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Abstract 
 

 As System-on-Chip (SoC) designs become more complex, it is becoming harder to design communication 
architectures to handle the ever increasing volumes of inter-component communication. Manual traversal of the 
vast communication design space to synthesize a communication architecture that meets performance 
requirements becomes infeasible. In this technical report, we address this problem by proposing an automated 
approach for synthesizing cost-effective, bus-based communication architectures that satisfy the performance 
constraints in a design. Our synthesis flow also incorporates a high-level floorplanning and wire delay estimation 
engine to evaluate the feasibility of the synthesized bus architecture and detect timing violations early in the 
design flow. We present case studies of network communication SoC subsystems for which we synthesized bus 
architectures, detected timing violations and generated core placements in a matter of hours instead of several 
days it took for a manual effort. 
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1. INTRODUCTION 
 

Improvements in process technology have led to more and more functionality being integrated onto a single 
chip, which has in turn resulted in a sharp increase in the amount of overall on-chip communication volumes 
between the integrated components. In such highly integrated systems, on-chip communication is expected to 
become a major performance bottleneck [1]. Already, increasingly demanding performance requirements from the 
next generation of multimedia, broadband and network applications are making interconnect design a challenging 
proposition.  

Bus-based communication architectures [2-4] remain a popular choice for handling on-chip communication in 
SoC designs today, because they are simple to design and take up very little area. However, selecting and 
reconfiguring standard bus-based communication architectures such as AMBA [2] and CoreConnect [3], to meet 
application specific performance requirements, is a very time consuming process. This is due to the large 
exploration space created by customizable bus topologies, arbitration protocols, DMA burst sizes, data bus 
widths, bus clock speeds and buffer sizes, all of which significantly impact system performance [5][12][26]. 

To counter the challenge of ever increasing on-chip bandwidth requirements and a vast communication 
exploration space, early planning of the interconnect architecture at the system level must become an integral part 
of a SoC design process. However the complex interplay between communication architecture parameters is hard 
to analyze effectively even at the system level. Previous research in this area (discussed in Section 2) has been 
limited to identifying and automating the exploration of small subsets of this design space. Very often, designers 
end up evaluating the communication design space by creating simulation models annotated with detail based on 
experience, and manually iterating through different design configurations. Such an effort remains time 
consuming and produces systems which are generally overdesigned for the application at hand.  

To address this problem, we propose a bus architecture synthesis approach in this report, which automates the 
generation of a cost effective communication architecture for a SoC. We make use of SystemC [23] to quickly 
capture components at the behavioral system-level and automate the bus architecture synthesis for the design. The 
novelty of our approach is in the ability to automatically satisfy performance constraints and detect bus cycle time 
violations, while synthesizing a feasible, low-cost configuration of a standard bus-based communication 
architecture (such as [2]) which is commonly used in SoC designs. Our approach synthesizes the bus topology, as 
well as values for bus architecture parameters such as arbitration priority orderings, data bus widths, bus clock 
speeds and DMA burst sizes. Additionally, we make use of a high-level floorplanning engine to generate 
estimates of core placements on the chip. Typically, once the system architecture is frozen, it takes several months 
before a floorplan of the design becomes available. Violations of timing constraints, detected at this late stage, can 
require changes in the architecture which can severely impact time-to-market. Our high-level floorplanning and 
wire delay estimation engines detect these timing violations early in the design flow at the system level, where 
architectural modifications and tradeoff analysis can be performed quickly and efficiently to eliminate such 
violations. To demonstrate the usefulness of our approach, we present case studies of network communication 
SoC subsystems, used for data packet processing and forwarding. Compared to a manual effort which took 
several days and produced overdesigned systems, our automated flow was able to synthesize low-cost bus 
architectures, detect timing violations and generate core placements which satisfied performance constraints for 
the SoC subsystems in a matter of a few hours. 
 
2. RELATED WORK 
 

There is already a significant body of research in the area of bus architecture synthesis. Early work was aimed 
at minimizing bus width [6], interface synthesis and simple synchronization protocol selection [7] and topology 
generation for simple busses without arbitration [8]. Ryu et al. [9] performed studies to find optimal bus 
topologies for a SoC design. Pinto et al. [10] proposed an algorithm for constraint-driven topology synthesis 
under the assumption that relative positions of components were fixed. Lyonnard et al. [11] proposed a synthesis 
flow which supported shared bus and point to point connection templates. These templates have to be 
parameterized manually, which makes the process time consuming. Lahiri et al. [12] designed communication 



 4 

architectures after exploring different solutions using fast performance simulation. However, they assumed the 
bus topology to be given. Shin et al. [13] used a genetic algorithm for automating the generation of bus 
architecture parameters to meet performance requirements. However, they do not focus on bus topology synthesis. 
Our approach differs from these existing approaches in the way we automate the synthesis of not only the bus 
topology, but also the generation of values for bus architecture parameters, while also satisfying performance 
constraints. 

A key component of our synthesis flow is the integrated floorplanner. There have been other approaches in 
the past which have made use of a floorplanning tool [14-18] in a synthesis flow, but for different reasons. 
Bergamaschi et al. [18] and Thepayasuwan et al. [14] used the floorplanner to generate an early core placement 
estimate. Drinic et al. [15] used the floorplanner to determine feasibility of the synthesized design by comparing 
estimates of wire length with an upper bound on wire length. However an upper bound on wire length has the 
disadvantage of not accounting for varying capacitive loads of the components. Hu et al. [16] also used the 
floorplanner to estimate wire length, which they used to calculate energy consumption in point to point networks. 
Dick et al. [17] invoked the floorplanner repeatedly in their custom bus topology synthesis approach to obtain 
global wiring delays and ensure that real time deadlines were met. Unlike existing approaches, the floorplanner in 
our approach is used to identify bus cycle time violations and verify the feasibility of the synthesized bus 
architecture early in the design flow. We believe that this step will become increasingly important in the deep 
submicron era as clock speeds increase and lengthy propagation delays cause violations of timing constraints that 
will need to be detected and corrected early in the design flow.  
 
3. AUTOMATED BUS SYNTHESIS 
 

This section describes our approach for automated bus architecture synthesis. Section 3.1 formulates the 
problem and presents our assumptions. Section 3.2 discusses the simulation engine while Section 3.3 describes 
communication parameter constraints, which guide the bus synthesis process. Section 3.4 gives an overview of 
our floorplan and wire delay calculation engines used for detecting timing violations in the design. Finally, 
Section 3.5 presents our automated bus architecture synthesis approach in detail.   
 
3.1 Problem Formulation 
 

We are given a SoC having several components (IPs) that need to communicate with each other. The standard 
bus-based communication architecture (e.g. AMBA [2], CoreConnect [3]) which determines the pins at the IP 
interface and for which the bus topology and communication parameter values must be synthesized, is also 
specified. It is assumed that hardware software partitioning has taken place and that the appropriate functionality 
has been mapped onto hardware and software. The IPs are assumed to be standard “black box” library 
components which cannot be modified during the bus synthesis process, except for the memory components.  

CPU1CPU1

M2M2

M3M3

S1S1

S3S3

S2S2

MEM1MEM1

MEM2MEM2

MEM3MEM3

360 Mbps

 
 

Figure 1. Communication Throughput Graph (CTG) 
 
Typically, SoC designs need to satisfy performance constraints which are generally dependent on the nature 

of the application. The throughput of communication between components is a good measure of the performance 
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of a system [8]. We assume that we are given one or more throughput constraints for the system that need to be 
satisfied. These constraints can involve communication between two or more IPs. Figure 1 shows a 
Communication Throughput Graph (CTG) which is a directed graph, where each vertex v represents a component 
in the system, and an edge aij connects components i and j that need to communicate with each other. Each vertex 
v contains information about the component it represents, such as its area, dimensions (fixed width/height or 
aspect ratio), capacitive loads on output pins and which bus type it can be connected to – a main high bandwidth 
bus like AHB [2], a peripheral low bandwidth bus like APB [2] or both. An edge aij is associated with a 
throughput constraint �(aij) if it lies within a throughput constraint path (TCP). Figure 1 shows a TCP involving 
CPU1, MEM1, S1 and M2 components, where the rate of data packets streaming out of M2 must not fall below 
360 Mbps. A TCP, in general, has a single master for which data throughput must be maintained and other 
masters, slaves and memories which are in the critical path that impacts the maintenance of the throughput. 
The problem then is to generate a bus topology, and determine bus architecture parameter values for the selected 
standard bus-based communication architecture, while ensuring that all throughput constraints in the system are 
satisfied. In addition, we want to consider layout information of the chip to detect bus cycle time violations, early 
in the design flow. Finally, the synthesized bus architecture must be cost effective, having the least number of 
busses, and the lowest values for bus widths and speeds, while still satisfying all constraints.  
 
3.2 Simulation Engine 
 

Since communication behavior is characterized by unpredictability due to dynamic bus requests from cores, 
bus contention etc., a simulation based approach is necessary for accurate performance estimation. In our 
synthesis flow, we capture behavioral models of components and bus architectures in SystemC [23], and keep 
them in an IP library database. Since we were concerned about the speed of simulation, we chose a fast 
transaction-based, bus cycle accurate modeling abstraction, which averaged simulation speeds of 150–200 
Kcycles/sec [5], while running embedded software applications on processor ISS models. 
 
3.3 Communication Parameter Constraints 
 

The exploration space for a typical SoC bus-based communication architecture such as AMBA [2] consists of 
combinations of bus topology configurations with communication parameter values for arbitration schemes, data 
bus widths, bus clock speeds and DMA burst sizes. If we allow these parameters to have any arbitrary values, an 
incredibly vast design space is created. The time required to simulate through all possible system configurations 
searching for one which satisfies every design constraint would become unreasonably large, even with the fast 
simulation engine. More importantly, once we manage to find such a system configuration, there would be no 
guarantee that the values generated for the communication parameters would be practically feasible. To ensure 
that our synthesis approach generates a realistic communication architecture configuration, we allow the designer 
to specify a Communication Parameter Constraint set (�). These constraints are in the form of a discrete set of 
valid values for the communication parameters to be synthesized. A major motivation to allow this constraint 
specification is that it allows the designer to bias the synthesis process based on knowledge of the design and the 
technology being targeted. For instance, a designer might decide that the synthesized design should only have 
data busses with 16, 32 or 64 bit widths, because the IPs in the design cannot support larger widths effectively. Or 
a designer might set the allowable bus clock frequency to multiples of 33 MHz, with a maximum speed of 166 
MHz, based on the operation frequency of the cores in the system and past experience of the clock generation 
mechanism. Such knowledge about the design is not a prerequisite for using our synthesis framework. As long as 
� is populated with any discrete set of values for the parameters, our framework will attempt to synthesize a 
feasible communication architecture. However, informed decisions can greatly reduce the time taken for synthesis 
and help the designer generate a more practical system.  
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3.4 Floorplanning and Delay Estimation Engines 
 

The floorplanning stage in a typical design flow arranges arbitrarily shaped, but usually rectangular blocks 
representing circuit partitions, into a non-overlapping placement while minimizing a cost function, which is 
usually some linear combination of die area and total wirelength. Our floorplanning engine is adapted from the 
simulated annealing based floorplanner proposed in [19]. The input to the floorplanner is a list of components and 
their interconnections in the system. Each component has an area associated with it (obtained from RTL 
synthesis). Dimensions in the form of width and height (for “hard” components) or aspect ratio (for “soft” 
components) are also required for each component. Additionally, maximum die size and fixed locations for hard 
macros can also be specified as inputs. Given these inputs, our floorplanner minimizes the cost function 
 

               Cost = w1.Area +w2.BusWL +w3.TotalWL            ... (1) 
 
where Area is the area of the chip, BusWL is the wire length corresponding to wires connecting components on a 
bus, TotalWL is total wire length for all connections on the chip (including inter-bus connections) and w1, w2, w3 
are adjustable weights which are used to bias the solution. The floorplanner outputs a non overlapping placement 
of components from which the wire lengths can be calculated by using half-perimeter of the minimum bounding 
box containing all terminals of a wire (HPWL) [20].  
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Figure 2. Transforming multiple pin net into a two pin net  
 

Once the wire lengths have been calculated, the delay estimation engine is invoked. The wire delay is 
calculated based on formulations proposed in [21]. The inputs to this stage are the wire lengths from the 
floorplanner and the capacitive loads (CL) of component output pins (obtained from RTL synthesis). We can 
simplify the multiple pin problem (which is representative of a bus line) depicted in Figure 2(a) to a two pin 
problem shown in Figure 2(b). Then the delay for a wire of length l, with optimal wire sizing (OWS) [21], is 
given as 

llcrcRcR
lW
l2

lW
l

CRT fadfd
2

1

2
2

1
od .

)()( ��
�

�
��
�

�
++++=

α
α

α
α

        … (2) 

where a1 rc
4
1=α , 

Ld

a
2

CR
rc

2
1=α  and W(x) is Lambert’s W function defined as the value of w which 

satisfies wew=x. Rd is the resistance of the driver, l is the wire length, CO and CL are capacitive loads which are 
calculated as shown in Figure 2(c) and the rest of the parameters are dependent on the process technology used – r 
is the sheet resistance in �/sq, ca is unit area capacitance in fF/µm2 and cf is unit fringing capacitance in fF/µm 
(defined to be the sum of fringing and coupling capacitances). The values for these technology dependent 
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parameters are listed in Table 1, and have been calculated from [22].  
The delay estimation engine is ultimately used to check for bus cycle time violations in the design. This is 

illustrated through an example. Figure 3 shows a floorplan for a system where IP1 and IP2 are connected to the 
same bus as ASIC1, Mem4, ARM, VIC and DMA, and the bus has a speed of 333 Mhz. This implies that the bus 
cycle time is 3 ns. For a 0.13 µm process and a driver resistance value Rd of 0.4 k�, the floorplanner finds a wire 
length of 9.9 mm between pins connecting the two IPs to the bus, with CL = 2.936 pF and CO = 0.988 pF for the 
wire. The wire delay, obtained by inserting these values in (2), is found to be 3.5 ns. This violates the clock cycle 
time constraint of 3 ns, and we thus conclude that the bus architecture is not feasible. In this way, our 
floorplanning and delay estimation engines determine if a synthesized design is feasible or not. As we will show 
later, our synthesis flow attempts to automatically eliminate such violations once they are detected.  
 

Table 1. Parameters based on NTRS 97 
 

Tech (µm) 0.18 0.15 0.13 
r 0.068 0.073 0.081 
ca 0.060 0.054 0.046 
cf 0.064 0.054 0.043 

 
 

IP1

IP2

 
 
 

Figure 3. Example floorplan 
 
 

3.5 Synthesis Approach 
 

We now describe our automated synthesis approach in detail. Figure 4 gives a high level overview of the 
flow. The inputs to the flow include a Communication Throughput Graph (CTG), a target communication 
architecture (e.g. AMBA), a set of Communication Parameter Constraints (�) and a library of behavioral IP 
models. The general idea is to first perform preprocessing transformations on the CTG to improve the 
performance of the entire system (preprocess) and then map all the components from the CTG to a simple bus 
topology. Then, we iteratively select a Throughput Constraint Path (TCP), starting from the TCP with the largest 
constraint and moving in descending order, from set � (which is a superset of all TCPs in the system) and search 
the communication parameter space for a suitable parameter configuration (explore_params) and possibly 
perform topology mutations if needed (mutate_topology) till all TCP constraints are satisfied. Once all TCP 
constraints are satisfied, we optimize the design (optimize_design) to lower the cost of the system and avoid 
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possible timing violations. Next we invoke the floorplanning and delay estimation engines to detect bus cycle 
time violations. If timing violations are detected, we update � and repeat the topology mutation and parameter 
exploration phase, or proceed to output the synthesized system and floorplan if there is no violation. 
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Figure 4. Automated Synthesis Flow 
 

Figure 5 shows the pseudo code for the preprocess stage. In the first step we map the components in the CTG 
from the behavioral IP library database to a simple, protocol-independent, transaction-level simulation model in 
SystemC [24] having a virtual channel for every edge in the graph. This model has no contention since there are 
no shared channels and also because we assume infinite ports at IP interfaces. The purpose of this step is to 
obtain, through simulation, a memory usage profile (Step 2). Once we have obtained this profile, we attempt to 
split those memory nodes for which different masters access non-overlapping regions (Step 3). Finally we merge 
local slave nodes with their master nodes to reduce contention and loading on shared busses (Step 4). Note that 
we perform Step 3 before Step 4 because it allows us to generate local memories which can then be merged with 
their corresponding masters.  

 
Step 1:  Map CTG to protocol-independent TLM 
Step 2:  Simulate design 
 Generate usage profile for memory modules 
Step 3:  Split memory nodes wherever applicable 
Step 4:  Merge local memory/slave nodes with master nodes 
 
Figure 5. preprocess procedure 

 
After the preprocessing stage, all the components in the enhanced CTG and the selected bus architecture are 

mapped from the IP library database to the fast transaction-based bus cycle-accurate simulation model (Section 
3.2) with a simple bus topology – a single shared main and a single shared peripheral bus. As mentioned earlier, 
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every node in a CTG has information relating to the type of bus it can be connected to, which guides the mapping 
process. Once the simple topology is created, we select the largest unsatisfied TCP constraint from set � and 
search for a suitable combination of communication parameter values to satisfy the constraint in the 
explore_params stage. Figure 6 gives the pseudo code for this procedure. explore_params searches for a suitable 
combination of parameter values which satisfies the TCP constraint under consideration, for the current topology. 
The parameter values are bounded by the constraint set � specified by the designer. However, the exploration 
space arising from the combinations of the bounded values can still be very large. In the interest of achieving 
practical running times, we set the bus widths and speeds to the maximum allowed values set by the designer in � 
(Step 1). We then select a combination of a valid arbitration priority ordering and DMA burst size, and proceed to 
simulate the design (Steps 2, 3). The best result configuration in Step 3 is the combination of parameters for 
which the least number of TCP constraints are violated and the throughput for the TCP being considered is the 
highest. The set of valid arbitration priorities is governed by the following rules: (a) priorities of masters in TCPs 
with larger throughput constraints are always greater than priorities of masters in TCPs with lower throughput 
constraints, (b) once a TCP constraint is satisfied, the relative arbitration priority ordering for masters in the TCP 
is updated (Step 5) and not changed anymore and (c) only combinations of priority orderings within the TCP 
under consideration need to be explored if the previous two rules are followed. These three rules reduce the large 
arbitration space and make it more manageable. The set of valid DMA burst sizes is governed by the following 
rule: (a) once a TCP constraint is satisfied, only those DMA burst size values which did not violate the satisfied 
TCP constraint are considered for subsequent TCPs. Thus, as TCP constraints are satisfied, the set of valid DMA 
burst size values shrinks, reducing the DMA burst size exploration space. Figure 6 shows how once a TCP 
constraint is satisfied, we simulate the design for different DMA burst size values to generate an updated set of 
allowed DMA burst sizes (Step 6) which will be used for subsequent TCP explorations. 
 
Step 1:  Set bus speed, bus width to maximum allowed in set � 
Step 2: Select a combination of valid arbitration priority ordering and valid DMA burst size.  
 Exit if all valid combinations exhausted  
Step 3:  Simulate design 
 Update best result configuration 
Step 4:  If TCP constraint not satisfied or previously satisfied TCP constraint violated, goto Step 2  
Step 5:  Update � and arbitration priority ordering for masters in TCP 
Step 6: Simulate design for remaining DMA burst sizes and update allowed DMA burst size set. 
 

Figure 6. explore_params procedure 
 

If the TCP constraint is not satisfied for any combination of communication parameter values, we attempt to 
change the communication topology in the mutate_topology stage. Figure 7 shows the pseudo code for this 
procedure. To meet TCP constraints, we need to eliminate conflict on shared busses, and this can be done by 
creating new busses and migrating IPs, from the TCP being considered, iteratively to the new bus till the conflict 
is resolved. In mutate_topology, we first choose an unselected master in the current TCP, create a new bus and 
migrate the master to the new bus (Step 2). In subsequent iterations of mutate_topology, we migrate the slaves in 
the current TCP to the new bus (Step 3). Once all slaves in the current TCP have been considered for migration 
and the TCP is still not satisfied, we check for unselected masters in the current TCP (Step 4). If there are still 
unselected masters remaining, we undo all slave migrations since the last master migration, mark the slaves in the 
TCP as being unselected and migrate a randomly chosen previously unselected master to the new bus (Step 4a). In 
subsequent iterations we again migrate the slaves to the new bus (Step 3). After all masters and slaves in the 
current TCP have been moved to the new bus or at least considered for migration, it is possible that the TCP 
constraint is still not met. In that case, we mark all the master and slave IPs in the TCP as unselected, randomly 
select a master on the previously created bus and permanently assign it to that bus, create another bus and starting 
from a randomly selected master, iteratively migrate IPs to that bus (Step 4b). In this way, new busses are created 
till enough bandwidth is available to satisfy the TCP throughput constraint. Note that if a topology mutation 
causes the best result configuration from explore_params to violate any previously satisfied TCP constraints, we 
undo the mutation (Step 1). Otherwise we keep the mutation, even if it deteriorates current TCP performance 
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slightly. This allows us to take into account the effect of local minima in the exploration phase. 
 

Step 1:  If previous mutation caused any satisfied TCP constraint to be violated, undo mutation 
Step 2: If (no master in current TCP selected yet)  
 Create new bus 
 Goto Step 6 
Step3: If (TCP master selected) and (unselected TCP slaves remain) 
 Goto Step 5 
Step 4: If (all TCP slaves already selected) 
Step 4a:     If (unselected TCP master remains) 
         Undo all slave migrations since last master migration 
         Mark slaves in TCP as unselected 
         Goto Step 6  
Step 4b:    If (all TCP masters already selected) 
         Mark slaves in TCP as unselected 
         Mark all masters in TCP as unselected  
         Randomly select master on last created bus, permanently assign master to that bus 
        Create new bus  
        Goto Step 6 
Step 5: Randomly select an unselected slave. 
 Migrate to new bus. Exit 
Step 6: Randomly select an unselected master. 
 Migrate to new bus. Exit 
 

Figure 7. mutate_topology procedure 
 

Once all the TCP constraints are satisfied, we arrive at the optimize_design stage. The pseudo code for this 
stage is given in Figure 8. The purpose of this stage is to reduce the ‘pessimistic’ high values we selected for bus 
widths and bus clock speeds, to reduce the cost of the final system. Here we iteratively consider each bus in the 
system and attempt to lower the value for bus width (Step 2) and bus clock speed (Step 4), without violating any 
TCP constraints. Reducing the bus speed in this stage also helps prevent physical timing violations since it 
lengthens the bus cycle time.  
 
Step 1:  Select previously unselected bus from generated bus architecture 
Step 2:  Reduce data bus width to next lower value 
 Simulate design 
Step 3:  If (TCP constraint violation), undo, else goto step 2 
Step 4: Reduce bus speed to next lower value 
 Simulate design 
Step 5:  If (TCP constraint violation), undo, else goto step 4 
Step 6: If all busses examined, exit, else goto step 1 
 

Figure 8. optimize_design procedure 
 
Next we pass the optimized system through our floorplanning and wire delay estimator engine. If a timing 

violation is detected, the set � is updated with TCPs which have components on the busses with violations, and 
we again go back and attempt to select appropriate parameter value combinations and a different topology which 
resolves the timing violations. Changing the topology by migrating IPs to a new bus, in particular, reduces 
capacitive loading and consequently wire delay on the bus, which is one of the primary causes of timing violation 
in a design (Section 3.4). Finally, after any violations have been resolved and all TCP constraints satisfied, we 
output the final synthesized bus topology, parameter values for bus speeds, data bus widths, DMA burst size and 
arbitration priority ordering, along with the feasible floorplan. 
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4. CASE STUDIES 
 

We applied our automated bus-based communication architecture synthesis approach on two industrial 
strength designs from the network communication domain. In the first case study, we selected a network 
communication SoC subsystem used for fast data packet processing and forwarding. Figure 9 shows the CTG for 
this system. There are two data manipulation related TCP constraints that must be satisfied in this system. The 
first TCP involves the encryption engine and includes the ARM926, ASIC1, RAM3 and EXT_IF blocks. The 
EXT_IF block fetches data and stores it in RAM3. The ASIC1 and ARM926 blocks fetch non overlapping 
sections of the data, process them and store them back in RAM3, from where the EXT_IF block fetches and 
streams them out at a minimum rate of 200 Mbps. The second TCP involves the USB subsystem. Data packets 
received at the USB are routed to RAM1. The ARM926 reads this data, processes it and stores it back to RAM1 
from where the DMA engine transfers it to SDRAM_IF, which streams it out at a minimum rate of 480 Mbps. 
There is also a third subsystem which involves the SWITCH, RAM2 and ARM926 components. However, this is 
a very low priority data path which has no data rate constraint from the designer, and therefore we do not classify 
it as another TCP to be satisfied. 

 

ARM926ARM926

ASIC1ASIC1

ITCITC

UARTUART

ROMROM

USB 2.0USB 2.0

DMADMA
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RTCRTC
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RAM3RAM3

EXT 
IF

EXT 
IF

SWITCHSWITCH

RAM2RAM2

 
Figure 9. Network Communication Subsystem 

 
Table 2 shows the Communication Parameter Constraint set (�) for this case study. The target 

communication architecture for the automated synthesis is the AMBA2 high performance AHB bus and a low 
bandwidth APB bus [2]. For the floorplanner, we give maximum priority to minimizing wire length for 
components on a bus, and equal lower priorities for area and total wire length minimization.  
 

Table 2. Customizable Parameter Set 
 

Set Values 
bus width 8, 16, 32 
bus speed 33, 66, 100, 133, 166, 200 
DMA burst size 1, 2, 4, 8, 16 
arbitration strategy static priority 

 
Figure 10 shows the final output of our synthesis flow – a synthesized architecture which meets all throughput 

and timing constraints. The values for the generated communication parameters are given in Table 3 and the final 
floorplan for this system is shown in Figure 11. The automated synthesis engine initially created 2 AHB busses, 
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with the SWITCH and RAM2 components connected to AHB1, which was assigned a clock speed of 200 Mhz to 
meet the encryption path throughput constraint. However, the floorplanning engine detected a cycle time violation 
for the bus due to excessive capacitive loading. The topology_mutate stage then split the shared AHB bus and 
assigned the ARM926, ASIC1 and EXT_IF masters and their associated slaves to one bus, and the SWITCH and 
RAM2 components to another AHB bus, to reduce capacitive loading. Finally, the optimize_design function 
reduced the bus speeds for the AHB busses from 200 Mhz to 133 Mhz and the APB bus to 66 Mhz, to lower the 
cost of the system. Both the throughput constraints were still met at these lower bus speeds. The synthesis engine 
made a simple assumption and assumed a 133 Mhz bus speed for AHB3 to simplify the design of BRIDGE3 to 
AHB1, but a designer can choose to further lower the AHB3 bus speed if a more complex bridge is acceptable.  

 
Table 3. Communication Parameter Values 

 
Parameter Values 
 AHB1 AHB2 AHB3 APB1 
bus width 32 32 32 32 
bus speed 133 133 133 66 
dma size 16  
arb priority ARM>USB> DMA> EXT_IF>ASIC1>SWITCH 
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Figure 10. Synthesized SoC subsystem 
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Figure 11. Floorplan for SoC subsystem 
 

For our second case study, we considered a derivative of the network communication subsystem from Figure 
9, which extends and partially modifies the functionality of the previous system. Figure 12 shows this derivative 
architecture, which has an additional TCP constraint involving the ARM926, SWITCH, RAM2 and two newly 
added components: a memory array (RAM4) and an ASIC block (ASIC2). In this TCP, data packets received 
from the SWITCH are stored in RAM2. These packets are retrieved by ASIC2 which reads and modifies some 
protocol header information before storing it back to RAM4 from where the SWITCH must stream it out at a 
minimum data rate of 3.2 Gbps. The ARM926 is used minimally, for directing data flow in this TCP.  
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Figure 12. Network Communication Subsystem Derivative 
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The Communication Parameter Constraint set (�) is slightly modified from Table 2, with the addition of a 
larger data bus width value of 64, to handle the increased bandwidth requirements. Also, instead of using the 
AMBA2 AHB bus architecture, we modify the target communication architecture to AMBA3 AXI [25]. Our 
synthesis flow outputs the architecture shown in Figure 13. The values for the generated communication 
parameters are shown in Table 4 and the final floorplan is shown in Figure 14. Since AXI supports separate 
channels for reads and writes, the bus speeds required to maintain throughput are lower (100 Mhz). The AXI3 bus 
which supports the SWITCH TCP has a 64 bit data width and a high 200 Mhz bus clock speed in order to 
maintain the high data flow rate.  
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Figure 13. Synthesized subsystem for derivative architecture 

 
 

Table 4. Communication parameter values (derivative arch.) 
 

Parameter Values 
 AXI1 AXI2 AXI3 APB1 
bus width 32 32 64 32 
bus speed 100 100 200 66 
dma size 16  
arb scheme SWITCH>ASIC2>ARM>USB>EXT_IF>DMA>ASIC1 
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Figure 14. Final floorplan for derivative SoC subsystem 

 
Table 5 compares the final synthesized designs for the two case studies with the results for the initial single 

main/peripheral shared bus mapped design, a synthesis flow without floorplanner and timing violation detection, 
and a manual synthesis effort by a designer. Compared with the initial design, the final synthesized design not 
only performs significantly better but also satisfies all constraints. For the flow without the floorplanning stage, 
although the number of busses is less and all throughput constraints are satisfied, the timing violations go 
undetected and the designs are not feasible. For the manual effort, although the performance is better than the 
final synthesized design, note that the number of busses is also more in both cases. The manual effort not only 
took longer (several days compared to a few hours for our automated flow) but also overdesigned the system and 
exceeded the requirements, ending up with a more expensive system.  
 

Table 5. Synthesis Result Comparison 
 

Case Study1 Designs initial  w/o floorplanner final  manual 
Number of Busses 2 3 4 5 
TCP constraints satisfied 0/2 2/2, but not feasible 2/2 2/2 
Execution cycles (millions) 49.76 24.51 20.32 18.8 
Time to synthesize ~mins ~hours ~hours ~days 

   
Case Study2 Designs initial  w/o floorplanner final  manual 
Number of Busses 2 3 4 6 
TCP constraints satisfied 0/3 3/3, but not feasible 3/3 3/3 
Execution cycles (millions) 88.48 47.63 29.10 26.58 
Time to synthesize ~mins ~hours ~hours ~days 

 
5. CONCLUSION 
 

In this report, we presented an approach for automating the synthesis of bus-based communication 
architectures for systems characterized by possibly several throughput constraints. Our approach synthesizes a 
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low-cost bus topology and generates values for bus architecture parameters such as arbitration priority ordering, 
bus widths, bus speeds and a DMA burst size, required to meet the performance constraints in the design. In 
addition, we use a high level floorplanning and delay estimation engine to generate a layout of the components on 
the chip and detect bus cycle time violations early in the design flow. Results from the automated synthesis of 
AMBA based bus architectures for the network communication subsystem case studies show the usefulness of our 
approach. Our approach reduces the exploration and design time by at least an order of magnitude when compared 
to a manual effort, while also guaranteeing feasibility of physical design. Furthermore, our approach is easily 
portable across different standard bus-based communication architectures such as CoreConnect [3] and OCP [4], 
and can be extended to automatically synthesize other bus architecture specific parameters such as out-of-order 
(OO) buffer sizes as well. Our future work will deal with optimality analysis and understanding issues involved 
with synthesis for SoC subsystems having a larger number of components than the case studies presented here.   
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