All models derived from the specification
can be verified using equivalence checking and property
verification.

1 Introduction

The continuous increase in size and verification com-
plexity of SoC designs has raised the abstraction level of
system modeling. Since these abstract models are also sim-
pler to understand and debug, the designer can hope to elim-
inate most functional errors early in the design process.
Once the abstract system model is verified, it can be used
as a source for deriving more detailed lower level models.
As design decisions are made, the source model is refined
to reflect those decisions. During design space exploration,
the designer might need to create several refined models to
represent the various design points. An important concern
in such a design methodology is that the designer should

not have to repeat costly simulations for each of the refined
models.

The verification effort for the specification model must
therefore be leveraged for verifying the refined models.
An analogy can be seen in logic synthesis, where expen-
sive gate level simulation is avoided by using logic equiv-
alence checking. The RTL model, which simulates much
faster than a gate level model, is verified as exhaustively as
possible and then synthesized to a gate level implementa-
tion. The gate level and RTL models are then compared for
equivalence using formal methods.

In recent years, not only are the RTL models increasing
in size, a significant part of the design is being implemented
in software. Hence, exhaustive simulation and debugging at
the cycle accurate level is also becoming very time consum-
ing. In an ideal scenario, one should need to simulate and
debug only the abstract system specification model. Lower
level models, that are derived from the specification, may be
compared against the specification model using some for-
malism.

In this paper, we introduceModel Algebra (MA), which
is a formalism for representing system level models and ver-
ifying their transformations. System level models, written
in SLDLs, can be abstracted into MA expressions. Model
transformations are realized by manipulation of their MA
expressions. The formalism provides a set of reduction
rules that can be used to derive a normal form expression for
any given MA expression. Thus two models can be checked
for equivalence by comparing their respective normal MA
expressions.

The rest of the paper is organized as follows. In Section
2, we give an overview of our system level design and veri-
fication methodology. Section 3 discusses the requirements
for modeling at the system level. In Section 4, we present
the definition of Model Algebra in terms of its objects and
composition rules. Construction of models with objects and
composition rules of MA is discussed in Section 5. In Sec-
tion 6, we deal with semantics of hierarchy and the impact
of granularity on model analysis. The semantics of com-
munication channels in MA is defined in Section 7. The
formal execution semantics of models in MA is defined in

1

Section 8 and the resulting functional equivalence verifica-
tion of MA models is discussed in Section 9. In Section 10,
we look at each design step in our system level methodol-
ogy and propose appropriate verification methods for them
using MA. Based on our methods for comparing MA mod-
els, we present a case study in Section 11 for verifying the
equivalence of input and output models for the first design
step. Finally, we give a brief overview of related work in
Section 12 and wind up with conclusions.

Executable
Specification

Design
Decisions

(GUI)

Equivalence
Checker

Library of RTOS
and Protocol

Models

Unscheduled
Architecture Model

Statically
Scheduled Model

Dynamically Scheduled
Transaction Model

Cycle Accurate
SW

Cycle Accurate
HW

HW/SW Partitioning

Static Scheduling

RTOS+Bus insertion

SW Synthesis HW Synthesis

Property
Checker

HW/SW
Coverification

Figure 1. A possible system level design methodology

2 System Level Design and Verification
Methodology

A possible system level design methodology is illus-
trated in Figure 1. We start by distributing the behaviors
in the specification onto different HW and SW processing
elements (PEs) to derive an architecture model. However,
the behaviors in this architecture model are not yet sched-
uled. The static scheduling step allows for serializing the
concurrent behaviors on the HW PEs, since they will be im-
plemented with a single controller. Also, at this stage, the
communication between PEs may be statically scheduled
to optimize timing. During RTOS insertion, a scheduling
policy is implemented for dynamic scheduling of behaviors
mapped to SW. Bus insertion adds protocol and arbitration
policy, resulting in a completely scheduled bus transaction
model. Finally, the SW tasks are compiled for the target
processor and the HW behaviors are synthesized.

A verification methodology is also shown along side the
design methodology. From the above discussion, it can
be seen that the steps of HW/SW partitioning and static

scheduling transform the model by creating additional hier-
archy of behaviors and creating a new schedule of their ex-
ecution. During these steps, no new functionality is added.
For this reason, we can employ an equivalence checker to
verify the models resulting from such transformations. This
reasoning shall be elucidated further when we look at ex-
amples of such transformations. Transformations result-
ing from steps such as RTOS insertion or communication
synthesis involve the addition of new functionality. For in-
stance, the RTOS is a new behavior that dynamically orders
the execution of concurrent behaviors. Similarly, communi-
cation synthesis requires the addition of a new protocol and
arbitration amongst transactions. These new behaviors can-
not be comprehended by an equivalence checker. Therefore,
to guarantee functional correctness of such transformations,
we need to employ property checking methods like model
checking or theorem proving. The property checker verifies
that the functionality added by the new behaviors does not
change the execution result of the model. Finally, cycle ac-
curate models resulting from SW and HW synthesis may be
verified using traditional co-verification tools.

3 Modeling Elements

A modeling formalism may be defined as a set of objects
and composition rules that represent relationships between
the objects. Our goal is to have a formalism that can allow
the designer to express executable system models at differ-
ent levels of abstraction. For instance, one should be able to
express a model that shows only the functionality of the sys-
tem using the objects and composition rules of the formal-
ism. Also, one should be able to express models with struc-
tural details, using the same objects and composition rules.
Given a model and its abstraction level, one should be able
to identify the various structural artifacts within the model.
Finally, a model expressed in such a formalism, should be
executable so that it may be used to evaluate the design. The
formalism must, therefore, have clear execution semantics.

A system can be viewed as a block of computation; with
inputs and outputs for stimuli and response, respectively.
This computation block is composed of smaller computa-
tion blocks that execute in a given order and communicate
amongst themselves. Thus, for modeling purposes, it is im-
perative to have primitives for computation and communi-
cation. We will refer to the computation units as behaviors.
A behavior has ports that allow it to be connected to other
behaviors. The units of communication are variables and
channels. These communication objects have different se-
mantics. Variables allow a “read, compute and store” style
of communication, while channels support a synchronized
double handshake style of communication. Composition
rules are used to create an execution order of behaviors and
to bind their ports to either variables or channels. A system

2

is thus represented as a hierarchical behavior composed of
sub-behaviors communicating via variables and channels.

4 Model Algebra

An algebra may be defined as set of objects and relations
amongst those objects, often referred to as signature of the
algebra. The objects of MA can be defined as the tuple
< B ,C ,I ,V >, where
B is the set of behaviors
C is the set of channels
I is the behavior interface
V is the set of variables

We also define a subsetB I of B representing the set of
identity behaviors. Identity behaviors are those behaviors
that, upon execution, produce an output that is identical to
their input. In general, we will use the convention of naming
identity behaviors ase followed by a subscript.

Each of the variables inV hastypeassociated with it.
The base type in MA is thebit vector. All abstract data
types like integer, float, boolean and even user defined struc-
tures and arrays can be converted to a bit vector representa-
tion. This representation, essentially, comes from the data
organization in the memory of the PE. We define the subset
Q to be the subset ofV such that all data inQ is of type
boolean.

4.1 Ports

Each behavior has an associated object called its inter-
face. The interface carries the control and data ports of the
behavior. In the case of a hierarchical behavior, the ports
are by association of a variable to the interface. Hence, to
internal behaviors of a hierarchical behavior, the port is seen
asI < p >, wherep∈ V . The port is treated like any other
local variable except that we allow only one kind of i/o op-
eration on it. Local behaviors can either write to a port, in
which case it is known as theout-port, or they may read
from the port, in which case it is called thein-port. Ports
of the in-out type are not allowed in MA. When the same
port p is accessed from outside the behavior, it is identified
by its association to the behavior. For example, in our case,
port p of behaviorb would be written asb < p >, as seen
by external behaviors.

4.2 Addressing

Behaviors communicate with each other using either
memory or channels. Essentially, memory based communi-
cation follows the SW programming paradigm, where one
behavior writes data into a variable through an out-port
and another behavior reads it via an in-port. Behaviors

executing concurrently use synchronized data transactions
amongst themselves for communication. Channels serve as
the media for such transactions. Each transaction uses an
address to identify the sender and the receiver behaviors.
The transactions can, thus, be visualized to take place over
virtual links, that are labeled by distinct addresses. Each of
the links is associated with a channel. Hence, such a link
may be identified asc < a >, where the link uses channelc
and has the addressa. Two transactions on a channel can-
not share a link if they might take place simultaneously. In
other words, all transactions on a single link must be totally
ordered in time.

4.3 Composition Rules

Composition rules on the objects in MA are defined as
relations in MA. These relations may contain two or more
objects. Each composition rule creates a term, which may
be further composed to create hierarchical behaviors.

4.3.1 Control flow

A control flow composition (Rc)determines the execution
order of behaviors during model simulation. We write the
relation as

q : b1&b2& ...&bn ; b

where ∀i,1 ≤ i ≤ nb,bi ∈ B ∪ I ,q ∈ Q . The composi-
tion rule implies thatb executes afterall the behaviorsb1

throughbn, called predecessors in the relation, have com-
pletedandq evaluates to TRUE.Rc is said tolead to bunder
the conditionq. It implies a synchronization whereb must
wait for all predecessors. The degenerate case of the control
flow relation is of the formq1 : b1 ; b. Here, we only have
a single predecessor, sob may start executing afterb1 if q1

evaluates to TRUE, even if there are other control flow re-
lations leading tob. If there are independent terms leading
to b, they representprogram state machinestyle transitions
[5].

4.3.2 Non-blocking write

This composition rule (Rnw) is used to indicate that a behav-
ior writes to a variable or an out-port of its parent behavior.
In the case of a write to a data variable, we use the expres-
sion

b < p >→ v

whereb < p > is the out-port of the writing behavior and
v indicates the memory into which the data is written. In
its other manifestation, this composition rule can be used to
create a port connection, written as

b < p >→ I < p′ >

3

In this case, the composition rule does not include any mem-
ory, but only indicates a port-map in a hierarchical behavior.
Note that< p′ > must also be an out-port.

4.3.3 Non-blocking read

This composition rule (Rnr) is used to indicate that a behav-
ior reads data from a variable or through an in-port of its
parent behavior. In the case of a read from a data variable,
we use the expression

v→ b < p >

whereb < p > is the in-port of the reading behavior and
v indicates the memory from which the data is read. In its
other manifestation, this composition rule can be used to
create a port connection, written as

I < p′ >→ b < p >

In this case, the composition rule does not include any mem-
ory, but only indicates a port-map in a hierarchical behavior.
Note that< p′ > must also be an in-port.

4.3.4 Channel transaction

This composition rule (Rt) indicates a data transfer link
from the sender behavior to one or more receiver behav-
ior(s) over a channel. The semantics of the composition
rule ensure that the sender and the receiver(s) are ready at
the time of the transaction. In other words, it follows a ren-
dezvous communication mechanism. The sender and re-
ceiver ports as well as the logical link of the channel are
also indicated in the relation. We write this relation as

c < a >: b < p > 7→ b1 < p1 > &b2 < p2 > ...&bn < pn >

whereb < p > is the out-port of the sending behavior and
b1 < p1 > throughbn < pn > are the in-ports of the receiv-
ing behaviors. The transaction takes place over channelc
and uses the link addressed byc < a >.

4.3.5 Blocking write

This composition rule (Rbw) is used to indicate the port con-
nection for the sender part of a transaction. The sender be-
havior writes to the out-port of its parent behavior through
one of its own out-ports. Eventually, the port will be bound
to a channel transaction. Thus, the blocking write relation
facilitates the creation of hierarchy in the model. We repre-
sent a blocking write by the expression

b < p > 7→ I < p′ >

whereb < p > is the out-port of the writing behavior. The
port I < p′ > on the parent behavior ofb will eventually
be bound to another blocking write relation or a channel
transaction relation.

4.3.6 Blocking read

This composition rule (Rbr) is used to indicate the port con-
nection for the receiver part of a transaction link. The re-
ceiving behavior(s) read(s) from the in-port of their parent
behavior through one of their own in-ports. Eventually, the
port of the parent behavior will be bound to a channel trans-
action. Thus, the blocking read relation facilitates the cre-
ation of hierarchy in the model. We represent a blocking
read by the expression

< a >: I < p′ > 7→ b1 < p1 > &b2 < p2 > ...&bn < pn >

whereb1 < p1 > throughbn < pn > are the in-port(s) of the
receiving behavior(s). The portI < p′ > will eventually be
bound to another blocking read relation or a channel trans-
action relation. The address of the virtual link (< a >) will
be used for binding this port.

4.3.7 Grouping

This composition rule (Rg)is used to indicate a collection of
composition rules. Essentially, grouping is used to create
hierarchy of behaviors, by collecting the various composi-
tions of sub-behaviors, local channels and local variables.
This commutative relation is written as

r1.r2....rn

where∀i,1≤ i ≤ n
ri ∈ S{Rc,Rnw,Rnr,Rt ,Rbw,Rbr,Rg}.

4.4 Visualization of Objects and Composition
Rules

e

leafb
vhierb

c
p

Figure 2. Visualization of various objects in MA

Figure 2 shows how we visualize the various objects
of MA. A behavior is represented by a rounded rectangle,
while a channel is represented by an ellipse. Variables in-
side behaviors are represented by rectangular boxes. Note
that hierarchical behaviors likebhier are shown by white
rounded rectangles. Leaf level behaviors likeblea f, that
cannot be decomposed any further, are represented using
colored rounded boxes. Identity behaviors likee are also
shown as white rounded boxes. Ports are represented by

4

little rectangles on the circumference of the box for corre-
sponding behavior. A port labeledp may be seen for behav-
ior bhier in Figure 2.

b

b1 b2

q1 q2

b

b1 b2

(a) (b)

q

Figure 3. Visualization of control flow relations in MA

4.4.1 Control flow

Control flow relations are represented using broken directed
edges as shown in Figure 3. A FSM-like control flow can
be realized as shown in Figure 3(a). In this case, behavior
b can start executing ifeither of the following conditions
hold true:

1. b1 has completedand q1 evaluates to TRUE,OR

2. b2 has completedand q2 evaluates to TRUE.

Such a control flow can be expressed in MA as a grouping
of the two control terms as follows

q1 : b1 ; b.q2 : b2 ; b

A more complex control flow is realized by the generic
control relation that involves synchronization. This case is
illustrated in Figure 3(b). The AND-gate symbol is used
to indicate the synchronization before behaviorb can start
executing. In other words,b may start executing only if
both b1 andb2 have completed andq evaluates to TRUE.
This instance of control flow can be expressed with a single
term as follows

q : b1&b2 ; b

4.4.2 Data flow

Non-blocking communication takes place between behav-
iors using composition rulesRnw andRnr. Essentially, be-
haviors read or write data to variables through their ports.
The type of the port used and the variable should be the
same for the relation to be valid. Figure 4(a) illustrates the
non-blocking data flow fromb1 to b2 via variablev. Behav-
ior b1 uses its out-portp1 to write data tov, while b2 uses
its in-portp2 to read data fromv.

b1 b2

p1

p2
ca

a

(a)

(b)

b1

p1

v
b2p2

Figure 4. Visualization of data flow via ports

The channel transaction relation is illustrated in Figure
4(b). For now, let us consider only the simplest case of
a channel transaction, that is a point-to-point transaction.
Here, the portp1 of b1 uses the linka of channelc to write
data. On the other side, portp2 of b2 uses the same link to
read the data. The communication follows a double hand-
shake protocol. The protocol guarantees that the receiver
will wait until the sender is ready to write data. The sender
on the other hand, will write data only upon the ready no-
tification from the receiver. Hence, the channel semantics
ensure that both the sender and receiver are synchronized at
the time of the transaction.

b c
a

b1

bn

a

a

p1

pn

a

p

Figure 5. Visualization of multi-cast channel transac-
tion

The more complex case of multi-cast channel transaction
is shown in figure 5. The transaction consists of simultane-
ously sending the same data from a single sender to several
receivers. For this reason, all the receiving behaviors and
the sender must be executing concurrently. Also, a single
address is used for a multi-cast transaction. The transaction
link is visualized using a channel and the AND-gate sym-
bol as shown in figure 5. The multi-cast communication still
follows rendezvous semantics like the point-to-point com-
munication. The difference is that instead of synchronizing
two behaviors, alln+1 participating behaviors must be syn-
chronized. The transaction link as shown in figure 5 can be
expressed in MA as a single term

c < a >: b < p > 7→ b1 < p1 > &b2 < p2 > ...&bn < pn >

5

5 Model Construction with MA

So far, we have seen the various objects and composition
rules of MA. In this section, we look at how to construct
hierarchical system models in MA. The objective is to rep-
resent models written in typical SLDLs using the objects
and composition rules of MA. For simplicity, we will be
using visual illustrations introduced in Section 4.4.

Virtual Starting Point

Virtual Terminating Point

b

q1

b1

b2
q2

bvsp

b
vtp

Figure 6. Control flow within hierarchical behaviors

5.1 Hierarchy

Using the control flow relations, we can compose be-
haviors such that they execute in a desirable order. Most
SLDLs provide for hierarchical compositions of behaviors
to aid modeling. In MA, hierarchy is achieved using the in-
terface object and its relation to behaviors. Figure 6 shows
a hierarchical behaviorb consisting of sub-behaviorsb1 and
b2. The interface ofb is visualized as the circumference of
the box representingb. Note thevirtual starting point(VSP)
and thevirtual terminating point(VTP) behaviors ofb. The
VSP is the identity behaviorvspb that is the first to execute
insideb. Other sub-behaviors ofb are executed aftervspb,
depending on outgoing control relations fromvspb. We can
see in figure 6 that the VSP in this casevspb is triggering the
execution of sub-behaviorb1. Due to its nature, a VSP be-
havior would only have outgoing control edges to other sub-
behaviors ofb. Similarly, the identity behaviorvt pb is the
last behavior to execute insideb. In other words, the com-
pletion of b is indicated by the execution ofvt pb. Due to
its nature, the VTP behavior will only have incoming edges
from other sub-behaviors ofb. All hierarchical behaviors
are assumed to have a unique VSP and a VTP. Hence, the
starting and terminating control relations ofb can be written
as

vspb ; b1.b2 ; vt pb

b1 b2

b1

b2

q2

q'2

q'1

(a) (b)

parb fsmb

q1

b
vsp

par

b
vtp

par

bvsp
fsm

b
vtp

fsm

Figure 7. (a)Parallel and (b)FSM style compositions
of behaviors

5.2 Parallel and Conditional Execution

Most SLDLs provide for special language constructs to
create different types of behavioral hierarchies. The com-
mon ones are parallel composition and fsm-style composi-
tion. A sequential composition is simply a degenerate form
of the fsm-composition. In MA, we can realize both these
types of composition by using hierarchy and control rela-
tions.

Figure 7(a) shows a parallel composition of behaviorsb1

andb2. A typical SLDL may allow construction of a paral-
lel composition using a statement like
par {run b1; run b2}.
Let the resulting behavior be calledbpar. The execution of
bpar indicates that bothb1 andb2 are ready to execute. The
execution ofbpar completes when bothb1 andb2 have com-
pleted. In the corresponding MA expression,vspbpar and
vt pbpar serve as the starting and terminating points, respec-
tively, of the hierarchical behaviorbpar. We can see, that
insidebpar, b1 andb2 are allowed to start simultaneously.
This is ensured by the control relations
vspbpar ; b1.vspbpar ; b2

Hence, the parallelism is realized by orthogonality of the
execution of behaviorsb1 andb2. The control relation at
the end
b1&b2 ; vt pbpar

ensures that bothb1 andb2 must complete their execution
beforevt pbpar executes. The execution ofvt pbpar indicates
the completion of the hierarchical behaviorbpar.

A typical FSM style composition of behaviors is shown
in Figure 7(b). The control flow between behaviors is typ-
ically expressed using switch-case or goto constructs in
SLDLs. A simple pseudo code example for a hierarchical
behaviorbf sm is as follows
l1: run b1; if q1 == 1 goto l2 elsebreak;
l2: run b2; if q2 == 1 goto l1 elsebreak;
The control relations ofbf sm can be written as follows in

6

MA
vspbpar ; b1.q1 : b1 ; b2.q′1 : b1 ; vt pbpar.
q2 : b2 ; b1.q′2 : b2 ; vt pbpar

b b1

b2

v2

v1hierb

in

out

p1

p2

Figure 8. Using ports for non-blocking data flow in
hierarchical behaviors

5.3 Variable Access via Ports

In MA, as in most SLDLs, a variable is directly visible
only to the behaviors that are at the same level of hierarchy
as the variable itself. Therefore, in order to access variables
at higher levels of hierarchy, data ports are used. As shown
in Figure 8, behaviorb1 reads variablev1 present inbhier

via the port “in” of its parentb. Hence, to realized this port
connection, we need terms at different levels of behavior
hierarchy. At the level ofbhier, we use the non-blocking
relation

v1 → b < in >

At the level ofb, we use the port connection from the inter-
face ofb to b1. We can write this as the relation

I < in >→ b1 < p1 >

The dual of read port connection is the write port con-
nection as shown by the access of variablev2 from behavior
b2 in figure 8. In this case, the port “out” ofb is used to
realize the variable access. The term at the level ofbhier is

b < out >→ v2

while the term at the level ofb is

b2 < p2 >→ I < out >

5.4 Channel Access via Ports

Non-blocking communication is typically used for se-
quentially executing behaviors. The sender behavior writes
to the communicating variable. The receiver behavior exe-
cutes after the writer has completed and reads from the com-
municating variable. However, when behaviors are execut-
ing concurrently, such a method of communication would
not be safe anymore. In other words, we cannot guarantee

the actual order of execution of concurrent behaviors and
hence, it is not possible to tell if the receiving behavior will
execute after the sender. To allow safe and predictable data
transfer between behaviors, we use a channel transaction.

1b p1

c
a

b'1 p1'

2b

p2

a b'2
p2'a

a

Figure 9. Blocking data flow bound to channel

As in the case of non-blocking reads and write, MA pro-
vides mechanism for blocking reads and writes via ports.
For instance, in Figure 9, we see a channel transaction from
b1 to b2 overc. After zooming into the hierarchy ofb1 and
b2, we see that the transaction is taking place fromb′1 to
b′2. The portp1 of b1 makes the channelc visible to b′1.
Therefore, using the relation

< a >: b′1 < p′1 > 7→ I < p1 >

behaviorb′1 can access channelc. However, this requiresp1

to be bound to the virtual link addressed bya. Similarly, on
the other side, sub-behaviorb′2 insideb2, uses the blocking
relation

< a >: I < p2 > 7→ b′2 < p′2 >

to access the read method ofc via portp2. In this case, port
p2 makes the channelc visible tob′2. As before,p2 must be
bound to the virtual link addressed bya.

b1

b p11

c

p1
a1

b2
p22

p2
a2

b'1

b'2

a1

a2

p11'

p22'

a1

a2

Figure 10. Sharing channel for transactions with dif-
ferent addresses

In MA several virtual links may share a single channel.
Each of the virtual links are assigned a different address, but
the data transfer takes place on the same medium. Figure
10 shows an instance of channel sharing. In this model, we
have two virtual links with addresses< a1 > and< a2 >.
Transactions may be attempted concurrently on these links.
However, due to sharing of the channel, we can allow only
one transaction at a time. This is a classic case of bus ar-
bitration, where an arbiter ensures that only one transaction

7

(a)

(b)

(c)

(d)

e4
out

c a

in

c'
a'

e3
out

c a

v
in

e1
out

v

in v'

e2
out

c
a

v

in b
a

b
a

p

p

b
a

p

b'
a'

p'

Figure 11. Various manifestations of the identity be-
havior

may take place over a bus at any time. In MA, the same con-
cept is implemented using mutual exclusion in the channel.
The read and write methods of the channel implement a mu-
tual exclusion policy, where the channel is a shared resource
and each transaction is treated as a critical section. This al-
lows us to connect several different virtual links to the same
channel.

5.5 Using Identity Behaviors

A class of behaviors in MA is known as the identity
behavior. As the name suggests, these behaviors have the
same output as the input. As a result they do not have any
computation inside them. They have two ports namely the
“in” port for reading the input and an “out” port for writing
the output. In general, the identity behavior first reads data
from the “in” port to a local variable and then writes this
variable to the “out” port. The actual implementation of the
read and write within the identity behavior depends on the
port connections.

There are four basic manifestations of the identity behav-
ior as shown in figure 11. Let us assume that the data read
and written by the identity behavior is of integer type. In the
first case, as shown in figure 11(a), both the “in” and “out”
ports of the identity behaviore1 are connected to variables.
Hence, the respective read and write are non-blocking rela-
tions. In MA, the read/write relations ofe1 are expressed
as

v→ e1 < in > .e1 < out >→ v′

The typical SLDL implementation ofe1 would look like

b e h a v i o r e1 (in , ou t){
i n t temp ;
temp = i n ;
ou t = temp ;

} ;

The second case of identity behavior is shown in figure
11(b). Here, the “in” port is connected to a variable, hence
the input is read using a non-blocking relation. On the other
hand, the “out” port is connected to channelc. Hence, the
output needs to be sent tob using a blocking write relation.
In MA, the read/write relations ofe2 are expressed as

v→ e2 < in > .c < a >: e1 < out > 7→ b < p >

The typical SLDL implementation ofe2 would be as follows

b e h a v i o r e2 (in , ou t){
i n t temp ;
temp = i n ;
ou t . w r i t e (a , temp) ;

} ;

The third case of identity behavior is shown in figure
11(c). Here, the “in” port is connected to a channelc, hence
the input is read from behaviorb using a channel transac-
tion. On the other hand, the “out” port is connected to vari-
ablev. Hence, the output needs to be written using a non-
blocking write relation.In MA, the read/write relations ofe3

are expressed as

c < a >: b < p > 7→ e3 < in > .e3 < out >→ v

The typical SLDL implementation ofe3 would be as follows

b e h a v i o r e3 (in , ou t){
i n t temp ;
i n . r ead (a , & temp) ;
ou t = temp ;

} ;

Finally, the fourth manifestation of identity behavior is
shown in figure 11(d). Here, the “in” port ofe4 is connected
to a channelc for reading data fromb. Hence the input is
read using a channel transaction relation. The “out” port
of e4 is also connected to a channel namedc′ for writing
data tob′. Hence, the output is also written using a channel
transaction relation. In MA, the read/write relations ofe4

are expressed as

c< a>: b< p> 7→ e4< in > .c′ < a′ >: e4 < out> 7→ b′ < p′ >

The typical SLDL implementation ofe4 would be as follows

b e h a v i o r e4 (in , ou t){
i n t temp ;
i n . r ead (a , & temp) ;
ou t . w r i t e (a ’ , temp) ;

} ;

8

6 Hierarchical Modeling in MA

The model of a system is a behavior in MA. Typically, it
is a hierarchical behavior showing the various components
and connections of the system and the functionality within
these components. While modeling, it is imperative to pro-
vide the right amount of detail for analysis purposes. The
granularity of the leaf level behaviors is an important factor
in deciding if the model can be analyzed. Typically, leaf
behaviors are treated as atomic by the model analysis and
transformation tools. In one extreme case, a system model
can be represented as a single leaf behavior. Although the
model may simulate correctly, it is useless for performing
any transformations. On the other hand, too much gran-
ularity may make design decisions too cumbersome. For
example, each statement in the SLDL description may be
treated as a leaf behavior. Such a description will present
too many design choices, with only few of them being use-
ful. Usually, the designer knows what functionality should
not be distributed on different PEs. For instance, operations
that work on the same set of data or use the same type of
resources are grouped into one behavior.

6.1 Internal and Interface Terms

As mentioned earlier, hierarchy is a key feature in
SLDLs. Hierarchy allows us to compose systems in a mod-
ular way. In MA, it is possible to represent a behavior as a
grouping of terms involving its sub-behaviors, its interface
and its local variables and channels.

b1

b2

1

1

q1

q1'

a

v

p1

p11

p12

p21p22

p2

bhier b
hier

vsp

bhier
vtp

Figure 12. A hierarchical behavior with local objects
and relations

Figure 12 shows a hierarchical behaviorbhier. The ex-
pression for the hierarchical behavior is written using the
local objects and composition rule. For instance, in the
given behaviorbhier, we can see sub-behaviorsb1 andb2.

We can also see control flow relations that determine the
execution scenario under the conditions labeled on the con-
trol arcs. We also see data flow relations, both amongst
sub-behaviors and between sub-behaviors and the interface.
The grouping of relations between local objects will be re-
ferred to as theinternal termsof a hierarchical behavior.
Similarly, the grouping of relations involving the interface
will be referred to as theinterface termsof the hierarchical
behavior.

We can write the hierarchical behavior as a grouping of
all its internal and interface terms, along with the internal
terms of its sub-behaviors. The grouping of internal terms
for a given behaviorb is represented as[b]. Thus, we can
write
[bhier] = [vspbhier].[b1].[b2].[vt pbhier].vspbhier ; b1.
q1 : b1 ; b2.q′1 : b1 ; vt pbhier.b2 ; vt pbhier.b1 < p12 >→ v.
v→ b2 < p21 >
The interface terms ofbhier is represented by|bhier|. From
figure 12, we can see that
|bhier| =< a >: I < p1 > 7→ b1 < p11 > .
b2 < p22 >→ I < p2 >

Finally, we write the hierarchical behavior as a grouping
of its internal and interface terms. We will use the conven-
tion of enclosing the expression for a hierarchical behavior
in braces. Therefore, we get
bhier = ([bhier].|bhier|)

parb
b

vsp
par

b
vtp

par

a

p1p2

bhier

p

c b3
a

p31

Figure 13. Hierarchical behaviorbpar with a parallel
composition

6.2 Multiple Levels of Hierarchy

In the above example, afsm-like hierarchical composi-
tion was created. The resulting behaviorbhier can be used
further to create more hierarchical behaviors. For instance,
in figure 13, we see behaviorbhier in a parallel composition
with behaviorb3. The two behaviors exchange data using

9

the virtual link addresseda, over channelc. The hierarchi-
cal composition results in a new behavior calledbpar. The
expression forbpar is written in MA as follows
bpar = ([vspbpar].[bhier].b3.[vt pbpar].vspbpar ; bhier.
vspbpar ; b3.bhier&b3 ; vt pbpar.
c < a >: b3 < p31 > 7→ bhier < p1 > .
bhier < p2 >→ I < p >)

6.3 Flattening of Hierarchical Behaviors

Hierarchy is only a modeling artifact in MA. Addition
of hierarchy allows the designer to group different behav-
iors together. It does not add any functionality to the model.
Unlike SLDLs, MA does not have different types of hier-
archical compositions. Hierarchy by itself does not influ-
ence how a particular set of behaviors would execute. That
execution order is already captured using the control flow
and data transaction relations in MA. The usefulness of hi-
erarchy comes in representing the structural entities in the
model. For instance, in an architecture model, different PEs
execute different sets of behaviors. These sets of behaviors
are grouped into different hierarchical PE behaviors.

b1

b2

q1
q1'

v

p11

p12

p21
p22

b hier
vsp

b
hier

vtp

parb bvsp
par

b
vtp

par

a

p

c

b3

a

p31

Figure 14. Behaviorbpar after flattening ofbhier

For functional validation, we need to be concerned with
only the leaf level behaviors. Hence, we may get rid of hier-
archy by flattening the model. The laws for flattening a hier-
archical behavior follow from the semantics of hierarchical
behaviors in MA. Consider the hierarchical behaviorbhier in
figure 12. Now, by the semantics of the VSP, any control re-
lation leading tobhier is effectively leading tovspbhier . This
is becausevspbhier is always the first behavior to execute in-
sidebhier. Similarly, in any control relation wherebhier is a

predecessor, it may be replaced byvt pbhier. This is because
vt pbhier is always the last behavior to execute insidebhier.

This allows us to define the first two laws for flattening a
given hierarchical behaviorb. The term on the LHS is part
of the original expression involvingb. The term of the RHS
is the one that replaces the LHS term onceb is flattened. We
will use symbolsx,yandzas free variables.

FL 1 q : x ; b =⇒ q : x ; vspb

FL 2 q : b ; x =⇒ q : vt pb ; x

To enable data flow, hierarchical behaviors allow for
ports on their interface. These ports are essentially a conduit
for data transfer from one leaf behavior to another. During
flattening, these ports can be optimized away by appropri-
ately making new port connections as shown in figure 14. A
virtual link addresseda over channelc is used for blocking
data transfer fromb3 to b1. However, due to the hierarchical
behaviorbhier, channelc is not visible from the local scope
of b1. Thus, the portp1 is used to facilitate the connection
of b1 with channelc. When the interface ofbhier disappears
during flattening, we can directly connect channelc to b1.
Similarly, the portp2 on bhier can be optimized away by
directly connectingb2 < p22 > to port p onbpar interface.

Therefore, we have the following additional laws for port
optimization during behavior flattening. On the LHS, we
show the expression for the hierarchical behavior enclosed
in braces. Only the interface term for the relevant port is
shown.

FL 3 (...y→ I < p > ...) < p >→ x =⇒ y→ x

FL 4 x→ (...I < p >→ y...) < p >=⇒ x→ y >

FL 5 z< a >: x 7→ (... < a >: I < p > 7→ y...) < p >=⇒
z< a >: x 7→ y >

FL 6 z< a >: (... < a >: y 7→ I < p > ...) < p > 7→ x =⇒
z< a >: y 7→ x >

6.4 Granularity of Leaf Behaviors

From the verification perspective, it is important that the
model should have a fine enough granularity of leaf be-
haviors. Recall that during analysis of system models, we
treat leaf behaviors as atomic units. Channel transactions,
and consequently blocking reads and writes, impose im-
plicit control relations between communicating behaviors.
Therefore, such communication points must be explicitly
represented in the model description.

Our goal is to clearly distinguish the control relation be-
tween two leaf behaviors. This relationship will form the
basis for comparing two models for functional equivalence.
If there is a leaf level behavior with a blocking read or write

10

b

1b 2b

bvsp

bvtp

c
a a

p1 p2

Figure 15. Leaf level behaviors communicating using
channelc

to a channel, then during execution it must wait at some
unknown point to complete that blocking transaction. The
lack of granularity, therefore, restricts us from knowing the
actual order of computations. This problem is illustrated
by a simple example in Figure 15. Consider a hierarchi-
cal behaviorb formed by the parallel composition of leaf
behaviorsb1 andb2. Behaviorsb1 andb2 communicate in
a rendezvous fashion, using channelc. Since leaf behav-
iors are atomic for our analysis, we cannot tell exactly when
does the transaction overc take place. In other words, we
cannot tell what part ofb1 or b2 executes before the trans-
action and what part executes after it. By the execution se-
mantics of the channel transaction, there is a control depen-
dence between parts ofb1 andb2. However, due to the lack
of granularity in the description, we cannot determine this
dependence.

The importance of granularity is further illustrated in
Figure 16. This time we assume that behaviorsb1 andb2,
from Figure 15, are hierarchical. Thus, the MA description
now provides more details, so that the control ordering im-
posed by the transaction relation can be analyzed. Bothb1

andb2 are sequentially composed. The channel is linked
to identity behaviors on either side, namelye1 ande2. By
virtue of being identity behaviors, bothe1 and e2 do not
carry any computation. Therefore, for a channel transaction
involving e1 ande2, we need not be concerned about any
hidden ordering of computation. Essentially, by the ren-
dezvous semantics of the transaction, all execution preced-
ing e1 also precedes all execution followinge2, and vice
versa.

In the first scenario, shown in Figure 16(a), we see that
b12 inside behaviorb1 executes beforee1. Considering the
rendezvous semantics of the channel transaction, we can tell
thatb12 has no ordering withb21. However, in the scenario
shown in figure 16(b), the same rendezvous semantics force
b21 to execute beforeb12. This is because now, the control

flow insideb1 makese1 execute beforeb12. Therefore. in
the above two scenarios, the execution order of leaf behav-
iors are different. Note that if both behaviorsb1 andb2 were
treated as leaf behaviors, the two scenarios shown in figure
16 couldnot be distinguished.

Based on the above discussion, we can establish the sim-
ple rule for granularity of analyzable behaviors. We impose
the modeling restriction that channel transaction relations
or blocking data flow relations can involve only hierarchical
behaviors or identity behaviors. Hence, after flattening the
model may have channel transaction relations only between
identity behaviors. In other words, in a completely flattened
analyzable model, if there is a termc < a >: x 7→ y, then
x,y∈ Bε.

7 Channel Semantics

The channel object allows for reliable communication
between two concurrently executing behaviors. In an SLDL
implementation, the channel uses events and data variable to
implement a rendezvous communication protocol. As dis-
cussed before, a channel transaction implies a control de-
pendency between parts of the communicating behaviors.
Hence, we will assume both the sender and the receiver to
be identity behaviors in future discussions.

c

a a

time

Case A:
Writer arrives first

rd

wr

wait

rd

wait wr wait

wait

Atomic Transaction

Case B:
Reader arrives first

e wr e rdout in

Figure 17. Timing diagram of a transaction on a chan-
nel

7.1 Channel with Single Virtual Link

Figures 17 shows a transaction taking place over channel
c. We can express this transaction MA using the term

c < a >: ewr < out > 7→ erd < in >

11

(a) (b)

b bvsp

bvtp

c
a a

p1 p2

b11

b1vtp

b1vsp b2vsp

b2vtp

b12

e1

b21

e2

a
a

1b 2b

out

in

b bvsp

bvtp

c
a a

p1 p2

b11

b1vtp

b1vsp b2vsp

b2vtp

b12

e1

b21

e2

a
a

1b 2b

out
in

Figure 16. Different scenarios for transaction overc (a)b12 executing beforee1, and (b)b12 executing aftere1

The timing diagram for this channel transaction shows two
instances of execution. In the first instance, called Case
A, the writer reaches the communication point before the
reader. By this we mean that during model execution,ewr is
scheduled to execute beforeerd . However, the rendezvous
semantics dictate thatewr must wait untilerd is ready before
executing. It may be noted that if there is a control depen-
dency fromewr to erd , the resulting model would deadlock.
Hence,erd must be allowed to start independently ofewr

and vice versa. Onceerd is ready to start the transaction,
it notifiesewr. The transaction is thus initiated byewr, that
performs a write on the local memory of the channel. Sub-
sequently,erd reads the data from this memory.

In the second execution scenario, called Case B, the
reader is scheduled before the writer is ready. This forces
erd to wait until ewr is ready to start executing. The shaded
part of the execution, in the timing diagram, indicates the
atomic nature of the transaction. Note that the channel re-
sources (i.e. its local memory) are occupied only during the
actual reading and writing of the data.

7.2 Channels with Multiple Virtual Links

As discussed earlier, channel sharing is possible for dif-
ferent virtual links, but the transactions are scheduled se-
quentially. This mutual exclusivity of transactions can be
achieved by the use of semaphore (or test and set) constructs
in SLDL. Thus, the shaded part representing the actual data
read and write over the local memory of channel is mutu-
ally exclusive. The reason why we do not make the entire
transaction (including synchronization) mutually exclusive

time

rd(a1)wr(a1)

rd(a2)wr(a2)wait

Wait1

e1

e2

c

a1 a1 e1'

e2'
a2 a2

Arrival times

Transaction times

Atomic Transaction

e1 e1'

e2 e2'

Wait2

out

out in

in

Figure 18. Multiple simultaneous transactions on a
single channel

is to allow greater bandwidth on the channel. Consider the
configuration shown in figure 18. In this case, two virtual
links, addresseda1 anda2, are shared over channelc. These
links can be written as a grouping of the following terms
c < a1 >: e1 < out > 7→ e′1 < in > .
c < a2 >: e2 < out > 7→ e′2 < in >
The timing diagram shows the actual arrival schedule of
the four communicating identity behaviors and the result-
ing communication schedule on the channel. Note that de-

12

spite the fact thate1 arrives first, transaction ona2 takes
place before that ona1. This is because, the data transfer
of transaction ona2 is ready to be performed before that for
a1. Thus, the data transfers on the channel are scheduled on
first-ready first-serve basis. Although the transaction ona1

is ready to be performed whene′1 arrives, it must wait for
the durationwait2 since the transaction ona2 is in progress.

e1 e2c

a a

b2b1

q1 q2

e1 e2

b2b1

q1 q2

e1 e2c

a a

b2b1

q1 q2

e1 e2

b2b1

q1 q2

(a)

(b)

Figure 19. Resolution of channels into control depen-
dencies

7.3 Control Flow Resolution of Links

As seen during the discussion of channel semantics, the
channels in MA imply control flow dependencies between
communicating behaviors. Our eventual goal is collect all
control dependencies between behaviors to form a mono-
lithic control flow graph of behaviors. We will now see how
to resolve the virtual links in flattened MA models into con-
trol dependencies. Figure 19 demonstrates this control de-
pendency extraction.

Recall that in an analyzable model, blocking relations
and channel transaction relations can involve only identity
behaviors or hierarchical behaviors. Upon flattening, the
analyzable model would only have channel transaction re-
lations between identity behaviors. Thus, for the purpose of
control flow extraction from channel transaction relations,
we need to consider only the case where sender and receiver
are both identity behaviors.

The synchronization properties of a channel would en-
sure the following two premises:

1. Any behavior following the sender identity behavior
would not execute until the receiver identity behavior
has executed.

2. Any behavior following the receiver identity behavior
would not execute until the sender identity behavior
has executed.

If we were to optimize away the channel to extract only
the control dependencies, the result will be as shown in fig-
ure 19. As per the above premises, behaviorb1 following
sendere1 cannot start untile2 has completed. This is guar-
anteed by including the term

q1 : e1&e2 ; b1

In the dual of the above case,b2 following e2 is blocked
until the sendere1 has executed. This premise is ensured by
the term

q2 : e2&e1 ; b2

Figure 19(b) shows the general case, where the behaviors
following the sender and the receiver may already have sev-
eral predecessors. In that case, the new predecessor (e1 for
b2 ande2 for b1) is simply added to the list of predecessors
in the corresponding blocking relation.

8 Execution Semantics

In order to define the execution semantics of MA, we first
introduce the underlying model of computation. The con-
trol flow in the model is captured using theBehavior control
graph(BCG). BCG is similar to the popular computation
model of Kahn process network (KPN). KPN is a directed
graph, where nodes represent processes and edges repre-
sent unbounded FIFO queues. Each edge is directed from
the writer to the reader process. Also, writes are unblocked,
while reads are blocking. This means that the reading pro-
cess must wait until the queue the required amount of data
for the reader process to execute. Note that all queues have
only one reader and only one writer, and that the queues
are the medium for data transfer between processes. KPN
can effectively model concurrency and synchronization, but
they are not useful for modeling non-determinate behavior
or conditional control flow. The data flow in the model is
captured using thePort Connection Network(PCN), which
is a net-list of behaviors, variables and control conditions,
with directed arcs denoting the data dependencies amongst
them. Together, the BCG and the PCN are used to define
the execution semantics of the model.

8.1 Behavior Control Graph

The BCG is similar in principle to the Kahn Process Net-
work [10], but with some remarkable differences.It is a di-
rected graph (N,E) with two types of nodes, namelybehav-
ior nodes(NB) andcontrol nodes(NQ). The behavior nodes,
as the name suggests, indicate behavior execution, while the

13

q1

qm

q1'

qn'

b1_queue b1_q1'_queue

b1_qn'_queue

b1

bk

bk_qn_queue

Figure 20. The firing semantics of BCG nodes

control nodes evaluate control conditions that lead to further
behavior executions. Directed edges are allowed from be-
havior nodes to control nodes and vice versa. Also, a control
node can have one, and only one, out going edge. Thus,
E(BCG) ⊂ NB(BCG)×NQ(BCG)∪NQ(BCG)×NB(BCG)

The execution of a behavior node, and similarly, evalua-
tion in a control node, will be referred to as afiring. Node
firings are facilitated by tokens that circulate in the queues
of the BCG as shown in Figure 20. Each behavior node
(shown by rounded edged box) in the BCG has one queue,
for instanceb1 queuefor behavior nodeb1. All incoming
edges to a behavior node represent the various writers to the
queue. A behavior node blocks on an empty queue and fires
if there is at least one token in its queue. Upon firing, one
token is dequeued from the node’s queue. The control node
(shown by circular node), on the other hand, has as many
queues as the number of incoming edges. For instanceqn

hask queues, one each for edges fromb1 throughbk. A
control node, sequentially checks all its queues and blocks
on empty queues. If the queue is not empty, it dequeues a
token from the queue and proceeds to check the next queue.
The node fires after it has dequeued one token from each of
its queues.

After firing, a behavior node generates as many tokens as
its out-degree, and each token is written to the correspond-
ing queue of the destination control node in a non-blocking
fashion. Upon firing, the control node evaluates its condi-
tion. If the condition evaluates to TRUE, then a token is
generated and written to the queue of the destination behav-
ior node.

8.2 Deriving BCG from MA Expression

Now that we have described the BCG, we can create a
unique BCG from a given MA expression. This will al-
low us to establish the execution semantics of MA. We have
seen how to create a flattened behavior for a model in sec-

tion 6.3. We also saw the control relations that may result
from a communication channel. After, flattening the model
and extracting the control dependencies, we are left with
a set of leaf level behaviors and control relations amongst
them. This can be directly translated into a BCG in a triv-
ial fashion. For each leaf behavior, we introduce a behavior
node in the BCG, labeled by the leaf behavior’s id. For each
control relation, we introduce a control node in the BCG, la-
beled by the control condition id. Also, edges are added to
the BCG depending on the control relation. For instance, a
control relation of the form

q : b1 ; b2

would imply two directed edges(b1,q) and (q,b2) in the
BCG. On the other hand, a control relation of the form

q : b1&b2...&bn ; b

would imply n+ 1 directed edges(b1,q), (b2,q),...,(bn,q)
and(q,b) in the resulting BCG.

Recall that each hierarchical behavior has uniquevspand
vtp identity behaviors. Let us assume that the top level be-
havior in the model is calledm. Thenvspm is the first node
to fire in the BCG ofm. Therefore,m may be simulated
by placing a single token in the queue forvspm. The sim-
ulation terminates when there are no more tokens left to be
consumed. In other words, if all the FIFOs in the BCG are
empty, then the execution has terminated.

v

b1

b

q b2

v'

p

p11
p21

p12

Figure 21. Port connection network showing data de-
pendencies

8.3 Port Connection Network

The PCN is a directed graph which has three types of
nodes, namely behavior nodes (NB), condition nodes (NQ)
and variable nodes (NV). The edges represent data depen-
dencies in the model and are labeled using the port names
involved in the dependency as shown in Figure 21. For in-
stance, a directed edge from a behavior nodeb to a vari-
able nodev (shown by rectangular box), labeledp (written
(b,v, p)) would mean thatb writes to the storage indicated
by v via its out-portp. Similarly, an edge from a variable
nodev′ to a behavior nodeb′, labeledp′ (written (v′,b′, p′))

14

would indicate thatb′ reads variablev′ using its in portp′.
Note that for each variablev, there can be only one writer
behavior (written aswr(v)). Control conditions also create
data dependencies in the model. Thus, if a control condi-
tion q is a boolean function callq = fb(v1,v2, ...,vn), then
the node representingq has a directed edge from all then
variable nodesv1 thoroughvn.

8.4 Deriving PCN from MA Expression

In MA, a non-blocking write is represented by the rela-
tion

b < p >→ v

In a PCN, this results in a directed edge from a behavior
nodeb to a variable nodev would mean thatb writes to the
storage indicated byv. The edge labelp indicates the out
port used byb for writing v. Similarly, the non-blocking
read relation

v′ → b′ < p′ >

results in an edge from a variable nodev′ to a behavior node
b′, labeledp′, indicating thatb′ reads variablev′ using its in
port p′. We must note that for each variable, there can be
only one writer behavior. The restriction of having a single
writer behavior for each variable would simplify modeling
and analysis, since we do not have to deal with hazards re-
lated with multiple writers.

Finally, the channels are also impose edges in the PCN.
In the flattened form, we would expect to see channel rela-
tions only between identity behaviors. A channel transac-
tion, represented by the MA relation

c < a >: e1 < out > 7→ e2 < in >

will result in a directed edge frome1 to e2 in the PCN. A
multi-cast transaction of the type

c< a>: e< out> 7→ e1 < in > &e2 < in > & ...&en < in >

will result in n edges in the PCN, each such edge originating
ate and terminating at nodese1 throughen.

9 Equivalence Checking of Models

The motivation behind MA is to enable the functional
verification of various model transformations taking place
during system level design. As a result of every design de-
cision, the system model is transformed to reflect the prop-
erties imposed by the design decision. However, we must
be able to ensure that the original intended functionality has
not changed as a result of this transformation. We can en-
sure thiseither by using only proven correct transforma-
tions,or by having an equivalence checking tool to verify
the models before and after the transformation. In either

case, we need a notion of functional equivalence of models
in MA. Using these notions, we can build tools for check-
ing if two MA models are functionally equivalent. In this
section, we will define our notion of equivalence and the al-
gorithms needed for comparison of models based on such
notion.

9.1 Notion of Functional Equivalence

Our notion of functional equivalence is based on the
trace of values that the variables hold during model exe-
cution. In particular, we are interested in the variables that
are written to by non-identity behaviors. We will refer to
such variables asobservedvariables. The reasoning is that
variables that are connected to the output ports of identity
behaviors are simply a copy of another variable. Informally
speaking, we consider two models to be functionally equiv-
alent, if they have identical observed variables and the trace
of values assumed by those variables during model execu-
tion is identical, given the same initial assignment. The for-
mal notion of equivalence is as follows.

Given a modelM, let I(M) be the initial assignment of
observed variables inM. Let
∀v∈ NV(PCN(M)),∃wr(v) ∈ NB(PCN(M))
Let di , i > 0 be the value written tov after theith execution
of wr(v). Let d0 be the initial assignment value ofv. We
define the ordered set
τ(v,M, I(M)) = {d0,d1,d2, ...}
We claim that two modelsM andM′ are equivalent iff
∀v, I(M) = I(M′) ⇒ τ(v,M, I(M)) = τ(v,M′, I(M′))

From the above discussion, we have the following impli-
cations on equivalence checking using BCG and PCN. For
two models, say M and M’, to be functionally equivalent,
they must have

1. A one to one mapping of leaf level behaviors,

2. A one to one mapping of observed variables, and

3. Identical firing order for any two behaviors with data
dependence.

9.2 Graph Reduction

For building an automated tool for equivalence checking,
we need to define methods for reducing two models to a
normal formrepresentation. The reduction procedure must
preserve the functionality of the model, as per the above no-
tion. If the normal form of two models is identical, we can
claim that the models are functionally equivalent. Other-
wise, the result is inconclusive.

Let us now consider some functionality preserving trans-
formations to a model that will lead to its normal form. We
will perform these transformations on the BCG and PCN

15

representations of the model. We choose these graph rep-
resentations to demonstrate the transformations for sake of
clarity. The transformations can also be shown on corre-
sponding MA expressions, since the two representations
have one-to-one mapping.

Our goal is to eliminate identity behavior nodes and
redundant dependencies from the BCG and PCN, as the
model is reduced to its normal form. Redundant dependen-
cies include control dependencies that do not influence the
value trace of the observed variables.

9.2.1 Identity elimination

The identity behavior, by definition, does not perform any
computation. Hence, we may remove the identity behaviors
from BCG and PCN, while making appropriate changes to
the variable dependencies.

PCN

v1

q3 b3 b4

p3
p4

v3 v4 v5

q1 q2

BCG

q1 q2

b1

b2

BCG PCN

v2

q3

b3

b4

p3

p4

e

v1

in

out

v3 v4 v5

q1 q2

b1

b2

q1

q2

e

(a) Before applying identity elimination

(b) After applying identity elimination

Figure 22. Parts of BCG and PCN before and after
identity elimination

The simple example illustrated in figure 22(b) shows
parts of the BCG and PCN involving an identity behavior
e. In the BCG,e is part of the control path fromb1 to b2.
It must be noted that there are no other edges to eithere or
the control nodesq1 andq2. As per the semantics of BCG,
we can eliminatee by merging the control nodesq1 andq2

as shown for the BCG in figure 22(b). Note that in both
the models,b2 will execute afterb1 if both control condi-
tions q1 andq2 evaluate to TRUE. Hence, the elimination
of e leads to the merging of nodesq1 andq2 to form the
new control node labeled asq1∧q2 (ANDing of the boolean

variablesq1 andq2). However, it must be noted that as a re-
sult of elimination ofe, the variable thate was writing to,
also becomes invalid. This variablev2 is shown in the PCN
in figure 22(a). Now, variablev2 is simply a copy ofv1,
by definition of the identity behavior. Therefore, all depen-
dencies onv2, including in-port connections for behaviors
and parameters for control conditions, must be replaced by
dependencies onv1. The elimination ofe from the origi-
nal model results in the PCN shown in figure 22(b). This
simple example of identity elimination shows how the re-
duction rule works in principle. We now present the general
definition of the rule.

Identity elimination rule (R1)

Given a model M, lete∈ NB(M) be an identity behavior.
Let M’ be the model resulting from elimination ofe. Let
there bem edges toe from control nodesq1 throughqm in
BCG(M). Also, let there ben edges frome to control nodes
labeledq′1 throughq′n in BCG. Now,∀i, j,s.t.1≤ i ≤ m,1≤
j ≤ n
In BCG(M), qi has in-degreel(i) and q′j has in-degree
k(j)+1.
Let, (xi

1,qi),(xi
2,qi), ...,(xi

l(i),qi) ∈ E(BCG(M)), and

(e,q′j),(y
j
1,q

′
j), ...,(y

j
k(j),q

′
j) ∈ E(BCG) Also, let (q′j ,zj) ∈

E(BCG). After, elimination of e, the merger of control
nodes would result inm×n new control nodes. Therefore,
∀i, j,s.t.1≤ i ≤ m,1≤ j ≤ n
qi ∧q′j : xi

1& ...&xi
l(i)&yj

1& ...&yj
k(j) ; zj ∈ BCG(M′)

In the PCN, if(e′,e),(e,v,out) ∈ PCN(M),e′ ∈ B I , then
PCN(M′) = (PCN(M)− (e′,e))∪ (e′,v,out).
If (v,e, in),(e,v′,out) ∈ PCN(M),
then∀x, s.t.(v′,x, p) ∈ PCN(M)
PCN(M′) = (PCN(M)− (v′,x, p))∪ (v,x, p).

b1

b2

q b
dominator

path

b1

b2

q b
dominator

path

(a) BCG before redundant control elimination

(b) BCG after redundant control elimination

Figure 23. BCG before and after redundant control
elimination

16

9.2.2 Redundant control dependency elimination

In order to eliminate spurious edges in a BCG, we first
need a control dependence analysis. Given model M, let
y ∈ NB(BCG(M)),x ∈ N(BCG(M)). If during any execu-
tion of M, y alwaysfires at least once between every firing
of x, then we definey to be adominator of x. The set of
dominator nodes forx will be represented bydom(x,M).
The setdom(x,M) can be defined inductively as follows

1. If x ∈ NB(BCG), then dom(x,M) = dom(x,M) ∪
T

(q,x)∈E(BCG(M)){y : y∈ dom(q,M)}
2. If x ∈ NQ(BCG), then dom(x,M) = dom(x,M) ∪

S

(b,x)∈E(BCG(M)){b∪{y : y∈ dom(b,M)}}
An instance of control dependency elimination is shown in
Figure 23. Givenq∈ NQ(BCG(M)). Let
b1,b2 ∈ NB(BCG) and(b1,q),(b2,q) ∈ E(BCG)
Thusb1 andb2 must fire forq to fire.If we can show that
b1 ∈ dom(b2,M) then the edge(b1,q) can be eliminated
from the BCG. This is because, upon execution ofb1, a to-
ken will be enqueued in the queue corresponding to(b1,q).
Now, if b2 executes, we know thatb1 has already executed
and enqueued the relevant token. The nodeq will dequeue
this token fromb1 and will wait for a token fromb2. Hence,
a token fromb2 means thatb1 must already have a token
sent toq. If we remove edge(b1,q), while keeping edge
(b2,q), the order of firings in BCG would not change.

Redundant control dependency elimination rule (R2)

Given model M, letq∈ NQ(BCG(M)).
If ∃b1,b2 ∈ NB(BCG(M)), s.t.
b1 ∈ dom(b2,M) and(b1,q),(b2,q) ∈ E(BCG(M)), then
E(BCG(M)) = E(BCG(M))− (b1,q).

b1 q1 b2 q2 b3 q3

b1 q1 b2 q2 b3 q3

(a) BCG before edge relaxation

(b) BCG after relaxation of edge (b2, q2)

Figure 24. Control relaxation for edge(b2,q2)

9.2.3 Control relaxation

Figure 24 illustrates the control relaxation rule. Given
model M, let(b2,q2) and(q2,b3) be edges in the BCG of
M. If there is no data dependency betweenb2 andb3 and

betweenb2 and q2, then changing the order of firing be-
tweenb2 andq2, or b2 andb3 would not change the value
trace for any variable in M. Therefore, the artificial con-
trol dependency fromb2 to q2 may be removed, as illus-
trated in figure 24. However, the rule applies only if the
nodesq1 and b2 must have an in-degree of 1, while the
nodeb3 has an out-degree of 1. With these restrictions,
dom(b2,M) = b1∪dom(b1,M). Thus, firing ofb1 will en-
queue a token on the queue forb3 if q2 is TRUE. Also, the
token released by firing ofb2 must be enqueued toq3 if the
edge(b2,q2) is to be removed. Hence, the transformation il-
lustrated in Figure 24 is functionally correct under the given
restrictions.

Control relaxation rule (R3)

Given model M, let
(b2,q2),(q2,b3),(b1,q1),(q1,b2),(b3,q3) ∈ E(BCG(M)).
If the following conditions hold

1. 6 ∃b 6= b1, s.t. (b,q1) ∈ E(BCG(M)), and

2. 6 ∃q 6= q1, s.t. (q,b2) ∈ E(BCG(M)) and

3. 6 ∃b′ 6= b3, s.t. (b′,q3) ∈ E(BCG(M)) and

4. 6 ∃v, p, p′ ∈ N(PCN(M)), s.t.
(b2,v, p),(v,q2),(v,b3, p′) ∈ E(PCN(M))

then
E(BCG(M)) = E(BCG(M))∪{(b1,q2),(b2,q3)}−(b2,q2).

e1 1 b2 q2 b3 1 e2q1

e1 1 b2 q2 b3 1 e2q1

b2 q2 b3
q1

(a) Original BCG without in/out degree restrictions

(b) BCG after addition of identity behaviors e1 and e2

(c) BCG after relaxation of edge (b2, q2)

Figure 25. Control relaxation for edge(b2,q2) without
in and out-degree restrictions

17

Control relaxation can be further generalized by remov-
ing the restrictions on the in-degree ofb2 andq1 and the
out-degree ofb3. The original BCG, with arbitrary degrees
for the relevant nodes can be transformed as shown in fig-
ure 25. Using the inverse of rule on identity elimination, we
can add identity behaviorse1 ande2 beforeb2 and afterb3,
respectively. This would allow us to use the control relax-
ation transformation to derive the BCG shown in the midle
of figure 25. Finally, after control relaxation, the identity
reduction rule can be applied to optimize awaye1 ande2.

9.3 Comparison of MA Models

In order to validate functional equivalence of M and M’,
we convert their BCG and PCN to the normal form. The
normal form of M is derived by iteratively applying the
reduction rules to the BCG(M), PCN(M) pair until none
of the rules is applicable anymore. The resulting normal
form graphs are represented by NBCG(M) and NPCN(M).
Similarly, we derive the normal form graphs for M’. If
NBCG(M) is identical to NBCG(M’) and NPCN(M) is
identical to NPCN(M’), then M is equivalent to M’. This
follows from transitivity of the equivalence relation and the
functionality preserving nature of the reduction rules. In the
following sections, we will look at the verification require-
ments at each stage of system level design. We will also
present the application of our equivalence checking method
for some of these design steps using simple examples.

Input Model
(SLDL)

Output Model
(SLDL)

Model
Transformation

Design
Decisions

(GUI)

Equivalence
Checker

Library of Objects
(channels/ behaviors)

Figure 26. Automatic equivalence checking of system
level models

10 System Level Verification Methodology

Figure 26 shows the methodology for generating a re-
fined SLDL model from the input and checking the func-
tional equivalence of the two models. The model genera-
tion algorithm uses the design decisions and syntactically
transforms the input model. The transformation essentially

consists of rearrangement and/or replacement of objects in
the input model to create an output model.

Each of the design decisions result in different types of
transformations. For different types of transformations, we
need a different verification technique to validate it. We
will follow the system level design methodology, as shown
in Figure 1. The following design steps are encountered as
we start from a functional specification model and produce
a scheduled transaction level model.

1. Behavior partitioning

2. Static scheduling

3. RTOS insertion

4. Bus insertion

We will now look at the model transformations resulting
from these design decisions and the requirements for veri-
fying those transformations.

10.1 Behavior Partitioning

A given specification consists of an arbitrary hierarchy of
behaviors. During partitioning, we determine the number of
PEs that will be needed to implement the design. The leaf
behaviors in the specification are then distributed over these
PEs. The PEs are assumed to execute concurrently. Thus,
in this step, the design decision is to map each leaf behavior
in the specification model to a PE.

The output model must follow a well defined template
to reflect the mapping decision. The output shows the PEs
as a parallel composition of hierarchical behaviors. Each
PE behavior is composed from the leaf level behaviors that
were mapped to it. Hence, the transformation produces a
rearrangement of behaviors. Additional channels are added
from the library for synchronization amongst behaviors. We
need this synchronization since the original order of execu-
tion of the leaf behaviors must be maintained in the new
model as well. The data flow relations in the original model
must also be modified to reflect the locality of memory in
each PE. The original data transfers between leaf behaviors,
mapped to different PEs, will now go across PEs. Hence,
they must be routed via identity behaviors using channels.

Figure 27 shows a simple specification modelM on the
LHS with two behaviorsb1 and b2 and condition control
flow. After the execution ofb1, if condition q evaluates to
TRUE, thenb2 is executed, else the execution terminates.
On the RHS, we see an architecture level implementation
M′ whereb1 is assigned toPE1 andb2 is assigned toPE2.
Identity behaviorsn andw are added along with rendezvous
channelsyncto preserve the original control flow.

Since the transformations consist of rearrangements and
addition of identity behaviors and channels, equivalence

18

b1

b2

q
q' n

b1
q

q'

w

b2

sync1

PE1 PE2M
M’

Figure 27. Model generation after behavior partition-
ing

checking would work for this transformation. Note that in
this step, we do not add any new non-identity leaf behaviors
to the model. Hence, the equivalence checker can resolve
the new objects in the model.

10.2 Static Scheduling

Static scheduling is performed in system level models ei-
ther due to resource constraints or timing optimization. Be-
haviors mapped to HW are typically targeted for implemen-
tation with a single controller. As a result, any parallelism
in the HW PEs must be serialized statically. Consider an
unscheduled HW PE with two threads of execution. The
first thread executes behaviorb1 followed byb2, while the
second thread executesb3 followed byb4. A possible seri-
alization of the PE would sequentially execute the behaviors
in the order{b1, b3, b2, b4}. Other schedules are also pos-
sible as long as they do not violate data dependencies.

(a) (b)

……...
run (b1)

c.send (d)
run (b2)
………

PE1

……...
run (b3)

c.recv (&d)
………

PE2

c

……...
run (b1)
run (b2)

c.send (d)
………

PE1

……...
run (b3)

c.recv (&d)
………

PE2

c

Figure 28. Different communication schedules for
transaction over channelc.

Reordering of behaviors can also take place as a result
of communication scheduling. Such a scenario is shown in
Figure 28, where datad is sent from PE1 to PE2 over chan-
nelc. The channel implements rendezvous communication
semantics, i.e. both sender and receiver must synchronize
for the transaction to take place. Consequently, for the case
shown in Figure 28(a),b2 must wait untilb3 has completed
and the transaction is performed. Ifb3 takes a long time to

execute, execution inside PE1 will stall, as it waits for the
data transaction. Behaviorb2 may be scheduled before the
transaction, if it has no data dependency onb3. The result-
ing schedule,shown in 28(b), optimizes timing.

Since, the static scheduling process changes only the
control dependencies, the leaf level behaviors in input and
output models should match. As in partitioning, we do
not add any new non-identity leaf behaviors to the model.
Therefore, equivalence checking is also applicable in this
design step.

10.3 RTOS Insertion

As explained above, static scheduling is one way of seri-
alization of behaviors in a model. However, PEs that imple-
ment software may provide for dynamic scheduling. In this
case, the non-determinism of concurrency is resolved at ex-
ecution time. In a parallel composition of behaviors, the or-
dering of behavior execution is done during run time. This
ordering is performed by a scheduler that is part of the PE’s
operating system. In a SLDL implementation, the sched-
uler is another behavior that models the Real Time Oper-
ating System (RTOS). The concurrent behaviors are then
modified to make calls to the OS behavior, before starting
execution. If a behavior is scheduled for execution, it is
notified by the scheduler. Upon completion, the behavior
must notify its completion to the RTOS and release the PE
resources. Competing scheduler requests are resolved using
a scheduling policy. Most of these policies are well known
like EDF, Round Robin, FIFS etc. Essentially, during RTOS
insertion, the dynamic scheduling policy of the SLDL sim-
ulator is replaced by that of the explicit RTOS.

The addition of a new non-identity behavior (in this case,
the scheduler) renders our equivalence checker unusable.
Therefore, for dynamic scheduling, we need to ensure that
the scheduler behavior, and hence the scheduling policy,
satisfies the same properties as the scheduler of the SLDL
simulator. This can be verified using a property verification
tool. If the property verification is successful, the sched-
uler behavior can be abstracted away from the model. The
MA expression during this SLDL transformation can, thus,
remain unchanged if the dynamic scheduler of the RTOS
follows the simulator’s properties.

10.4 Bus Insertion

After behavior partitioning and scheduling, the sys-
tem model consists of concurrent behaviors communicat-
ing with several channels. Although, the model shows the
computation structure correctly, the communication struc-
ture still needs to be implemented. In a bus-based SoC
communication scheme, the various PEs are connected to
system busses. The communication model can thus be rep-

19

resented using channels for busses. All virtual links in the
input model are shared over the newbus channels. The
design decision in this case is choosing the number of bus
channels and mapping the virtual links to the bus channels.
Also, the ordering of transactions on the bus may be done
using an arbitration policy. By default, in MA, we follow
a first-come first-serve policy as explained in Section 7.2.
However, if the designer chooses to use a different schedul-
ing, he or she may add a newarbiter behaviorto schedule
transactions over a bus. The arbitration of transactions is
analogous to dynamic scheduling of behaviors, described
above.

For verification, we have the same scenario as that in
RTOS insertion. Equivalence checking is not directly ap-
plicable since the output model has a new non-identity leaf
behavior. As before, we can use property checking to verify
that the arbitration policy preserves the functionality of the
model. If we can prove, using a property checking tool, that
the arbiter behavior will

1. never cause a deadlock

2. eventually schedule a transaction request

then we can abstract it away.

11 Case Study: Verification of Behavior Par-
titioning

In this section, we will use a simple example to demon-
strate functional equivalence checking of models before and
after behavior partitioning. We start by capturing the speci-
fication and (partitioned) architecture model as hierarchical
behaviors in MA. The models are flattened using the flat-
tening laws described in Section 6.3. Then, we resolve the
channels and derive the BCG and PCN for the two models.
Finally, we use the reduction rules in Section 9.2 to obtain
the normal form graphs for the models. The isomorphism
of the normal form graphs is used to check the equivalence
of the specification and architecture models.

11.1 Specification and Architecture Models

The specification modelM, shown in figure 29 is com-
posed of two leaf level behaviorsb1 andb2 and variablev,
which is written byb1 and read byb2. The following pseudo
code describes the specification
M: begin;run b1; if v < 5 run b2;end
Assume thatb1 uses portp1 to write v andb2 uses portp2

to readv. Also, letq = v < 5 andq′ = v≥ 5. The MA ex-
pression forM can be written as follows:
M = [vspm].[vt pm].[b1].[b2].b1 < p1 >→ v.v → b2 < p2 >
.vspm ; b1.q : b1 ; b2.q′ : b1 ; vt pm.b2 ; vt pm

b1

b2

q
q'

M

v

p1

p2

mvsp

m
vtp

b1

mvsp

b2

q'

mvtp

1

q

1

b1

b2q'q

p1

v
p2

BCG(M) PCN(M)

Figure 29. Example of a simple specification model
and its graph representations

m'
vsp

b1

n

PE1

v

p1

in

pe1
vsp

w

b2

q

q'

PE2

v'

out

p2

vsp

out

in

c
p1'

p2'
a

a a
a

pe2

vtp
pe1

vtp pe2

m'
vtp

M’

Figure 30. Architecture model derived after partition-
ing

Let us assign two PEs, namely PE1 and PE2 to imple-
ment this specification. Also, let us mapb1 to PE1 andb2

to PE2. A possible architecture modelM′, created from the
specification and the mapping decision, is shown in Figure
30. Note that additional hierarchy is created for PE1 and
PE2, which execute in parallel. New identity behaviorsn
andw are introduced in PE1 and PE2, respectively. These
identity behaviors are used to send data in variablev from
PE1 to PE2, via the channelc. This data is needed byb2

and the control conditionsq andq′. Note that the data from
v is copied into variablev′, which is local to PE2. In MA,
the architecture model can be written using the following
expressions.
M′ = [vspm′].[vt pm′].[pe1].[pe2].vspm′ ; pe1.
vspm′ ; pe2.pe1& pe2 ; vt pm′ .
c < a >: pe1 < p′1 > 7→ pe2 < p′2 >

20

pe1 = [vsppe1].[vt ppe1].[b1].[n].vsppe1 ; b1.b1 ; n.
n ; vt ppe1.b1 < p1 >→ v.v→ n < in > .
< a >: n < out > 7→ I < p′1 >

pe2 = [vsppe2].[vt ppe2].[w].[b2].vsppe2 ; w.
q : w ; b2.q′ : w ; vt ppe2.b2 ; vt ppe2.
< a >: I < p′2 > 7→ w.w < out >→ v′.v′ → b2 < p2 >

11.2 Flattening of Models

The specification model has only one level of hierarchy,
so it cannot be flattened any further. The architecture model,
on the other hand, has two levels of hierarchy. Therefore,
we can flatten the architecture model to remove the hier-
archy created by behaviorspe1 and pe2. Using the laws
in Section 6.3, the flattened architecture model can be ex-
pressed in MA as follows
M′ = [vspm′].[vt pm′].[vsppe1].[vt ppe1].[b1].[n].
[vsppe2].[vt ppe2].[w].[b2].
vspm′ ; vsppe1.vspm′ ; vsppe2.vt ppe1&vt ppe2 ; vt pm′ .
vsppe1 ; b1.b1 ; n.n ; vt ppe1.
vsppe2 ; w.q : w ; b2.q′ : w ; vt ppe2.
b2 ; vt ppe2.b1 < p1 >→ v.v→ n < in > .
w < out >→ v′.v′ → b2 < p2 > .
c < a >: n < out > 7→ w < in >

11.3 Reduction to Normal Form

We will now use the reduction rules in Section 9.2 to
derive the normal form representation of the two models.
Let us start by considering the architecture model. Channel
c in the flattened MA expression of M’ can be resolved into
edges in the BCG and PCN as described in Section 7.3.

Figure 31 shows how the BCG and PCN for the archi-
tecture model shown M’ are reduced to its normal form in a
step wise fashion. The BCG is the graph shown on the left
and the PCN is the graph shown on the right. At each step,
we use the applicable reduction rule until we cannot apply
them any more. The topmost BCG and PCN in Figure 31
are derived from the architecture model. The resulting con-
trol dependencies from resolution of channelc are seen in
the edges emanating fromn andw in the BCG. Also, the
edge(n,w) in the PCN indicated the channel connection.

The reduction to normal form takes place as follows. In
the first step, we optimize away identity behaviorsvsppe1

and vsppe2 from the BCG using identity elimination rule
R1. There is no change made to the PCN since these behav-
iors do not have any data dependencies. In Step 2, we use
R1 again to optimize away noden. As a result, in the BCG,
all edges emanating fromn are replaced by those fromb1.
In the PCN, this results in the noden and its edges being re-
moved. A new edge(v,w, in) is added to the PCN to indicate

thatw now reads directly fromv via its in port. Similarly,
in step 3, nodew is optimized away using R1. Hence, all
edges fromw are replaced by those fromvspm′ in the BCG.
In the PCN, this reduction results in nodew andv′ being op-
timized away. All edges fromv′ are now converted to edges
from v.

Step 4 uses redundant control elimination rule R2 to get
rid of redundant edges fromvspm′ in the BCG. It may be
noted that by definition of dominator in Section 9.2.2, we
havevspm′ ∈ dom(b1,M′) Note that in the BCG after Step
3, nodes labeledq, q′ and 1 have control dependencies from
both b1 andvspm′ . Since,vspm′ is a dominator ofb1, we
can eliminate the edges(vspm′ ,1),(vspm′ ,q) and(vspm′ ,q′).
There are no changes to the PCN.

In Step 5, we use R1 once again to eliminate identity be-
haviorsvt ppe1 andvt ppe2 from the BCG. Again, the PCN
remains unchanged since these behaviors do not have any
data dependencies. Finally, in step 6, we use R2 to get rid
of edge(b1,1). This is possible because, from the definition
of dominator, we can see thatb1 ∈ dom(b2,M′). Again, the
PCN remains unchanged. The BCG and PCN obtained af-
ter Step 6 cannot be reduced any further and, thus, represent
the normal form for the architecture model M’.

The normal form graphs of M’ are identical to the BCG
and PCN of corresponding specification model M, shown in
Figure 29(b). Hence, we have shown the function equiva-
lence of the two models before and after mapping of speci-
fication behaviors to PEs for our example.

12 Related Work

Significant research has been done in the past for devel-
oping modeling formalisms for system level design. Pro-
cess algebras, such as CSP [8] and CCS [12] have been
used for verifying distributed software, but have limitations
in modeling. For example, CSP allows only rendezvous
communication between parallel processes. StateCharts [7]
provide for hierarchy, synchronization and exceptions, but
have unclear execution semantics, which have led to several
variants. Colored Petri Nets are widely used for analysis
and modeling of concurrent systems, and verification tech-
niques have been developed to check for their equivalence
[9]. Formal methods, developed for hardware verification,
have been applied to embedded systems like bounded model
checking [4] and theorem proving [13]. The problem with
most state based approaches, as above, is that their com-
plexity increases exponentially with design size. Our goal is
to correctly derive detailed system level models, so that we
can leave the functional verification task for only the specifi-
cation model. Correct by construction techniques have been
widely applied at RT Level to prove the correctness of high
level synthesis steps [13] [3]. A complete methodology for
correct digital design has been proposed in [11], but they

21

b11

m'
vsp

b2

q'

1

m'
vtp

pe1
vsp

pe1
vtp

pe2
vsp

pe2
vtp

n

w

1

1

1 1

q 1

1

b1

b2

n

w

v

q'

q

p1 in

v'out

p2

b1

m'
vsp

b2

q'
m'

vtp

pe1
vtp

pe2
vtp

n

w

1

1

1 1

q 1

1

b1

b2

n

w

v

q'

q

p1 in

v'out

p2

b1

m'
vsp

b2

q'
m'

vtp

pe1
vtp

pe2
vtpw

1

1

1

q 1

1

b1

b2

w

v

q'

q

p1

in

v'out

p2

b1

m'
vsp

b2

q'
m'

vtp

pe1
vtp

pe2
vtp

1 1

q 1

1 b1

b2

q'

q

p1
v

p2

b1

m'
vsp

b2

q'
m'

vtp

pe1
vtp

pe2
vtp

1 1

q
1

1
b1

b2

q'

q

p1
v

p2

b1
m'

vsp

b2

q'
m'

vtp

1

q

1

b1

b2

q'

q

p1
v

p2

b1m'
vsp

b2

q'
m'

vtp
1

q 1 b1

b2

q'

q

p1
v

p2

Step 6

Step 5

Step 4

Step 3

Step 2

Step 1

Figure 31. Reduction of architecture model BCG, PCN pair to normal form

22

only consider synchronous models which are insufficient at
system level.

More recently, research is being directed towards com-
parison of SLDL models using textual correlation and sym-
bolic simulation [14], but their approach requires two mod-
els to be very similar. Verification of only the synchroniza-
tion primitives of SpecC [6] are presented in [15]. Correct
by construction approaches at the system level have been
proposed for HW/SW partitioning [2]and model generation
[1], but they restrict the designer to follow a given refine-
ment algorithm.

13 Conclusions

In this paper, we introduced a formalism called Model
Algebra, which can be used for functional verification of
system level models. The objects and composition rules of
Model Algebra allowed us to represent hierarchical SLDL
models as expressions. We then presented the execution
semantics of model algebraic descriptions using BCG and
PCN graphs. We also established a notion of functional
equivalence of two models based on the value trace of vari-
ables in the models. This led us to define functionality
preserving transformation rules on model algebraic descrip-
tions. The expressive power and well defined rules in MA
can be used to derive new equivalent models from the spec-
ification. On the other hand, these rules can also be used to
verify functional correctness of model refinements resulting
from system synthesis. We showed how models in MA can
be reduced to a normal form, which allowed us to compare
the input and output of system level design steps. The for-
malization of models using Model Algebra has significant
impact on system level verification.

References

[1] S. Abdi and D. Gajski. Automatic generation of equiv-
alent architecture model from functional specification.
In Proceedings of the Design Automation Conference,
June 2004.

[2] E. Barros and A. Sampaio. Towards provably correct
hardware/software partitioning using occam. InPro-
ceedings of the International Workshop on Hardware-
Software Codesign, pages 210–217, June 2004.

[3] R. Camposano. Behavior-preserving transformations
for high-level synthesis. InProceedings of the Math-
ematical Sciences Institute workshop on Hardware
specification, verification and synthesis: mathemat-
ical aspects, pages 106–128. Springer-Verlag New
York, Inc., 1990.

[4] X. Chen, H. Hsieh, F. Balarin, and Y. Watanabe. Case
studies of model checking for embedded system de-
signs. InThird International Conference on Applica-
tion of Concurrency to System Design, pages 20–28,
June 2003.

[5] D. Gajski, R. Domer, A. Gerstlauer, and J. Peng.Sys-
tem Design with SpecC. Kluwer Academic Publishers,
January 2002.

[6] D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and
S. Zhao.SpecC: Specification Language and Method-
ology. Kluwer Academic Publishers, January 2000.

[7] D. Harel. Statecharts: A visual formalism for com-
plex systems. Science of Computer Programming,
8(3):231–274, June 1987.

[8] C. Hoare. Communicating Sequential Processes.
Prentice Hall, 1985.

[9] J. Jorgensen and L. Kristensen. Verification of colored
petri nets using state spaces with equivalence classes.
In Proceedings of the Workshop on Petri Nets in Sys-
tem Engineering, pages 20–31, September 1997.

[10] G. Kahn. The semantics of a simple language for par-
allel programming. InInfo. Proc., pages 471–475, Au-
gust 1974.

[11] Middlehoek. A methodology for the design of guar-
anteed correct and efficient digital systems. InIEEE
International High Level Design Validation and Test
Workshop, November 1996.

[12] R. Milner. A Calculus of Communicating Systems.
Springer, 1980.

[13] S. Rajan. Correctness of transformations in high level
synthesis. InInternational Conference on Computer
Hardware Description Languages and their Applica-
tions, pages 597–603, June 1995.

[14] H. Saito, T. Ogawa, T. Sakunkonchak, M. Fujita, and
T. Nanya. An equivalence checking methodology for
hardware oriented c-based specifications. InIEEE
International High Level Design Validation and Test
Workshop, pages 274–277, October 2002.

[15] T. Sakunkonchak and M. Fujita. Verification of syn-
chronization in specc description with the use of dif-
ference decision diagrams. InProceedings of the Fo-
rum for Design Languages, September 2002.

23

