
GX-GUI: A General Extensible Technique for 2-D
Interaction with VR Applications

Bita Gorjiara, Falko Kuester, Pai Chou and Mehrdad Reshadi

Technical Report CECS-03-46

January 2003

Center for Embedded Computer Systems

University of California, Irvine

Irvine, CA 92697-3425

(949) 824- 1421

{bgorjiar, fkuester, chou} @ece.uci.edu, reshadi@ics.uci.edu

GX-GUI: A General Extensible Technique for 2-D
Interaction with VR Applications

Bita Gorjiara, Falko Kuester, Pai Chou and Mehrdad Reshadi

Technical Report CECS-03-46

January 2003

Center for Embedded Computer Systems

University of California, Irvine

Irvine, CA 92697-3425

(949) 824- 1421

{bgorjiar, fkuester, chou} @ece.uci.edu, reshadi@ics.uci.edu

Abstract
Continuously increasing complexity of collaborative virtual environments demands new interaction paradigms. In particular, interactions
such as object selection and manipulation, information query and data augmentation can be made available using customized 2D
interfaces for 3D environments. When combined with hand-held devices these interfaces allow user-centric control and customized access
to information in multi-user environments. Current development techniques for 2-D interface applications need expertise in complex
programming languages and client/server concepts that can impede the widespread implementation of this paradigm. This paper
introduces GX-GUI (General eXtensible Graphical User Interface) for 2-D interface development. GX-GUI uses a combination of XML
and XSL (eXtensible Stylesheet Language) to keep data and its view. It hides client/server programming issues and eliminates the need
for using complex programming languages from interface developer. Using this model, a prototype client-server application has been
developed and tested. In order to test the integration of XML data and XSL views an Active Server Application (ASP) is developed that
mimics the behavior of the client software and shows the appropriate views independently of the VR environment.

Contents

1. Introduction...5

2. Introduction to XML, XPath, XSL, DOM...6

2.1 XML Format ..6

2.2 Xpath ..6

2.3 XSL...6

2.4 Programming APIs ..6

3. The GX-GUI..6

3.1 Data Exchange Formats ..7

3.2 The Model Benefits ...7

4. Implementation...7

4.1 Client application...7

4.2 ASP application ...8

4.3 Example: Object Editor...8

Conclusion and future works:...9

References: ...9

List of Figure

Figure 1: Objects of a 3D environment that models a factory...5

Figure 2: Familial Tree of an XML code ..6

Figure 3: Example: XSL for generating C++ code and the output...6

Figure 4: Block Diagram of the GX-GUI model..7

Figure 5: Example: Hyperlink expression..7

Figure 6: Format for part 2..7

Figure 7: Example of part 2..7

Figure 8: Format of part 3 ...7

Figure 9: Format of hyperlink expression...7

Figure 10: Modules of GX-GUI Client ...8

Figure 11: Modules of ASP application...8

Figure 12: XML file for shape editor and two HTML view..8

Figure 13: An example of XSL file and corresponding HTML..8

Figure 14: Client application running on iPaQ..9

GX-GUI: A General Extensible Technique for 2-D Interaction with VR
Applications

Bita Gorjiara, Falko Kuester, Pai Chou and Mehrdad Reshadi
University of California, Irvine

{bgorjiar, fkuester, chou} @ece.uci.edu, reshadi@ics.uci.edu

Abstract
Continuously increasing complexity of collaborative virtual
environments demands new interaction paradigms. In particular,
interactions such as object selection and manipulation,
information query and data augmentation can be made available
using customized 2D interfaces for 3D environments. When
combined with hand-held devices these interfaces allow user-
centric control and customized access to information in multi-user
environments. Current development techniques for 2-D interface
applications need expertise in complex programming languages
and client/server concepts that can impede the widespread
implementation of this paradigm. This paper introduces GX-GUI
(General eXtensible Graphical User Interface) for 2-D interface
development. GX-GUI uses a combination of XML and XSL
(eXtensible Stylesheet Language) to keep data and its view. It
hides client/server programming issues and eliminates the need
for using complex programming languages from interface
developer. Using this model, a prototype client-server application
has been developed and tested. In order to test the integration of
XML data and XSL views an Active Server Application (ASP) is
developed that mimics the behavior of the client software and
shows the appropriate views independently of the VR
environment.

Keywords:
Human Computer Interaction, 2-D Interface Design, GUI, Virtual
Reality, XML, XSL, Hand-Held Device, User Interface
Development Technique.

1. Introduction
A common approach to developing user interfaces for 3-D
applications is based on 3-D interaction techniques. While 3-D
user interfaces work well for spatial interaction, many other types
of interactions can be represented more efficiently with 2-D
interfaces. For example, text view and annotations, item selection,
parameter adjustment, generating complex commands, accessing
system information, etc [Bowman et al. 2001; Hartling et al.
2002].

A 2-D GUI can be run on a hand-held device for user
interaction or on a desktop workstation for runtime supervisory or
debugging purposes. There have been many previous attempts on
using handheld devices for interaction with VR applications [Park
et al. 2001; Greenhalgh et al. 2001; Chen 2001; Benelli et al.
1999; Cheverest et al. 2000; Benford et al. 2001; Hill and Cruz-
Neira 2000]. Common to these techniques is that they promote ad-
hoc, application-specific clients. This means that much effort can
be potentially wasted in adapting or redesigning the clients to new
applications.

In order to extensively use 2-D interfaces in future virtual
reality applications, it is desirable to develop new User Interface
Development Techniques (UIDT) that reduce the complexity of 2-
D UI development. At the same time reusability of user interface
components is of primary concern and must be supported in the
next generation design schemes.

With the rapidly increasing performance of commodity graphics
hardware, ever more complex VR applications are being

developed for large-scale data sets. In order to manage large-scale
models efficiently, hierarchical schemes are used to manage,
store, access and render relevant information. Figure 1 shows a
logical hierarchy of objects. This hierarchical representation
facilitates reusing objects in new applications. At the same time
the UIDT should allow the same reusability for interface data and
views.

Figure 1: Objects of a 3D environment that models a factory

Different UIDTs have targeted extensibility and reusability in
development of 2-D interfaces. [Watsen et al. 1999] has
developed an applet loader, which runs on the client and executes
applets developed for interacting with different parts of the
system. Each time that user enters to a specific part, the interface
of that part migrates from the server to the client and the loader
will load the applet in the client. [Hartling et al. 2002] has
developed a similar system that runs Java Beans on the client, and
deploys a collection of technologies (C++, Java, Java Beans,
XML and CORBA) to make interface development process
systematic and extensible.

On the other hand, there are some commercial and non-
commercial attempts at reducing the complexity of VR
application development by eliminating the need for complex
programming languages such as C or C++. EON Reality [EON
2002] has designed a graphical development environment that
allows the user to construct a hierarchy of objects and define
action for these objects. They also use scripting languages for
complex events and behaviors. [Griepp and Cruz-Neira 2002] has
designed an XML schema for rapid development of synthetic
environment applications. The schema works with XML editors
for auto completion and error checking. This base description is
then compiled into application code for execution.

For VR applications most of the available 2-D interface
development methodologies are using different complicated
programming technologies. In this project we present a new
approach, General eXtensible Graphical User Interface (GX-GUI)
that uses a combination of XML and XSL to maintain the data
and the interface description. The technique is similar to certain
web services that automatically generate interfaces for their
applications. Using this technique, the interface design becomes
simpler and ultimately faster by changing it into web site design
rather than programming. Because of the simplicity of this
approach and its text-based format, it can be seamlessly integrated
with visual and interpretive development tools as well as
traditional programming-based development environments.

Factory

Hall-1 Hall-2 …

Line-1 Line-2 Line-3 …

Device-1 Device-2

Class

Protection

Param Param

Using this model, a prototype client-server application has been
developed and tested. In order to test the integration of XML data
and XSL view, an Active Server Application (ASP) is developed
that mimics the behavior of client software and shows the
appropriate views independently of the VR environment.

Section 2 presents a short introduction to XML and related
technologies used in this project. In Section 3, GX-GUI is
introduced and the format of messages is defined. Implemented
components and system functionality are described, by example,
in Section 4.

2. Introduction to XML, XPath, XSL, DOM
In this section we briefly introduce XML and its related concepts
used in GX-GUI. We also show some examples to illustrate the
concepts.

2.1 XML Format
The first standard version of Extensible Markup Language (XML)
was introduced in 1998 by the World Wide Web Consortium
(W3C). Like HTML, it is based on Standard Generic Markup
Language (SGML), a mark-up language designed for storing very
large structured documents. Tags and attributes in XML describe
the structure and meaning of the data and in fact, XML is both
data and structure. XML grammar relies on regular expressions
and consequently its grammar is simple and it is fast to process.

In XML every object is represented by a begin-tag and an end-
tag and each begin-tag can have some attributes. Tags that
appear between a matching pair of a begin-tag and an end-tag,
represent children objects. An object that does not have any child
can be represented with a single tag, called empty-tag. XML is
very powerful in representing tree-like data structures.

2.2 Xpath
XPath is a search language for addressing specific elements in an
XML file [Goldfarb 2000; W3]. The XPath data model views a
document as a tree of nodes, leans heavily on familiar description
of a document and uses genealogical taxonomy to describe the
hierarchical makeup of an XML document. It refers to children,
descendents, parents and ancestors. Figure 2 shows a simple
XML example and the corresponding tree.

<?XML version=”1.0”?>
<class name=”test”>
 <protection type=”public”>
 <param type=”int”
name=”m_count”/>
 <param type=”char”
name=”m_char”/>
 </protection>
</class>

Figure 2: Familial Tree of an XML code

In XPath the first “/” selects the root and the tree can be

traversed using element names. For example “/class/param”
selects the param element whose parent is class. Symbols “@”,
“*”, and “.” select attributes, all and current element(s),
respectively. A very important part of XPath is its predicates,
which is useful in conditional selection of tree nodes. These
predicates are XPath expressions enclosed in brackets ([]). For
example /class/*[@type=”int”] selects every child of class for
which the attribute named type has a value of int. Also
/class/param[2] selects the second param of every class child of
the root. Predicates are also cascadable; for example
/class/param[2][@size] selects the second param children of any
class that the selected param element has an attribute named size.

2.3 XSL
Extensible Style sheet Language (XSL) [Harold 1999] is a
powerful tool that operates on XML and generates another XML
or text formats. It applies a set of recursive rules to tags to
generate the new format. In rules the “key” for finding tags is an
XPath expression. For example, suppose that we want to generate
C++ header code for XML representation of a class shown in
Figure 2. Figure 3 shows the XSL format and its corresponding
output after being applied on the XML.

<xsl:template match="class">
class <xsl:value-of select="@name"/>
{
 <xsl:apply-templates select="protection"/>
};
</xsl:template>
<xsl:template match="protection">
<xsl:value-of select="@type"/>:
 <xsl:apply-templates select="param"/>
</xsl:template>
<xsl:template match="param">
 <xsl:value-of select="@type"/> <xsl:value-of
select="@name"/>;
</xsl:template>
class test
{
public:
 int m_count;
 char m_char;
};

Figure 3: Example: XSL for generating C++ code and the
output

2.4 Programming APIs
Every XML structure must be processed using a program. W3C,
the World Wide Web Consortium, which supports XML and
related standards, provides an API for XML programmers. This
helps the programmers use any implementation of this API for
loading and saving XML files. This API is called DOM
(Document Object Model) and provides a library of functions and
classes for creating and accessing XML data structures in the
memory. Compared to XPath and XSL, it is more flexible but
requires more programming efforts.

A tree containing interface data corresponding to the object
hierarchy (Figure 1) can be captured in the XML format. Each
object contains its own data, and when generating the data
structure for the whole environment, every object asks its children
to generate this XML format. The tree is stored in the server
application and a sub-tree will be sent to the client. The sub-tree
generated for the client will vary based on user navigation in the
environment. The parts that are not available can be transmitted to
the client on demand. We load the XML data to the DOM data
structure for future use. As we mentioned before, XSL can
transform XML format to many other text formats. We have
chosen HTML as the output format that can be viewed graphically
by the client.

3. The GX-GUI
The General eXtensible Graphical User Interface (GX-GUI) uses
XML format to model data and XSL for representing views.
Several views may be associated with a given data model in
XML. To create each page of interface one of these XSL
descriptions will be used to generate the HTML view for the data
modeled in XML.

Figure 4 shows a block diagram of GX-GUI model. In the
beginning, the VR application sends an XML file along with some
XSL files. The XML file is loaded into the DOM data structure
and the XSL files are loaded into a library object. The first XSL
is then applied to XML to create an HTML view. As the user
clicks on the hotspots (hyperlinks and buttons), data in the

hyperlink expression will be used to update the DOM data
structure, to update the status of the server application and to
choose the next XSL for the next view.

Figure 4: Block Diagram of the GX-GUI model

3.1 Data Exchange Formats
In regular HTML pages there is a tag under each link that keeps

the information of the next page. In the rest of the paper we refer
to this information as “hyperlink expression.” Here is an example:

Please click
here .

Figure 5: Example: Hyperlink expression

 In GX-GUI “hyperlink expression” is composed of three parts
(marked bye (1), (2) and (3) in Figure 4). By designing a good
format for these three parts, the entire program will be very
general and flexible. As seen in Figure 4 the “data” part of
“hyperlink expression” will be sent to the server. This part does
not have any predefined format and the developers of server
application can define their own. The format of the second part,
which is used for updating the DOM object, is shown in Figure 6.

<mssgs>
 <msg type=’…’ xPath=’…’ ID=’…’> … </msg>
</mssgs>
Message Types:
addChild
addSibling
Delete
deleteAllChildren
Replace
ChangeAttributeValue

Figure 6: Format for part 2

This part has a predefined XML format and sends different

basic messages to DOM data structure, such as “addChild,”
“delete” and “changeAttributes.” Using XPath expression a
particular node will be selected and modifications will be applied
to it. Each message (<msg>), based on its type, may or may not
have a child node. For example for “addChild” message we need
a tag for the new child that should be added to the data structure.
Figure 7 shows an example of “addChild” message.

<msg type=’addChild’ xPath=’/*[1]/*[2]’ >
 <shape color=’blue’ type=’circle’ width=’100’
height=’200’ />
</msg>

Figure 7: Example of part 2

The last part of the hyperlink expression is another predefined

XML format that is used for selecting the next XSL from the

library (Figure 8). Attributes of <info> can be used for passing
parameters to XSL files.

<info XSLFile=’FileName’ param1=’…’ … paramN=’…’/>

Figure 8: Format of part 3

To maximize flexibility and generality, we impose minimum

constraints on the XML and XSL formats. The initial XML file
(goes from server to client) does not have any particular
restriction; it should be just a valid XML. The XSL formats can
generate any desired HTML, but the only requirement is that
hyperlink expressions should follow the format of Figure 9.

xmlFileName=...&
submit=...&
mssgs=<mssgs>
<msg type="“ xpath="“> <…xml data…></msg>
 </mssgs>&
nextPage=<info xslFile="FileName" param1=""
param2=""..../>

Figure 9: Format of hyperlink expression

Some update messages can also be sent from the server to the

client to initialize and update available DOM structure. These
messages should follow the format of Figure 6 as well.

3.2 The Model Benefits
Integrating the XML, XSL and HTML technology has made this
approach very powerful and flexible. In addition to flexibility,
there are also several other advantages:
• By keeping a local database of required data and getting

different views of it, the client minimizes reference to the
server.

• The data and the view of application come to the client based
on the user demand and there is no need for loading the
information of the areas that user does not explore.

• Designing the interface for a particular part of program is
now simplified tremendously. It is more like designing a
web site rather than writing a program and getting involved
with network concepts. This is the most important advantage
and can have a great effect on implementation time.

• It is easy to integrate the interface to VR design tools
because it uses a text-based format.

In order to enhance interactivity, we can use scripting languages
in HTML files.

4. Implementation
In the following we explain different components of applications
developed to verify this model. We also show the process of
interface development for an object editor example.

4.1 Client application
The modules of the client program are shown in Figure 10. The
HTML viewer is a Pocket PC standard control and displays
generated HTML pages. The Socket handles the connection to
the server and sends and receives data. The Message Handler
receives the messages from the Socket and HTML viewer and
either handles them or sends them to the “Server Stub.” The
Server Stub then loads the initial XML file, updates the DOM
data structure, selects XSL from the library, applies it to the data
structure and generates the desired HTML format. This module
uses MSXML library to parse XML and works with DOM.

update
(xml)

Virtual
Reality

Applicatoin

DOM
data

structure

Message
Handler

HTML

XSL Lib

xml+xsl

(2)xml (3)xml Hyperlink
expression

(1)data

Figure 10: Modules of GX-GUI Client

4.2 ASP application
We have developed an ASP server that mimics the behavior of the
client application for manipulating data and generating views, in
order to test the interface independently of the VR application.
This setup can greatly assist interface debugging.

The modules of the ASP application are highlighted in Figure
11. Once the user sends a query to the ASP server by clicking on
a link or a submit button (in the format of Figure 9), the ASP
application loads the database file to the DOM data structure,
applies changes to it, selects and loads one XSL from the library,
applies the XSL to DOM, generates HTML, and finally saves
DOM to XML for future use. The generated HTML is then
forwarded to the user’s browser.

Figure 11: Modules of ASP application

4.3 Example: Object Editor
In this section, we show the process of interface development for
a simple application. Suppose that we have a scene and we want
to put different kinds of objects in this scene and place them at the
desired positions, using a 2-D interaction application. The first
step is to determine the data that should be kept on the client and
also determine the views that we want to see.

Figure 12 shows the XML file and two views of this XML.
One of the views is a tree that shows the available objects in the
scene and the other is the edit form for the object properties.
When the user clicks on a link usually a different view of the
XML database is shown and there is no interaction with server,
but when the user clicks on a button, an event will be sent to the
server and the status of the DOM structure should be updated.

<?XML version="1.0" encoding="UTF-8"?>
<scene name="scene 1" lastID="1" ID="0">
<obj name="cube1" x="100" y="100" z="150" w="100"
h="200" depth="50" yaw="10" pitch="5" roll="10"
type="cube" ID="1"/>
</scene>

Figure 12: XML file for shape editor and two HTML view

Three XSL files must be designed to generate three HTML

files: One for the menu page, another for the “Add New” page
and the third one for the “Edit” page. Figure 13 shows the XSL
script for retrieving the menu page and corresponding HTML.

<xsl:template match="scene">
<a
href="xmlFileName=&submit=&mssgs=&nextP age
=<info xslFile='showSceneInfo.xslt'/>">
<xsl:value-of select="@name"/>

<a
href="xmlFileName=&submit=&mssgs=&nextP age
=<info xslFile='addShape.xslt'/>"> Add new </ a>

 <xsl:apply-templates
select="obj"/>
</xsl:template>
<xsl:template match="obj">
<xsl:element name="a"><xsl:attribute
name="href"><![CDATA[
?xmlFileName=&submit=&mssgs=&nextPage=<info
xslFile='showShapeInfo.xslt' ID=']]><xsl:value-of
select="@ID"/><![CDATA['/>]]> </xsl:attribute>
 <xsl:value-of select="@name"/></xsl:element>

</xsl:template>
<a
href="xmlFileName=&submit=&mssgs=&nextP age
=<info xslFile='showSceneInfo.xslt'/>">scene 1< br>
<a
href="xmlFileName=&submit=&mssgs=&nextP age
=<info xslFile='addShape.xslt'/>"> Add new

<a
href="xmlFileName=&submit=&mssgs=&nextP age
=<info xslFile='showShapeInfo.xslt' ID='1' />
">cube1
<a
href="xmlFileName=&submit=&mssgs=&nextP age
=<info xslFile='showShapeInfo.xslt' ID=‘2' />
">cone1
<a
href="xmlFileName=&submit=&mssgs=&nextP age
=<info xslFile='showShapeInfo.xslt' ID=‘3' />
">cube2

Figure 13: An example of XSL file and corresponding
HTML

In the Figure 14 the client application, which is running on a

hand-held device is shown.

DOM

Server Stub

Client Socket

XSL Library

Message Handler

HTML
Viewer

DOM

Getting The Query

Loading XML

Apply Changes to DOM

Apply XSL to get new HTML

HTML
Page 1

Save DOM to XML

HTML
Page 2

XSL Lib

Figure 14: Client application running on iPaQ

Conclusion and future works:
This paper presents a general model for developing 2-D interface
applications running on hand-held devices to interact with VR
environments. The model uses a combination of XML and XSL
to maintain data and the interface description respectively. A
client application takes care of the process of loading and
manipulating the XML format, and extracting different views.
The interface designer defines the type of manipulation in a
predefined message format. The model is deigned to be extensible
for increasingly more complex VR environments by separation of
interface data and its view.

Although designing the interface using this approach is not as
simple as creating HTML files but it is much simpler than
designing the entire interface in programming languages.
Besides, there exist many powerful tools that can help developers
in this way. It can also be used on desktop computers for runtime
supervisory.

References:
[1] Benelli, G., Bianchi, A., Marti, P., Not, E. and Sennati, D.

1999. HIPS: Hyper Interaction within Physical Space. In
Proc. of International Conference on Multimedia Computing
and Systems (IEEE ICMCS’99), p.1075-1078.

[2] Benford, S., Bowers, J., Chandler, P., Ciolfi, L., Flintham,
M., Fraser, M., Greenhalgh, C., Hall, T., Hellström, S. O.,
Izadi, S., Rodden, T., Schnädelbach, H. and Taylor, I. 2001.
Unearthing virtual history: using diverse interfaces to reveal
hidden virtual worlds. In Proc. of International Conference
on Ubiquitous Computing (UBICOMP’2001), p.225-231.

[3] Bowman, D., Kruijff, E., LaViola, J., and Poupyrev, I. 2001.
An Introduction to 3D User Interface Design. In
Teleoperators and Virtual Environments Journal, vol. 10, no.
1, p.96-108.

[4] Chan, W., 2001. Project Voyager: Building an Internet
Presence for People, Places, and Things. Masters Thesis,
Department of Engineering and Computer Science,
Massachusetts Institute of Technology.

[5] Cheverst, K., Davies, N., Mitchell, K., Friday, A. and
Efstratiou. 2000. Developing a Context-Aware Electronic
Tourist Guide: Some Issues and Experiences. In Proc. of
Human-Computer Interaction (ACM CHI’2000). p.17-24.

[6] EON Reality: http://eonreality.com
[7] Goldfarb, C.F., Prescod, P. 2000. The XML Handbook.

Prentice Hall, Second Edition, Ch. 59.
[8] Greenhalgh, C., Benford, S., Rodden, T., Anastasi, R.,

Taylor, I., Flintham, M., Izadi, S., Chandler, P., Koleva, B.
and Schnädelbach, H. 2001. Augmenting Reality Through
The Coordinated Use of Diverse Interfaces. Technical
Report, University Of Nottingham.

[9] Griepp, T., Cruz-Neira, C. 2002. XJL: A XML Schema for
the Rapid Development of Advanced Synthetic
Environments. In Proc. of the Immersive Projection
Technology Symposium (IPT’2002), p.294-303.

[10] Hartling, P., Bierbaum, A. and Cruz-Neira, C. 2002.
Tweek: Merging 2D and 3D Interaction in Immersive
Environments. In Proc. of the World Multi-conference on
Systemics, Cybernetics, and Informatics, Volume VI, p.1-5.

[11] Hill, L.C., Cruz-Neira, C. 2000. Palmtop Interaction
Methods for Immersive Projection Technology Systems. In
the Proc. of the International Immersive Projection
Technology workshop (IPT2000).

[12] Park, K. S., Leigh, J., Johnson, A., E., Carter, B., Brody, J.
and Sosnoski, J., 2001. Distance Learning Classroom Using
Virtual Harlem. In Proc. of the International Conference on
Virtual Systems and Multimedia (VSMM’2001), p.489-498.

[13] Watsen, K., Darken, R. P, Capps, M. V. 1999. A Handheld
Computer as an Interaction Device to a Virtual Environment.
In Proc. of the International Immersive Projection
Technology workshop (IPT’1999).

[14] World Wide Web Consortium http://www.w3.org/XML

