
 1

Floorplan-aware Bus Architecture Synthesis∗∗∗∗

Sudeep Pasricha†, Nikil Dutt†, Elaheh Bozorgzadeh† and Mohamed Ben-Romdhane‡

 †Center for Embedded Computer Systems ‡Conexant Systems Inc.
 University of California Irvine 4000 Mac Arthur Blvd
 Irvine, CA 92697-3425, USA Newport Beach, CA 92660 USA
 1 (949) 824-2248 1 (949) 483-4600
 {sudeep, dutt, eli}@cecs.uci.edu m.benromdhane@conexant.com

CECS Technical Report #04-27
October, 2004

∗ This work was partially supported by grants from Conexant Systems Inc. and UC Micro (03-029)

 2

Floorplan-aware Bus Architecture Synthesis ∗∗∗∗

Sudeep Pasricha†, Nikil Dutt†, Elaheh Bozorgzadeh† and Mohamed Ben-Romdhane‡

 †Center for Embedded Computer Systems ‡Conexant Systems Inc.
 University of California Irvine 4000 Mac Arthur Blvd
 Irvine, CA 92697-3425, USA Newport Beach, CA 92660 USA
 1 (949) 824-2248 1 (949) 483-4600
 {sudeep, dutt, eli}@cecs.uci.edu m.benromdhane@conexant.com

CECS Technical Report #04-27
October, 2004

Abstract

 As System-on-Chip (SoC) designs become more complex, it is becoming harder to design communication
architectures to handle the ever increasing volumes of inter-component communication. Manual traversal of the
vast communication design space to synthesize a communication architecture that meets performance
requirements becomes infeasible. In this technical report, we address this problem by proposing an automated
approach for synthesizing cost-effective, bus-based communication architectures that satisfy the performance
constraints in a design. Our synthesis flow also incorporates a high-level floorplanning and wire delay estimation
engine to evaluate the feasibility of the synthesized bus architecture and detect timing violations early in the
design flow. We present case studies of network communication SoC subsystems for which we synthesized bus
architectures, detected timing violations and generated core placements in a matter of hours instead of several
days it took for a manual effort.

∗ This work was partially supported by grants from Conexant Systems Inc. and UC Micro (03-029)

 3

1. INTRODUCTION

Improvements in process technology have led to more and more functionality being integrated onto a single
chip, which has in turn resulted in a sharp increase in the amount of overall on-chip communication volumes
between the integrated components. In such highly integrated systems, on-chip communication is expected to
become a major performance bottleneck [1]. Already, increasingly demanding performance requirements from the
next generation of multimedia, broadband and network applications are making interconnect design a challenging
proposition.

Bus-based communication architectures [2-4] remain a popular choice for handling on-chip communication in
SoC designs today, because they are simple to design and take up very little area. However, selecting and
reconfiguring standard bus-based communication architectures such as AMBA [2] and CoreConnect [3], to meet
application specific performance requirements, is a very time consuming process. This is due to the large
exploration space created by customizable bus topologies, arbitration protocols, DMA burst sizes, data bus
widths, bus clock speeds and buffer sizes, all of which significantly impact system performance [5][12][26].

To counter the challenge of ever increasing on-chip bandwidth requirements and a vast communication
exploration space, early planning of the interconnect architecture at the system level must become an integral part
of a SoC design process. However the complex interplay between communication architecture parameters is hard
to analyze effectively even at the system level. Previous research in this area (discussed in Section 2) has been
limited to identifying and automating the exploration of small subsets of this design space. Very often, designers
end up evaluating the communication design space by creating simulation models annotated with detail based on
experience, and manually iterating through different design configurations. Such an effort remains time
consuming and produces systems which are generally overdesigned for the application at hand.

To address this problem, we propose a bus architecture synthesis approach in this report, which automates the
generation of a cost effective communication architecture for a SoC. We make use of SystemC [23] to quickly
capture components at the behavioral system-level and automate the bus architecture synthesis for the design. The
novelty of our approach is in the ability to automatically satisfy performance constraints and detect bus cycle time
violations, while synthesizing a feasible, low-cost configuration of a standard bus-based communication
architecture (such as [2]) which is commonly used in SoC designs. Our approach synthesizes the bus topology, as
well as values for bus architecture parameters such as arbitration priority orderings, data bus widths, bus clock
speeds and DMA burst sizes. Additionally, we make use of a high-level floorplanning engine to generate
estimates of core placements on the chip. Typically, once the system architecture is frozen, it takes several months
before a floorplan of the design becomes available. Violations of timing constraints, detected at this late stage, can
require changes in the architecture which can severely impact time-to-market. Our high-level floorplanning and
wire delay estimation engines detect these timing violations early in the design flow at the system level, where
architectural modifications and tradeoff analysis can be performed quickly and efficiently to eliminate such
violations. To demonstrate the usefulness of our approach, we present case studies of network communication
SoC subsystems, used for data packet processing and forwarding. Compared to a manual effort which took
several days and produced overdesigned systems, our automated flow was able to synthesize low-cost bus
architectures, detect timing violations and generate core placements which satisfied performance constraints for
the SoC subsystems in a matter of a few hours.

2. RELATED WORK

There is already a significant body of research in the area of bus architecture synthesis. Early work was aimed
at minimizing bus width [6], interface synthesis and simple synchronization protocol selection [7] and topology
generation for simple busses without arbitration [8]. Ryu et al. [9] performed studies to find optimal bus
topologies for a SoC design. Pinto et al. [10] proposed an algorithm for constraint-driven topology synthesis
under the assumption that relative positions of components were fixed. Lyonnard et al. [11] proposed a synthesis
flow which supported shared bus and point to point connection templates. These templates have to be
parameterized manually, which makes the process time consuming. Lahiri et al. [12] designed communication

 4

architectures after exploring different solutions using fast performance simulation. However, they assumed the
bus topology to be given. Shin et al. [13] used a genetic algorithm for automating the generation of bus
architecture parameters to meet performance requirements. However, they do not focus on bus topology synthesis.
Our approach differs from these existing approaches in the way we automate the synthesis of not only the bus
topology, but also the generation of values for bus architecture parameters, while also satisfying performance
constraints.

A key component of our synthesis flow is the integrated floorplanner. There have been other approaches in
the past which have made use of a floorplanning tool [14-18] in a synthesis flow, but for different reasons.
Bergamaschi et al. [18] and Thepayasuwan et al. [14] used the floorplanner to generate an early core placement
estimate. Drinic et al. [15] used the floorplanner to determine feasibility of the synthesized design by comparing
estimates of wire length with an upper bound on wire length. However an upper bound on wire length has the
disadvantage of not accounting for varying capacitive loads of the components. Hu et al. [16] also used the
floorplanner to estimate wire length, which they used to calculate energy consumption in point to point networks.
Dick et al. [17] invoked the floorplanner repeatedly in their custom bus topology synthesis approach to obtain
global wiring delays and ensure that real time deadlines were met. Unlike existing approaches, the floorplanner in
our approach is used to identify bus cycle time violations and verify the feasibility of the synthesized bus
architecture early in the design flow. We believe that this step will become increasingly important in the deep
submicron era as clock speeds increase and lengthy propagation delays cause violations of timing constraints that
will need to be detected and corrected early in the design flow.

3. AUTOMATED BUS SYNTHESIS

This section describes our approach for automated bus architecture synthesis. Section 3.1 formulates the
problem and presents our assumptions. Section 3.2 discusses the simulation engine while Section 3.3 describes
communication parameter constraints, which guide the bus synthesis process. Section 3.4 gives an overview of
our floorplan and wire delay calculation engines used for detecting timing violations in the design. Finally,
Section 3.5 presents our automated bus architecture synthesis approach in detail.

3.1 Problem Formulation

We are given a SoC having several components (IPs) that need to communicate with each other. The standard
bus-based communication architecture (e.g. AMBA [2], CoreConnect [3]) which determines the pins at the IP
interface and for which the bus topology and communication parameter values must be synthesized, is also
specified. It is assumed that hardware software partitioning has taken place and that the appropriate functionality
has been mapped onto hardware and software. The IPs are assumed to be standard “black box” library
components which cannot be modified during the bus synthesis process, except for the memory components.

CPU1CPU1

M2M2

M3M3

S1S1

S3S3

S2S2

MEM1MEM1

MEM2MEM2

MEM3MEM3

360 Mbps

Figure 1. Communication Throughput Graph (CTG)

Typically, SoC designs need to satisfy performance constraints which are generally dependent on the nature

of the application. The throughput of communication between components is a good measure of the performance

 5

of a system [8]. We assume that we are given one or more throughput constraints for the system that need to be
satisfied. These constraints can involve communication between two or more IPs. Figure 1 shows a
Communication Throughput Graph (CTG) which is a directed graph, where each vertex v represents a component
in the system, and an edge aij connects components i and j that need to communicate with each other. Each vertex
v contains information about the component it represents, such as its area, dimensions (fixed width/height or
aspect ratio), capacitive loads on output pins and which bus type it can be connected to – a main high bandwidth
bus like AHB [2], a peripheral low bandwidth bus like APB [2] or both. An edge aij is associated with a
throughput constraint �(aij) if it lies within a throughput constraint path (TCP). Figure 1 shows a TCP involving
CPU1, MEM1, S1 and M2 components, where the rate of data packets streaming out of M2 must not fall below
360 Mbps. A TCP, in general, has a single master for which data throughput must be maintained and other
masters, slaves and memories which are in the critical path that impacts the maintenance of the throughput.
The problem then is to generate a bus topology, and determine bus architecture parameter values for the selected
standard bus-based communication architecture, while ensuring that all throughput constraints in the system are
satisfied. In addition, we want to consider layout information of the chip to detect bus cycle time violations, early
in the design flow. Finally, the synthesized bus architecture must be cost effective, having the least number of
busses, and the lowest values for bus widths and speeds, while still satisfying all constraints.

3.2 Simulation Engine

Since communication behavior is characterized by unpredictability due to dynamic bus requests from cores,
bus contention etc., a simulation based approach is necessary for accurate performance estimation. In our
synthesis flow, we capture behavioral models of components and bus architectures in SystemC [23], and keep
them in an IP library database. Since we were concerned about the speed of simulation, we chose a fast
transaction-based, bus cycle accurate modeling abstraction, which averaged simulation speeds of 150–200
Kcycles/sec [5], while running embedded software applications on processor ISS models.

3.3 Communication Parameter Constraints

The exploration space for a typical SoC bus-based communication architecture such as AMBA [2] consists of
combinations of bus topology configurations with communication parameter values for arbitration schemes, data
bus widths, bus clock speeds and DMA burst sizes. If we allow these parameters to have any arbitrary values, an
incredibly vast design space is created. The time required to simulate through all possible system configurations
searching for one which satisfies every design constraint would become unreasonably large, even with the fast
simulation engine. More importantly, once we manage to find such a system configuration, there would be no
guarantee that the values generated for the communication parameters would be practically feasible. To ensure
that our synthesis approach generates a realistic communication architecture configuration, we allow the designer
to specify a Communication Parameter Constraint set (�). These constraints are in the form of a discrete set of
valid values for the communication parameters to be synthesized. A major motivation to allow this constraint
specification is that it allows the designer to bias the synthesis process based on knowledge of the design and the
technology being targeted. For instance, a designer might decide that the synthesized design should only have
data busses with 16, 32 or 64 bit widths, because the IPs in the design cannot support larger widths effectively. Or
a designer might set the allowable bus clock frequency to multiples of 33 MHz, with a maximum speed of 166
MHz, based on the operation frequency of the cores in the system and past experience of the clock generation
mechanism. Such knowledge about the design is not a prerequisite for using our synthesis framework. As long as
� is populated with any discrete set of values for the parameters, our framework will attempt to synthesize a
feasible communication architecture. However, informed decisions can greatly reduce the time taken for synthesis
and help the designer generate a more practical system.

 6

3.4 Floorplanning and Delay Estimation Engines

The floorplanning stage in a typical design flow arranges arbitrarily shaped, but usually rectangular blocks
representing circuit partitions, into a non-overlapping placement while minimizing a cost function, which is
usually some linear combination of die area and total wirelength. Our floorplanning engine is adapted from the
simulated annealing based floorplanner proposed in [19]. The input to the floorplanner is a list of components and
their interconnections in the system. Each component has an area associated with it (obtained from RTL
synthesis). Dimensions in the form of width and height (for “hard” components) or aspect ratio (for “soft”
components) are also required for each component. Additionally, maximum die size and fixed locations for hard
macros can also be specified as inputs. Given these inputs, our floorplanner minimizes the cost function

 Cost = w1.Area +w2.BusWL +w3.TotalWL ... (1)

where Area is the area of the chip, BusWL is the wire length corresponding to wires connecting components on a
bus, TotalWL is total wire length for all connections on the chip (including inter-bus connections) and w1, w2, w3
are adjustable weights which are used to bias the solution. The floorplanner outputs a non overlapping placement
of components from which the wire lengths can be calculated by using half-perimeter of the minimum bounding
box containing all terminals of a wire (HPWL) [20].

CkCk-1

lk

C2C1

l2

Rd

l1

(a)

CLC0Rd

l

(b)

�
�

=

==
k

j

j

j

i
i

L C
l

l
C

1

1 .�
=

−=
k

j

LjO CCC
1

(c)

Figure 2. Transforming multiple pin net into a two pin net

Once the wire lengths have been calculated, the delay estimation engine is invoked. The wire delay is
calculated based on formulations proposed in [21]. The inputs to this stage are the wire lengths from the
floorplanner and the capacitive loads (CL) of component output pins (obtained from RTL synthesis). We can
simplify the multiple pin problem (which is representative of a bus line) depicted in Figure 2(a) to a two pin
problem shown in Figure 2(b). Then the delay for a wire of length l, with optimal wire sizing (OWS) [21], is
given as

llcrcRcR
lW
l2

lW
l

CRT fadfd
2

1

2
2

1
od .

)()(��
�

�
��
�

�
++++=

α
α

α
α

 … (2)

where a1 rc
4
1=α ,

Ld

a
2

CR
rc

2
1=α and W(x) is Lambert’s W function defined as the value of w which

satisfies wew=x. Rd is the resistance of the driver, l is the wire length, CO and CL are capacitive loads which are
calculated as shown in Figure 2(c) and the rest of the parameters are dependent on the process technology used – r
is the sheet resistance in �/sq, ca is unit area capacitance in fF/µm2 and cf is unit fringing capacitance in fF/µm
(defined to be the sum of fringing and coupling capacitances). The values for these technology dependent

 7

parameters are listed in Table 1, and have been calculated from [22].
The delay estimation engine is ultimately used to check for bus cycle time violations in the design. This is

illustrated through an example. Figure 3 shows a floorplan for a system where IP1 and IP2 are connected to the
same bus as ASIC1, Mem4, ARM, VIC and DMA, and the bus has a speed of 333 Mhz. This implies that the bus
cycle time is 3 ns. For a 0.13 µm process and a driver resistance value Rd of 0.4 k�, the floorplanner finds a wire
length of 9.9 mm between pins connecting the two IPs to the bus, with CL = 2.936 pF and CO = 0.988 pF for the
wire. The wire delay, obtained by inserting these values in (2), is found to be 3.5 ns. This violates the clock cycle
time constraint of 3 ns, and we thus conclude that the bus architecture is not feasible. In this way, our
floorplanning and delay estimation engines determine if a synthesized design is feasible or not. As we will show
later, our synthesis flow attempts to automatically eliminate such violations once they are detected.

Table 1. Parameters based on NTRS 97

Tech (µm) 0.18 0.15 0.13
r 0.068 0.073 0.081
ca 0.060 0.054 0.046
cf 0.064 0.054 0.043

IP1

IP2

Figure 3. Example floorplan

3.5 Synthesis Approach

We now describe our automated synthesis approach in detail. Figure 4 gives a high level overview of the
flow. The inputs to the flow include a Communication Throughput Graph (CTG), a target communication
architecture (e.g. AMBA), a set of Communication Parameter Constraints (�) and a library of behavioral IP
models. The general idea is to first perform preprocessing transformations on the CTG to improve the
performance of the entire system (preprocess) and then map all the components from the CTG to a simple bus
topology. Then, we iteratively select a Throughput Constraint Path (TCP), starting from the TCP with the largest
constraint and moving in descending order, from set � (which is a superset of all TCPs in the system) and search
the communication parameter space for a suitable parameter configuration (explore_params) and possibly
perform topology mutations if needed (mutate_topology) till all TCP constraints are satisfied. Once all TCP
constraints are satisfied, we optimize the design (optimize_design) to lower the cost of the system and avoid

 8

possible timing violations. Next we invoke the floorplanning and delay estimation engines to detect bus cycle
time violations. If timing violations are detected, we update � and repeat the topology mutation and parameter
exploration phase, or proceed to output the synthesized system and floorplan if there is no violation.

CTGCTG

comm
arch.

comm
arch.

constraint
Set (�)

constraint
Set (�)

preprocesspreprocess

simple bus
mapping

simple bus
mapping

explore_paramsexplore_params

TCP
met?

TCP
met? mutate_topologymutate_topology

optimize_designoptimize_design

output synthesized
communication arch
output synthesized

communication arch

IP
library

IP
library

Select unsatisfied
TCP from �

Select unsatisfied
TCP from �

� empty?� empty?

Run floorplanner
and delay estimator
Run floorplanner

and delay estimator

� still
empty?
� still

empty?

no

yes

no

yes

no

yes

Figure 4. Automated Synthesis Flow

Figure 5 shows the pseudo code for the preprocess stage. In the first step we map the components in the CTG
from the behavioral IP library database to a simple, protocol-independent, transaction-level simulation model in
SystemC [24] having a virtual channel for every edge in the graph. This model has no contention since there are
no shared channels and also because we assume infinite ports at IP interfaces. The purpose of this step is to
obtain, through simulation, a memory usage profile (Step 2). Once we have obtained this profile, we attempt to
split those memory nodes for which different masters access non-overlapping regions (Step 3). Finally we merge
local slave nodes with their master nodes to reduce contention and loading on shared busses (Step 4). Note that
we perform Step 3 before Step 4 because it allows us to generate local memories which can then be merged with
their corresponding masters.

Step 1: Map CTG to protocol-independent TLM
Step 2: Simulate design
 Generate usage profile for memory modules
Step 3: Split memory nodes wherever applicable
Step 4: Merge local memory/slave nodes with master nodes

Figure 5. preprocess procedure

After the preprocessing stage, all the components in the enhanced CTG and the selected bus architecture are

mapped from the IP library database to the fast transaction-based bus cycle-accurate simulation model (Section
3.2) with a simple bus topology – a single shared main and a single shared peripheral bus. As mentioned earlier,

 9

every node in a CTG has information relating to the type of bus it can be connected to, which guides the mapping
process. Once the simple topology is created, we select the largest unsatisfied TCP constraint from set � and
search for a suitable combination of communication parameter values to satisfy the constraint in the
explore_params stage. Figure 6 gives the pseudo code for this procedure. explore_params searches for a suitable
combination of parameter values which satisfies the TCP constraint under consideration, for the current topology.
The parameter values are bounded by the constraint set � specified by the designer. However, the exploration
space arising from the combinations of the bounded values can still be very large. In the interest of achieving
practical running times, we set the bus widths and speeds to the maximum allowed values set by the designer in �
(Step 1). We then select a combination of a valid arbitration priority ordering and DMA burst size, and proceed to
simulate the design (Steps 2, 3). The best result configuration in Step 3 is the combination of parameters for
which the least number of TCP constraints are violated and the throughput for the TCP being considered is the
highest. The set of valid arbitration priorities is governed by the following rules: (a) priorities of masters in TCPs
with larger throughput constraints are always greater than priorities of masters in TCPs with lower throughput
constraints, (b) once a TCP constraint is satisfied, the relative arbitration priority ordering for masters in the TCP
is updated (Step 5) and not changed anymore and (c) only combinations of priority orderings within the TCP
under consideration need to be explored if the previous two rules are followed. These three rules reduce the large
arbitration space and make it more manageable. The set of valid DMA burst sizes is governed by the following
rule: (a) once a TCP constraint is satisfied, only those DMA burst size values which did not violate the satisfied
TCP constraint are considered for subsequent TCPs. Thus, as TCP constraints are satisfied, the set of valid DMA
burst size values shrinks, reducing the DMA burst size exploration space. Figure 6 shows how once a TCP
constraint is satisfied, we simulate the design for different DMA burst size values to generate an updated set of
allowed DMA burst sizes (Step 6) which will be used for subsequent TCP explorations.

Step 1: Set bus speed, bus width to maximum allowed in set �
Step 2: Select a combination of valid arbitration priority ordering and valid DMA burst size.
 Exit if all valid combinations exhausted
Step 3: Simulate design
 Update best result configuration
Step 4: If TCP constraint not satisfied or previously satisfied TCP constraint violated, goto Step 2
Step 5: Update � and arbitration priority ordering for masters in TCP
Step 6: Simulate design for remaining DMA burst sizes and update allowed DMA burst size set.

Figure 6. explore_params procedure

If the TCP constraint is not satisfied for any combination of communication parameter values, we attempt to
change the communication topology in the mutate_topology stage. Figure 7 shows the pseudo code for this
procedure. To meet TCP constraints, we need to eliminate conflict on shared busses, and this can be done by
creating new busses and migrating IPs, from the TCP being considered, iteratively to the new bus till the conflict
is resolved. In mutate_topology, we first choose an unselected master in the current TCP, create a new bus and
migrate the master to the new bus (Step 2). In subsequent iterations of mutate_topology, we migrate the slaves in
the current TCP to the new bus (Step 3). Once all slaves in the current TCP have been considered for migration
and the TCP is still not satisfied, we check for unselected masters in the current TCP (Step 4). If there are still
unselected masters remaining, we undo all slave migrations since the last master migration, mark the slaves in the
TCP as being unselected and migrate a randomly chosen previously unselected master to the new bus (Step 4a). In
subsequent iterations we again migrate the slaves to the new bus (Step 3). After all masters and slaves in the
current TCP have been moved to the new bus or at least considered for migration, it is possible that the TCP
constraint is still not met. In that case, we mark all the master and slave IPs in the TCP as unselected, randomly
select a master on the previously created bus and permanently assign it to that bus, create another bus and starting
from a randomly selected master, iteratively migrate IPs to that bus (Step 4b). In this way, new busses are created
till enough bandwidth is available to satisfy the TCP throughput constraint. Note that if a topology mutation
causes the best result configuration from explore_params to violate any previously satisfied TCP constraints, we
undo the mutation (Step 1). Otherwise we keep the mutation, even if it deteriorates current TCP performance

 10

slightly. This allows us to take into account the effect of local minima in the exploration phase.

Step 1: If previous mutation caused any satisfied TCP constraint to be violated, undo mutation
Step 2: If (no master in current TCP selected yet)
 Create new bus
 Goto Step 6
Step3: If (TCP master selected) and (unselected TCP slaves remain)
 Goto Step 5
Step 4: If (all TCP slaves already selected)
Step 4a: If (unselected TCP master remains)
 Undo all slave migrations since last master migration
 Mark slaves in TCP as unselected
 Goto Step 6
Step 4b: If (all TCP masters already selected)
 Mark slaves in TCP as unselected
 Mark all masters in TCP as unselected
 Randomly select master on last created bus, permanently assign master to that bus
 Create new bus
 Goto Step 6
Step 5: Randomly select an unselected slave.
 Migrate to new bus. Exit
Step 6: Randomly select an unselected master.
 Migrate to new bus. Exit

Figure 7. mutate_topology procedure

Once all the TCP constraints are satisfied, we arrive at the optimize_design stage. The pseudo code for this
stage is given in Figure 8. The purpose of this stage is to reduce the ‘pessimistic’ high values we selected for bus
widths and bus clock speeds, to reduce the cost of the final system. Here we iteratively consider each bus in the
system and attempt to lower the value for bus width (Step 2) and bus clock speed (Step 4), without violating any
TCP constraints. Reducing the bus speed in this stage also helps prevent physical timing violations since it
lengthens the bus cycle time.

Step 1: Select previously unselected bus from generated bus architecture
Step 2: Reduce data bus width to next lower value
 Simulate design
Step 3: If (TCP constraint violation), undo, else goto step 2
Step 4: Reduce bus speed to next lower value
 Simulate design
Step 5: If (TCP constraint violation), undo, else goto step 4
Step 6: If all busses examined, exit, else goto step 1

Figure 8. optimize_design procedure

Next we pass the optimized system through our floorplanning and wire delay estimator engine. If a timing

violation is detected, the set � is updated with TCPs which have components on the busses with violations, and
we again go back and attempt to select appropriate parameter value combinations and a different topology which
resolves the timing violations. Changing the topology by migrating IPs to a new bus, in particular, reduces
capacitive loading and consequently wire delay on the bus, which is one of the primary causes of timing violation
in a design (Section 3.4). Finally, after any violations have been resolved and all TCP constraints satisfied, we
output the final synthesized bus topology, parameter values for bus speeds, data bus widths, DMA burst size and
arbitration priority ordering, along with the feasible floorplan.

 11

4. CASE STUDIES

We applied our automated bus-based communication architecture synthesis approach on two industrial
strength designs from the network communication domain. In the first case study, we selected a network
communication SoC subsystem used for fast data packet processing and forwarding. Figure 9 shows the CTG for
this system. There are two data manipulation related TCP constraints that must be satisfied in this system. The
first TCP involves the encryption engine and includes the ARM926, ASIC1, RAM3 and EXT_IF blocks. The
EXT_IF block fetches data and stores it in RAM3. The ASIC1 and ARM926 blocks fetch non overlapping
sections of the data, process them and store them back in RAM3, from where the EXT_IF block fetches and
streams them out at a minimum rate of 200 Mbps. The second TCP involves the USB subsystem. Data packets
received at the USB are routed to RAM1. The ARM926 reads this data, processes it and stores it back to RAM1
from where the DMA engine transfers it to SDRAM_IF, which streams it out at a minimum rate of 480 Mbps.
There is also a third subsystem which involves the SWITCH, RAM2 and ARM926 components. However, this is
a very low priority data path which has no data rate constraint from the designer, and therefore we do not classify
it as another TCP to be satisfied.

ARM926ARM926

ASIC1ASIC1

ITCITC

UARTUART

ROMROM

USB 2.0USB 2.0

DMADMA

SDRAM
IF

SDRAM
IF

RTCRTC

TIMERTIMER

RAM1RAM1

RAM3RAM3

EXT
IF

EXT
IF

SWITCHSWITCH

RAM2RAM2

Figure 9. Network Communication Subsystem

Table 2 shows the Communication Parameter Constraint set (�) for this case study. The target

communication architecture for the automated synthesis is the AMBA2 high performance AHB bus and a low
bandwidth APB bus [2]. For the floorplanner, we give maximum priority to minimizing wire length for
components on a bus, and equal lower priorities for area and total wire length minimization.

Table 2. Customizable Parameter Set

Set Values
bus width 8, 16, 32
bus speed 33, 66, 100, 133, 166, 200
DMA burst size 1, 2, 4, 8, 16
arbitration strategy static priority

Figure 10 shows the final output of our synthesis flow – a synthesized architecture which meets all throughput

and timing constraints. The values for the generated communication parameters are given in Table 3 and the final
floorplan for this system is shown in Figure 11. The automated synthesis engine initially created 2 AHB busses,

 12

with the SWITCH and RAM2 components connected to AHB1, which was assigned a clock speed of 200 Mhz to
meet the encryption path throughput constraint. However, the floorplanning engine detected a cycle time violation
for the bus due to excessive capacitive loading. The topology_mutate stage then split the shared AHB bus and
assigned the ARM926, ASIC1 and EXT_IF masters and their associated slaves to one bus, and the SWITCH and
RAM2 components to another AHB bus, to reduce capacitive loading. Finally, the optimize_design function
reduced the bus speeds for the AHB busses from 200 Mhz to 133 Mhz and the APB bus to 66 Mhz, to lower the
cost of the system. Both the throughput constraints were still met at these lower bus speeds. The synthesis engine
made a simple assumption and assumed a 133 Mhz bus speed for AHB3 to simplify the design of BRIDGE3 to
AHB1, but a designer can choose to further lower the AHB3 bus speed if a more complex bridge is acceptable.

Table 3. Communication Parameter Values

Parameter Values
 AHB1 AHB2 AHB3 APB1
bus width 32 32 32 32
bus speed 133 133 133 66
dma size 16
arb priority ARM>USB> DMA> EXT_IF>ASIC1>SWITCH

ARM926ARM926

ASIC1ASIC1RAM3RAM3 ROMROM

EXT_IFEXT_IF

BRIDGE1BRIDGE1

USB 2.0USB 2.0

RAM1RAM1

SWITCHSWITCH

SDRAM_IFSDRAM_IF

RAM2RAM2

DMADMA

BRIDGE2BRIDGE2
UARTUART

TIMERTIMER RTCRTC

VICVIC

AHB2

AHB1
APB1

BRIDGE3BRIDGE3

AHB3

arbiterarbiter

arbiterarbiter

arbiterarbiter

Figure 10. Synthesized SoC subsystem

 13

Figure 11. Floorplan for SoC subsystem

For our second case study, we considered a derivative of the network communication subsystem from Figure
9, which extends and partially modifies the functionality of the previous system. Figure 12 shows this derivative
architecture, which has an additional TCP constraint involving the ARM926, SWITCH, RAM2 and two newly
added components: a memory array (RAM4) and an ASIC block (ASIC2). In this TCP, data packets received
from the SWITCH are stored in RAM2. These packets are retrieved by ASIC2 which reads and modifies some
protocol header information before storing it back to RAM4 from where the SWITCH must stream it out at a
minimum data rate of 3.2 Gbps. The ARM926 is used minimally, for directing data flow in this TCP.

ARM926ARM926

ASIC1ASIC1

ITCITC

UARTUART

ROMROM

USB 2.0USB 2.0

DMADMA

SDRAM
IF

SDRAM
IF

RTCRTC

TIMERTIMER

RAM1RAM1

RAM3RAM3

EXT
IF

EXT
IF

SWITCHSWITCH

RAM2RAM2

RAM4RAM4
ASIC2ASIC2

Figure 12. Network Communication Subsystem Derivative

 14

The Communication Parameter Constraint set (�) is slightly modified from Table 2, with the addition of a
larger data bus width value of 64, to handle the increased bandwidth requirements. Also, instead of using the
AMBA2 AHB bus architecture, we modify the target communication architecture to AMBA3 AXI [25]. Our
synthesis flow outputs the architecture shown in Figure 13. The values for the generated communication
parameters are shown in Table 4 and the final floorplan is shown in Figure 14. Since AXI supports separate
channels for reads and writes, the bus speeds required to maintain throughput are lower (100 Mhz). The AXI3 bus
which supports the SWITCH TCP has a 64 bit data width and a high 200 Mhz bus clock speed in order to
maintain the high data flow rate.

ARM926ARM926

ASIC1ASIC1RAM3RAM3 ROMROM

EXT_IFEXT_IF

BRIDGE1BRIDGE1

USB 2.0USB 2.0

RAM1RAM1

SWITCHSWITCH

SDRAM_IFSDRAM_IF

RAM2RAM2

DMADMA

BRIDGE2BRIDGE2
UARTUART

TIMERTIMER RTCRTC

VICVIC

AXI2

AXI1
APB1

BRIDGE3BRIDGE3

AXI3

arbiterarbiter

arbiterarbiter

arbiterarbiter

RAM4RAM4 ASIC2ASIC2

Figure 13. Synthesized subsystem for derivative architecture

Table 4. Communication parameter values (derivative arch.)

Parameter Values
 AXI1 AXI2 AXI3 APB1
bus width 32 32 64 32
bus speed 100 100 200 66
dma size 16
arb scheme SWITCH>ASIC2>ARM>USB>EXT_IF>DMA>ASIC1

 15

Figure 14. Final floorplan for derivative SoC subsystem

Table 5 compares the final synthesized designs for the two case studies with the results for the initial single

main/peripheral shared bus mapped design, a synthesis flow without floorplanner and timing violation detection,
and a manual synthesis effort by a designer. Compared with the initial design, the final synthesized design not
only performs significantly better but also satisfies all constraints. For the flow without the floorplanning stage,
although the number of busses is less and all throughput constraints are satisfied, the timing violations go
undetected and the designs are not feasible. For the manual effort, although the performance is better than the
final synthesized design, note that the number of busses is also more in both cases. The manual effort not only
took longer (several days compared to a few hours for our automated flow) but also overdesigned the system and
exceeded the requirements, ending up with a more expensive system.

Table 5. Synthesis Result Comparison

Case Study1 Designs initial w/o floorplanner final manual
Number of Busses 2 3 4 5
TCP constraints satisfied 0/2 2/2, but not feasible 2/2 2/2
Execution cycles (millions) 49.76 24.51 20.32 18.8
Time to synthesize ~mins ~hours ~hours ~days

Case Study2 Designs initial w/o floorplanner final manual
Number of Busses 2 3 4 6
TCP constraints satisfied 0/3 3/3, but not feasible 3/3 3/3
Execution cycles (millions) 88.48 47.63 29.10 26.58
Time to synthesize ~mins ~hours ~hours ~days

5. CONCLUSION

In this report, we presented an approach for automating the synthesis of bus-based communication
architectures for systems characterized by possibly several throughput constraints. Our approach synthesizes a

 16

low-cost bus topology and generates values for bus architecture parameters such as arbitration priority ordering,
bus widths, bus speeds and a DMA burst size, required to meet the performance constraints in the design. In
addition, we use a high level floorplanning and delay estimation engine to generate a layout of the components on
the chip and detect bus cycle time violations early in the design flow. Results from the automated synthesis of
AMBA based bus architectures for the network communication subsystem case studies show the usefulness of our
approach. Our approach reduces the exploration and design time by at least an order of magnitude when compared
to a manual effort, while also guaranteeing feasibility of physical design. Furthermore, our approach is easily
portable across different standard bus-based communication architectures such as CoreConnect [3] and OCP [4],
and can be extended to automatically synthesize other bus architecture specific parameters such as out-of-order
(OO) buffer sizes as well. Our future work will deal with optimality analysis and understanding issues involved
with synthesis for SoC subsystems having a larger number of components than the case studies presented here.

REFERENCES

[1] D. Sylvester and K. Keutzer, “Getting to the bottom of deep sub-micron”, In Proceedings of ICCAD, 1998, pp.
203-211

[2] Flynn, “AMBA: enabling reusable on-chip designs” IEEE Micro, 1997.

[3] IBM CoreConnect http://www.chips.ibm.com/products/powerpc/cores

[4] Open Core Protocol International Partnership (OCP-IP). OCP datasheet, http://www.ocpip.org

[5] Sudeep Pasricha, Nikil Dutt, Mohamed Ben-Romdhane, “Fast Exploration of Bus-based On-chip
Communication Architectures”, In Proceedings of CODES+ISSS 2004

[6] S. Narayan and D. Gajski, “Synthesis of system level bus interfaces”, In Proc. of DATE 1994

[7] J. Daveau, et al “Protocol selection and interface generation for HW-SW codesign”, In IEEE Trans. on VLSI
System, Vol. 5, No. 1, March 1997

[8] M. Gasteier, M. Glesner “Bus-based communication synthesis on system level”, In ACM TODAES, January
1999

[9] K. K. Ryu, V. J. Mooney III “Automated Bus Generation for Multiprocessor SoC Design”, In Proc. of DATE
2003

[10] A. Pinto et al “Constraint-driven communication synthesis”, In Proc. of DAC 2002

[11] D. Lyonnard et al “Automatic generation of application-specific architectures for heterogeneous
multiprocessor system-on-chip”, In Proc. of DAC 2001

[12] K. Lahiri et al, “Efficient exploration of the SoC communication architecture design space”, In Proc. of
ICCAD 2000

[13] Chulho Shin, et al “Fast Exploration of Parameterized Bus Architecture for Communication-Centric SoC
Design”, In Proc. of DATE 2004

[14] N. Thepayasuwan, A. Doboli “Layout Conscious Bus Architecture Synthesis for Deep Submicron Systems
on Chip”, In Proc. of DATE 2004

 17

[15] M. Drinic et al. “Latency-guided on-chip bus network design”, In Proc. of ICCAD 2000

[16] Jingcao Hu, Yangdong Deng, Radu Marculescu, “System-Level Point-to-Point Communication Synthesis
Using Floorplanning Information”, In Proc. of ASP-DAC/VLSI, 2002

[17] R. P. Dick, N. K. Jha “MOCSYN: multiobjective core-based single-chip system synthesis”, In Proc. of
DATE 1999

[18] Reinaldo A. Bergamaschi et al “SEAS: a system for early analysis of SoCs”, In Proc, of CODES-ISSS 2003

[19] S. N. Adya and I. L. Markov, "Fixed-outline Floorplanning: Enabling Hierarchical Design", IEEE Trans
TVLSI, Dec. 2003

[20] A. E. Caldwell, et al, “On Wirelength Estimations for Row-based Placement”, In IEEE Trans. on ICCAD,
vol.18, (no.9), IEEE, Sept. 1999

[21] Jason Cong, D. Z. Pan, “Interconnect Performance Estimation Models for Design Planning”, In IEEE Trans.
on ICCAD, Vol 20, No. 6, June 2001

[22] Semiconductor Industry Association, “National Technology Roadmap for Semiconductors”, SIA 1997

[23] SystemC initiative. www.systemc.org

[24] Sudeep Pasricha, “Transaction Level Modeling of SoC with SystemC 2.0”, Synopsys User Group Conference
(SNUG), 2002

[25] AMBA AXI Specification www.arm.com/armtech/AXI

[26] Sudeep Pasricha, Nikil Dutt, Mohamed Ben-Romdhane, “Extending the Transaction Level Modeling
Approach for Fast Communication Architecture Exploration", In Proc. of DAC 2004

