
ISEGEN: Adapting Kernighan-Lin Min-Cut
Heuristic for Generation of
Instruction Set Extensions

Partha Biswas, Sudarshan Banerjee, Nikil Dutt, Laura Pozzi�, and Paolo Ienne�

CECS Technical Report #04-21
Center for Embedded Computer Systems School of Information and Computer Science

University of California, Irvine, CA 92697, USA

Aug 12, 2004

Abstract
Customization of processor architectures through Instruction Set Extensions (ISEs) is an effective way

to meet the growing performance demands of embedded applications. A high-quality ISE generation ap-
proach needs to obtain results close to those achieved by experienced designers, particularly for complex
applications that exhibit regularity: expert designers are able to exploit manually such regularity in the
data flow graphs to generate high-quality ISEs. In this report, we present ISEGEN, an approach that
identifies high-quality ISEs by iterative improvement following the basic principles of the well-known
Kernighan-Lin (K-L) min-cut heuristic. Experimental results on a number of MediaBench, EEMBC and
cryptographic applications show that our approach matches the quality of the optimal solution obtained
by exhaustive search. We also show that our ISEGEN technique is on average ��� faster than a genetic
formulation that generates equivalent solutions. Furthermore, the ISEs identified by our technique exhibit
��� more speedup than the genetic solution on a large cryptographic application (AES) by effectively
exploiting its regular structure.

�Laura Pozzi is affiliated with University of Lugano, Faculty of Informatics, CH-6900 Lugano, Switzerland
�Paolo Ienne is affiliated with Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Computer and Communication

Sciences, CH-1015 Lausanne, Switzerland

1

Contents

1 Introduction 4

2 Problem Definition 5

3 State of the Art and Motivation 5

4 The ISEGEN Approach 6
4.1 ISEGEN: A Modified Kernighan-Lin Algorithm . 7
4.2 Details of Functions inside ISEGEN . 8

4.2.1 Gain Function . 8
4.2.2 Impact of Toggling a Node . 10
4.2.3 Merit Function . 13
4.2.4 Complexity of ISEGEN . 13

4.3 A Detailed Running Example on ISEGEN . 13

5 Experimental Results 14
5.1 Speedup and Runtime for Different Benchmarks . 15
5.2 Experiments with ��� . 17

6 Conclusions 19

A Proof of the Rules for updating ������� and ������� 21

B Analysis of ISEGEN Complexity 25

List of Figures

1 A Processor Subsystem with AFUs Tightly-coupled to the Processor Core 4
2 An example showing the advantage of large scale reuse — Finding three instances of the

largest ISE (shown with a dotted boundary) is not as effective as finding a large ISE with
six instances (shown with a solid boundary). 6

3 The ISEGEN Algorithm . 7
4 SetInitialConditions() Procedure . 8
5 CalcImpactOfToggle() Procedure . 10
6 Instance of an Instruction-level Hardware-Software Partitioning 10
7 Basic Rules to project the effect of toggling a node from S to H to its parents and children. 12
8 Basic Rules to project the effect of toggling a node from S to H to its siblings. 12
9 Running Example: The nodes are annotated with ������� and ������� values. Note that when

a node is toggled (from S to H or H to S), the addendums of the node along with those of
its neighbors change. The steps 1 through 5 are executed in PASS 1 and steps 6 through
8 in PASS 2 with the generated ISE shown in step 9. The solutions obtained at the end of
PASS 1 and PASS 2 are shown in steps 6 and 9 respectively. 14

10 Comparison of Speedup and Runtime with number of AFUs = 4 and I/O constraints: (4,2) 15

11 Comparison of Application Speedup and Algorithm Runtime with number of AFUs = 4 . . 16
12 Speedup comparison for AES. 17
13 First cut (having 8 instances) generated for AES under I/O Constraints: (4,1). Each in-

stance of the cut contains 49 nodes covering about 60% of the DFG. 18
14 Study of Reusability of ISEs on AES with varying number of AFUs 19
15 Possible Relationships between nodes m and n. 23

1 Introduction

Continuing advances in manufacturing processes have made it possible for processor vendors to build
increasingly fast processors. However, newer applications place an increasing demand on performance, at
a rate faster than that achievable by processors. Furthermore, application requirements are also changing
continuously. These trends have necessitated the migration of critical computations from the processor
core to an application-specific unit that is able to perform compute-intensive tasks efficiently. We call
such a unit an Ad-hoc Functional Unit (AFU). A conceptual representation of a processor subsystem with
AFUs partaking in the processor pipeline is presented in Figure 1. The AFU accelerates critical operations
of application algorithms by executing application-specific Instruction Set Extensions (ISEs).

Program
Memory

Decoder
Execution

Unit

AFU

AFU

LD/ST
Unit

Register
File

Data
Memory

Processor
Core

Customized
Units

Figure 1. A Processor Subsystem with AFUs Tightly-coupled to the Processor Core

Automatic generation of ISEs is essentially the task of hardware-software partitioning applied at an
instruction-level granularity. The Kernighan-Lin (K-L) min-cut algorithm is a well-known graph partition-
ing heuristic originally designed for circuit partitioning [2]. Recently, this heuristic has been successfully
adapted for task-level partitioning of a system into hardware and software [1]. In this report, we apply the
K-L heuristic at the instruction-level granularity to automatically generate ISEs. We refer to our approach
as ISEGEN. Our motivation for employing an iterative improvement technique like K-L is to generate
solutions close to those obtained manually by expert designers. In order to match such a solution quality,
the control parameters of ISEGEN closely model the decisions taken by the designer. One of the main
challenges in applying the K-L heuristic is to maintain low computational complexity in its critical section
in order to achieve a fast turnaround time.

We show the efficacy of ISEGEN on a number of embedded applications selected from MediaBench,
EEMBC and cryptographic suites by comparing our results with the best known approaches of ISE gen-
eration. We demonstrate that ISEGEN runs up to ��� faster than the previous genetic formulation while
yielding ISEs having speedup comparable with the optimal solution [8]. On a large cryptographic appli-
cation (AES) for which the exhaustive techniques fail, ISEGEN — by effectively exploiting its regular
structure — generates ��� more speedup than the genetic approach.

The rest of the report is organized as follows. In Section 2, we define our problem. In Section 3, we
discuss related research work and our motivation. We propose our ISEGEN approach in Section 4. In

Section 5, we describe the experimental results that demonstrate the efficacy of our approach. Finally,
Section 6 concludes the report.

2 Problem Definition

Instructions within a basic block are typically represented as a Directed Acyclic Graph (DAG), � �
����	: the nodes � represent instructions and the edges � capture the data dependencies between them.
We define a cut � representing a potential ISE as a subgraph of �, � � � Let
��	 be the function
that measures the merit of a cut � as an estimation of the speedup achievable by implementing � as an
ISE. Let ���� ��	 and ���� ��	 respectively be the number of inputs and the number of outputs of �. The
maximum number of operands of an ISE (or a cut) is limited by the number of register file ports in the
underlying core.

Let �	
 and ���� be the maximum number of input and output operands respectively. A cut � is
architecturally feasible if its inputs are available at the time of issue. This is only possible if � is convex,
i.e., if there exists no path from a node 	 � � to another node
 � � through a node � �� � [8]. The
problem of ISE generation can be broken into the following two sub-problems:

Problem 1 Given the data flow graph (DFG) � � ����	 in a basic block, find a cut � � � that
maximizes
��	 under the following constraints:

� Input-Output (I/O) Constraints: ���� ��	 � �	
 and ���� ��	 � ����.

� Convexity Constraint: � is convex.

Problem 2 Given the basic blocks in an application and the maximum allowed number of ISEs as � ���,
find cuts that maximize the speedup achievable for the entire application.

3 State of the Art and Motivation

The process of ISE generation involves clustering of simple operations of an application into an ISE
that maps to specialized hardware. These ISEs capture the compute-intensive sections of the application.
Because of similarity to high-level synthesis, the solutions to the problem of ISE generation are motivated
from early CAD algorithms for component library mapping. The idea of clustering operations in ISE
generation is similar to the concept of regularity extraction [3, 4, 5] and template matching [6, 7] that are
used in a variety of CAD algorithms with the goal of increasing performance and reducing area under
timing constraints.

The problem of ISE generation for application specific processors has been studied for almost a decade.
Some of the earlier work in ISE generation applied to reconfigurable computing [17, 16] considers only
single-output subgraphs in ISE generation. Even though a few recently proposed approaches [10, 11]
handle multiple outputs, they identify only connected subgraphs. However, the opportunity to include
independent subgraphs in the same ISE exposes speedup potentials, while algorithms identifying only
connected graphs are unable to exploit high constraints of ISE outputs. Therefore, we also consider inde-
pendent subgraphs in ISEGEN.

When the goal of ISE generation is speedup coupled with dynamic reuse, as in [14, 12, 13, 15], the
resulting subgraphs are generally small. In practice, if one wants to mimic the excellent results targeted by
expert designers, clusters of 2 or 3 instructions are far too small for arousing real interest: typical results at

Figure 2. An example showing the advantage of large scale reuse — Finding three instances of the largest
ISE (shown with a dotted boundary) is not as effective as finding a large ISE with six instances (shown
with a solid boundary).

this level generally include only peculiar address generation patterns, pre- or post-shifting, or well-known
arithmetic patterns such as multiply-accumulators. There is a need for algorithms that can identify large
and reusable clusters, efficiently covering the application DFG. Figure 2 demonstrates this principle with
the help of an example. This motivates our ISEGEN approach that not only generates ISEs having higher
potential for speedup, but which also shows the efficacy of the generated ISEs in terms of their reusability.

An exact solution [8] that uses an exhaustive search with pruning is not practical for applications
having large basic-blocks. A genetic formulation [9] presents a practical solution with results showing
good speedup for the generated ISEs. However, the genetic algorithm is stochastic in nature and therefore
multiple runs may result in different solutions. Our ISEGEN approach, on the other hand, is an iterative
improvement technique that closely mimics the decisions taken by an expert designer; consequently we
are able to match the solution quality of expert designers.

4 The ISEGEN Approach

We reiterate that ISEGEN essentially performs Hardware-Software partitioning at instruction-level
granularity. The instructions belonging to the hardware partition map to an ISE to be executed on an
AFU while those belonging to the software partition individually execute on the processor core. Our
approach considers the basic blocks in an application based on their speedup potential — a function of
its execution frequency and estimated gain from mapping all its nodes to hardware — and performs up to
���� successive bi-partitions into hardware and software within a basic block. After an ISE is found in a
basic block, the speedup potential of the block is updated considering the remaining nodes.

We borrow the idea from Kernighan-Lin min-cut partitioning heuristic to steer toggling of nodes in
the DFG between software (S) and hardware (H) based on a gain function that captures the designer’s
objective. The effectiveness of the K-L heuristic lies in its ability to overcome many local maxima without
using unnecessary moves.

ISEGEN()

00: �������������������()
01: ���� ���� � � �
02: loop (until exit condition)
03: ���� � � ���� ���� �
04: while (there exists unmarked node in DFG)
05: foreach (unmarked node �)
06: Calculate �������(�,���� �)
07: endfor
08: ���� ����� Node with maximum Gain
09: Toggle and Mark ���� ����
10: ������������������(���� ����,���� �)
11: if (toggling ���� ���� satisfies constraints)
12: Update ���� � from toggling ���� ����
13: Calculate � (���� �)
14: endif
15: endwhile
16: if (� (���� �) � � (���� ���� �))
17: ���� ���� � � ���� �
18: Unmark all nodes
19: endif
20: endloop
21: � � ���� ���� �

Figure 3. The ISEGEN Algorithm

4.1 ISEGEN: A Modified Kernighan-Lin Algorithm

The ISEGEN algorithm that essentially performs a bi-partitioning of a DFG into S and H is depicted
in Figure 3. This is an iterative improvement algorithm that starts with all nodes in software and tries to
toggle each unmarked node, � in the graph from S to H or H to S in every iteration. Within each iteration
of ISEGEN (line 02 to line 20), ���� ���� � retains the best cut found so far with the help of ���� � that
maintains the intermediate best cuts. Initially, the cut � points to a configuration where all nodes belong
to software and this configuration is passed down to ���� �. The decision to toggle � with respect to
���� � is based on a gain function, ������� �	. The gain function is evaluated for each node (line 06) and
the node with the best gain, best node (obtained in line 08) is then toggled and marked (line 09). Note that
the chosen cut at this point may be violating input/output constraints and convexity constraints. In other
words, we allow a cut to be illegal giving it an opportunity to eventually grow into a valid cut.

If both convexity and I/O constraints are satisfied (line 11), ���� � is updated through removal of
���� ���� from the cut or its addition to the cut depending on whether ���� ���� has toggled from H to
S or S to H respectively. The speedup estimate or merit function,
�	 determines whether ���� � should
override ���� ���� � (line 17). This process is carried on till no more unmarked nodes are left. In general,
we found experimentally that 5 passes are enough for successive improvement of the solution. Therefore,

SetInitialConditions()

00: ���� � �
01: ���� � �
02: foreach (node � � DFG)
03: ���������	� ���	����	
04: ���������	� �	��	����	
05: endfor

Figure 4. SetInitialConditions() Procedure

the exit condition in the outermost loop is set to 5 times or lower when there is no improvement in the
merit of the solution across successive iterations. We call each iteration of the loop enclosed between line
02 and 20, a K-L pass for iterative improvement. The best cut (���� ���� �) is stored back in � that further
acts as a starting point for the next bi-partitioning of the DFG.

4.2 Details of Functions inside ISEGEN

The three important functions inside ISEGEN are: (1) the Gain function, �������, (2) the function
calculating the impact of toggling a node, i.e., �������������������	, and (3) the Merit function, ��	.
In this section, we go through the details of these functions and then report the complexity of ISEGEN.

4.2.1 Gain Function

A gain function, ������� is designed to estimate the gain of toggling a node after careful examination of
goals that are of interest to an experienced designer. This gain function has five goals: (1) to maximize
the speedup exhibited by the chosen cut, (2) to satisfy the input-output port constraints, (3) to satisfy
the convexity constraints, (4) to favor generation of large cuts and (5) to enable search for independently
connected components if they have higher speedup potential. Thus, the gain function for determining a
node � to toggle with respect to a cut � is a linear weighted sum of the five components that act as control
parameters for the algorithm:

� Merit Function (Speedup Estimate): Let �� be the new cut after addition or removal of the node
� from the cut � as � toggles from S to H or H to S respectively.

�� �� �

�

�� �	 � if � � obeys convexity constraint�

��� if � � violates convexity constraint!

This is an estimation of speedup exhibited by � and therefore a positive contributor. This is set to
�� if the convexity constraint is violated for �.

� Input Output violation penalty: A heavy penalty is applied with the help of a large factor if input-
output port constraints are violated.

�� ����" � ������ ��
�	��	
	 � ����� ��

�	�����		 �

This is a negative contributor.

� Convexity Constraints: Addition of a node to a cut is favored when its neighbors are already in the
cut while a node already in the cut is not easily removed from the cut. Let �	� �� � �� �	� ��� �	
be the number of neighbors of � in �.

���
 ���� �

�
��	� �� � �� �	� ��� �	 � if � is in S�

��	� �� � �� �	� ��� �	 � if � is in H!

Thus, it acts as a positive contributor for a node toggling from S to H and a negative contributor for
a node toggling from H to S.

� Large Cut: A cut is allowed to grow in regions where growth potential is higher. The external
input and external output nodes act as barriers beyond which a cut cannot grow. Since we do
not allow memory access from AFUs, memory operations are also barriers for cut growth. Let
� �� �� � 	� ��	 be the minimum distance of � from the barriers in the upward direction and let
� �� �� � ���� ��	 be the minimum distance of � from the barriers in the downward direction.

��� �

�����
����
�	� �� �� � 	� ��	� � �� �� � ���� ��	 	�

if � is in S�

�	� �� �� � 	� ��	� � �� �� � ���� ��	 	�

if � is in H!

We employ a directional growth strategy where nodes closer to the barrier (that have higher potential
for cut growth) are consistently favored for inclusion in hardware; this strategy implicitly favors
reusability of the cut without losing the benefit of having large cut as a solution.

� Independent Cuts: It is quite possible that the best cut is actually a combination of 2 or 3 large
connected subgraphs and not necessarily the largest connected subgraph. So, ISE exploration needs
to expand not only in the vertical direction favoring large cuts but also in the horizontal direction. Let
���	 be the independently connected subgraphs in the DFG � excluding the connected subgraph
containing �.

��� �

���
��
���#����	�
�$ ��� ���	 �

if � is in H�

�� if � is in S!

where �$ ��� ���	 is the sum of the hardware latencies along the critical path of the independently
connected subgraph, ��. Using this component, the nodes already in H are allowed to move back
into S to favor the growth of other potentially large subgraphs.

We now express ������� ��	 with respect to the current cut � as follows:

%�
�� ��� %�
 �� ����" � %�
 ���
 ����� %�
 ���� %�
 ���

The weights %�, %�, %�, %� and %� have been determined experimentally. It is to be noted here that the
genetic algorithm [9] does not consider the last two components of ������� in its fitness function.

CalcImpactOfToggle(best node,best C)

00: ��������� �	� ��������� �	 � ������������ ����	
01: ��������� �	� ��������� �	 ������������� ����	
02: ������������ ����	� ������������� ����	
03: ������������ ����	� ������������� ����	
04: foreach (node � � Parents—Children—Siblings(���� ����))
05: Apply Rules for updating ���������	 and ���������	
06: endfor
07: Maintain appropriate data structure for fast eval of �� ��, M()
08: Maintain appropriate data structures for fast eval of ���
 ����

Figure 5. CalcImpactOfToggle() Procedure

4.2.2 Impact of Toggling a Node

The runtime complexity of ������� is significantly reduced by trading the majority of computations into
appropriately evaluating the impact of toggling a node (using CalcImpactOfToggle() of line 10 in Figure 3
as shown in Figure 5). The number of inputs and the number of outputs of ISE at any stage of the
partitioning process are given by ���� and ���� respectively. In order to quantify the impact of toggling a
node, we introduce addendums ������� and ������� associated with every node. When a node is toggled,
its addendums ������� and ������� are added to ���� and ���� respectively to get the new values of ���� and
����. Initially, all nodes are in S and therefore ���� = ���� = 0 and ������� and ������� equal the number of
inputs and number of outputs respectively of the corresponding node (as shown in Figure 4).

S H
2

1

2

1
1

2 3

S

S

S

2

1

All Software

1

2

S

S

S

Software

2+(-1)=1

2+(-1)=1

2+(-1)=1

1+(-1)=0

1 + 0 = 1

1 + 0 = 1

Hardware (ISE)

= 0 + 1OISE

4 4
Otoggle

Itoggle

IISE = 0 + 1

3H
-1

-1

1

1

Figure 6. Instance of an Instruction-level Hardware-Software Partitioning

Depending on whether a node belongs to software or hardware, we call it an S-node or an H-node
respectively and we denote a toggle of a node from S to H as � & . When a node is toggled, the �������
and ������� values of its neighbors (parents, children or siblings) may get affected as illustrated in Figure 6.
When node 3 is toggled to H-node, its addendums are added to ���� and ���� respectively to reflect the
number of inputs and outputs in the resulting ISE. After toggling, ������� and ������� of node 3 reverse in

sign showing that the changes to ���� and ���� will be undone if node 3 toggles back to S-node. It is easy
to verify that the changed values of ������� and ������� for the neighbors of node 3 correctly account for the
new values of ���� and ���� when any of these nodes is toggled. For example, if node 1 is toggled next,
���� � � � � � � and ���� � � � � � � with ISE containing nodes 1 and 3. Instead, if node 4 is toggled
next, ���� � � � � � � and ���� � � � � � � with ISE containing nodes 3 and 4. On the other hand, if
node 1 is toggled back to an S-node, ���� � � � ���	 � � and ���� � � � ���	 � � with ISE containing
no nodes.

We developed a comprehensive set of rules to capture the effect of toggling a node that is pictorially
presented in Figure 7 and Figure 8. The changes in ������� and ������� values are represented as ������� and
������� respectively such that the new values of ������� and ������� for the affected nodes are computed as
�������� ��������	 and �������� ��������	 respectively. The rules are as follows:

Rule 1. After toggling, ������� and ������� values for a node reverse in sign.

Rule 2. If a node n is toggled from S to H or H to S, ������� and ������� of only the parents, children and
siblings can get affected.

Rule 3. If a node n is toggled from S to H and is a parent of one or more nodes, then the addendums for
the children change according to the following rules (Figure 7(a-g)):

1. If n has one and only one child, then

(a) If the child is an S-node, ������� � ������� � �� for the child (Figure 7(a)).

(b) If the child is an H-node, ������� � ������� � �� for the child (Figure 7(b)).

2. If n has � 2 children, then

(a) If there are exactly 2 children, of which one is an S-node and the other is an H-node, then for
the S-node, ������� � �� and for the H-node, ������� � �� (Figure 7(c)).

(b) If all the children are S-nodes, then for the S-nodes, ������� � �� (Figure 7(d)).

(c) If all the children are H-nodes, then for the H-nodes, ������� � �� (Figure 7(e)).

(d) If only one child is an S-node and � � nodes are H-nodes, then for the S-node, ������� � ��
(Figure 7(f)).

(e) If only one child is an H-node and � � nodes are S-nodes, then for the H-node, ������� � ��
(Figure 7(g)).

Rule 4. If a node n is toggled from S to H and is a child of a node m, then the addendums for m change
according to the following rules (Figure 7(h)):

1. If m is an S-node, then

(a) If m has no other children, ������� � �� and ������� � ��.

(b) If m has some children as S-nodes, ������� � ��.

toggle

toggle

I

O
S->H

S -1

S->H

H S
oror or or

+1

0 -1

-1

-1

-1

+1+1

all H’s or all S’s or nil

H

S->H

+1

+1

S->H

S S S

-1

 0 0 0

S->H

HS

0

(b) 0S, 1H as child

S->H

H H S -1 0 0

 0 0

S->H

 0 0S S H

+1 0 0
all H’s or all S’s or nil

(a) 1S, 0H as child (c) 1S, 1H as children (d) >1S, 0H as children

(g) >1S, 1H as children(f) 1S, >1H as children (h) H or S as parents

-1

-1

+1

0

-1 -1

(e) 0S, >1H as children

S->H

H HH

00

+1 +1

0

+1

+1 0

0

0

0

0

Figure 7. Basic Rules to project the effect of toggling a node from S to H to its parents and children.

H SS->H

(b)

S->H

H

 -1 HS 0

0000

S->H

H

(a)

0

I

Otoggle

toggle

S or Ext. Inp.

(c)

 0

-1

SSS->H 0

-1

 0

+1

(d)

S or Ext. Inp.

0

 +1 +1 HH

Figure 8. Basic Rules to project the effect of toggling a node from S to H to its siblings.

(c) If m has all other children as H-nodes, ������� � ��.

2. If m is an H-node, then

(a) If m has no other children, ������� � �� and ������� � ��.

(b) If m has some children as S-nodes, ������� � ��.

(c) If m has all other children as H-nodes, ������� � ��.

Rule 5. If a node n is toggled from S to H, then the addendums for its sibling nodes change according to
the following rules (Figure 8):

1. If the parent of n is an H-node, then

(a) If the siblings are all H-nodes, ������� � �� (Figure 8(a)).

(b) If only one sibling is an S-node and rest may be H-nodes, for the S-node, ������� � ��
(Figure 8(b)).

2. If the parent of n is an S-node or an external input, then

(a) If the siblings are all S-nodes, ������� � �� (Figure 8(c)).

(b) If only one sibling is an H-node and rest may be S-nodes, for the H-node, ������� � ��
(Figure 8(d)).

Rule 6. The toggle of a H-node negates the effect of its toggling from S. This implies that all the above
rules can be applied for toggling from H to S with the sign reversed for the values of ������� and �������.

The proofs of correctness for all the rules have been presented in Appendix A. The impact of toggling
a node also involves maintenance of appropriate data structures for fast evaluation of
�	 and convexity
violation.

4.2.3 Merit Function

We define the merit function as:
��	 � '�� ��	 � '�� ��	, where '�� ��	 is the software latency of
� estimated by summing the latencies of the nodes in �; '�� ��	 is the hardware latency of � estimated
from the critical path in �. The hardware latency for each instruction was obtained by synthesizing the
constituent arithmetic and logic operators on a common �!��(� CMOS technology and then normalized
to the delay of a ��-bit multiply-accumulate (MAC).

4.2.4 Complexity of ISEGEN

The computational complexities of ������� and �������������������	 are critical to the complexity of
ISEGEN. Because of maintaining efficient data structures, precalculating node attributes and transferring
significant portions of computations to �������������������	, ������� has the worst case complexity of
O��	, where p is the maximum number of neighbors that a node can have. For all the nodes, this amounts
to O��
 	� 		, i.e., O�	�		. By choosing appropriate data structures, �������������������	 can also be
performed in O�	�		 in the worst case.

Therefore, the worst-case running time of ISEGEN is O�	� 	
 	�		. For details, please refer to Ap-
pendix B.

4.3 A Detailed Running Example on ISEGEN

We illustrate running ISEGEN algorithm with a simple example shown in Figure 9. With an I/O
constraints of �	
 � � and ���� � �, the solution is obtained in just 2 K-L passes. For simplicity, '��

and '�� for each node have been chosen as 2.0 and 1.0 respectively. Because of toggling a node, the
addendums on the neighboring nodes (including parents, children and siblings) change according to the
rules presented in the last section.

At the end of the first pass, a valid solution is obtained which is improved further in the next pass.
For example, at the end of PASS 1, the software latency of the cut, '�� � �
 �!� � ��!� because
there are 6 nodes in the cut and the hardware latency of the cut, '�� � �
 �!� � �!� because there are

2

1

1

2

1

2

1
1

2 3

4 5

8

6

7

S

S

S

S

S

S

S

S

2

1

1

1

1

2

1

1

2 3

4 5

8

6

7

S

S

S

S

S

2

1

1

1

2 3

4 5

8

6

7

S

S

S

S

H

1

1

H

1

1

2 3

4 5

8

6

7

S

−1

−1 −1

H

H

1

1

2 3

4 5

8

6

7

H

H

H

H

0

0

0

0

1 1

0

−1

0

0

1

1

2 3

4 5

8

6

7

S

H

H

H

1

0

0

0

1

5 6 7

H

2

1

2 2
H

5

1

3

4

8

6

7

S

H
0

0

0

0

1

2 3

4 5

8

6

7

S

H

H

H

H

1

0

0

0

0

0 H

H

H

ISE

2

5

H

1

1

3

4

8

6

7

H

H

H

0

0

0

0

2

5

1

3

4

8

6

7

S

S

H0

0

1

1 1

1

2
S

S H
H

S

SH

SS

H

H

S

H S

H

H

S

2

S H

H

H

H

S

S H

H

H

H

SH

H

H

H

S H

H

H

H

H S

2

1

−1

−1

0

1

2

1

1

1

 0

−1

 0

−1

 0

1

2

1

2

1

−1

 0

0

1

1

1

2

1

 0

−1

0

1
1

1

1

0

−1

 0

1

−1

 0

0

−1

 0

1

2

1

−1

 0

1

1

1

0

1

1

1

1

0 0

−1

 0

1

1

0 1

2

0

1

−1

 0

1

1

1

1

2

1

1

0

1

0

0

1

1

1

2

1

1

0

1

0 2 3 4

8 9

IISE

OISE

IISE

OISE

IISE

OISE

IISE

OISE

IISE

OISE

IISE

OISE

IISE = 0

O = 0ISE

IISE

OISE

IISE

OISE

IISE

OISE

= 1

= 1

= 2

= 2

= 3

= 2

= 3

= 3

= 4

= 3

= 4

= 2

= 5

= 2

= 5

= 2

= 4

= 2

1

1

1

1

2

1Begin PASS 1

Begin PASS 2

Result of PASS 1

Result of PASS 2

End PASS 1 End PASS 2

Figure 9. Running Example: The nodes are annotated with ������� and ������� values. Note that when
a node is toggled (from S to H or H to S), the addendums of the node along with those of its neighbors
change. The steps 1 through 5 are executed in PASS 1 and steps 6 through 8 in PASS 2 with the generated
ISE shown in step 9. The solutions obtained at the end of PASS 1 and PASS 2 are shown in steps 6 and 9
respectively.

4 nodes in the critical path. Therefore, � �	 � ��!� � �!� � �!�. Similarly, at the end of PASS 2,
� �	 � �
 �!� � �
 �!� � ��!� which is greater than the previous gain. The PASS 3 does not show any
further improvement in � �	 and therefore the search is terminated. Note even in this small example that
the passes have to incur violation of constraints (e.g. steps 4, 5, 7 and 8 violate I/O constraints) in their
intermediate steps before converging to a valid solution.

5 Experimental Results

We integrated ISEGEN in the MachSUIF framework [18] and evaluated overall speedup for the entire
application using all the generated cuts as follows:

'�������

'������� �
�

� ��

��	

The variable, '������� encapsulates the overall execution latency of the application i.e., when the appli-
cation entirely runs in software, and �� is the number of times � is executed based on profile information.
Note that, in this work, we do not consider memory operations inside a cut.

To evaluate the efficacy of our ISEGEN approach, we chose benchmarks from diverse application
domains in EEMBC (�����	

 , ���	��

 , �����

 , ��

 and ������

) and MediaBench (����� ���	

Speedup for I/O Constraints (4,2) and NISE=4

1

1.5

2

2.5

3

3.5

4

4.5

conven00 (6)
fbital00 (20)

viterb00 (23)
autcor00 (25)

adpcm_decoder (82)

adpcm_coder (96)

fft00 (104)

Exact
Iterative
Genetic
ISEGEN

Runtime (in microseconds) for I/O Constraints (4,2) and NISE=4

1
10
100
1000
10000
100000
1000000
10000000
100000000
1000000000

conven00 (6)
fbital00 (20)

viterb00 (23)
autcor00 (25)

adpcm_decoder (82)

adpcm_coder (96)

fft00 (104)

Exact
Iterative
Genetic
ISEGEN

Figure 10. Comparison of Speedup and Runtime with number of AFUs = 4 and I/O constraints: (4,2)

and ����� ����) suites. In addition, we chose a cryptographic application viz. ��� . Our baseline
architecture is a simple RISC machine and we allow up to � AFUs (or ISEs) to be added.

5.1 Speedup and Runtime for Different Benchmarks

Keeping the I/O constraints fixed at ��� �	, we study the overall speedup of applications obtained
over execution on the core processor and the time taken to generate ISEs (or runtime) on Sun Ultra-5.
We compare the quality of our results with the best known algorithms for ISE generation. The optimal
algorithms for ISE generation [8] come in two flavors: Exact multiple-cut identification (or Exact in short)
and Iterative exact single-cut identification (or Iterative), both of which employ exhaustive search with
pruning. For applications having large basic blocks, we chose a genetic formulation [9] for comparing our
results.

We associate with each benchmark the maximum number of nodes in its critical basic block (shown
in parentheses) and arrange them in increasing order. It is evident from the first plot of Figure 10 that
ISEGEN matches the solution quality of Exact, Iterative and Genetic algorithms. Note that because of
effective pruning, Exact is able to handle up to �� nodes and Iterative is able to handle up to ��� nodes
in the selected benchmarks. As shown in the second plot of Figure 10, ISEGEN runs up to ��� faster
than the genetic approach with the generated ISEs having quality comparable with the optimal solution
in terms of overall speedup. We observed that some of the ISEs identified by the optimal algorithms are
independent subgraphs and therefore an ISE identification algorithm should not be restricted to identify
only connected subgraphs.

Figure 11 collectively presents a comparison with the previous genetic approach [9] for application
speedup and runtime of the algorithm obtained on four of the chosen benchmarks with varying I/O con-
straints. This set of plots shows that our ISEGEN closely matches the quality of the genetic solutions
in terms of application speedup, but generates soulutions with a much quicker response time. Unlike
[10] where substantial speedup was obtained only on cryptographic applications, we show considerable
speedup on a diverse set of applications with varying microarchitectural constraints.

Recall that the ISEGEN heuristic starts walking the solution space from regions where cluster growth
potential is higher. But, when an application has a large DFG, under tight I/O constraints, the solutions are
expected to have small clusters and therefore may not lie in regions of expected growth. To circumvent
this problem, we run ISEGEN multiple times (say,) iterations) in succession for a single cut identification
and choose the cut having the highest speedup. For ����� ���	 and ��

 with I/O constraints of (2,1),
(3,1) and (4,1), ISEGEN was run with) � �� and) � � times respectively for the first cut identification
and) was reduced on subsequent iterations. The runtime evaluation of ISEGEN (done for) iterations)

Speedup on ADPCM_CODER

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

(2,1) (3,1) (4,1) (4,2) (6,3) (8,4)

Genetic
ISEGEN

Runtime on ADPCM_CODER

0.00E+00

2.00E+06

4.00E+06

6.00E+06

8.00E+06

1.00E+07

1.20E+07

1.40E+07

1.60E+07

1.80E+07

2.00E+07

(2,1) (3,1) (4,1) (4,2) (6,3) (8,4)

m
ic
ro
se
co
nd
s

Genetic
ISEGEN

Speedup on ADPCM_DECODER

1

1.5

2

2.5

3

3.5

4

4.5

5

(2,1) (3,1) (4,1) (4,2) (6,3) (8,4)

Genetic
ISEGEN

Runtime on ADPCM_DECODER

0.00E+00

2.00E+06

4.00E+06

6.00E+06

8.00E+06

1.00E+07

1.20E+07

(2,1) (3,1) (4,1) (4,2) (6,3) (8,4)

m
ic
ro
se
co
nd
s

Genetic
ISEGEN

Speedup on autcor00

1

1.2

1.4

1.6

1.8

2

2.2

2.4

(2,1) (3,1) (4,1) (4,2) (6,3) (8,4)

Genetic
ISEGEN

Runtime on autcor00

0.00E+00

5.00E+04

1.00E+05

1.50E+05

2.00E+05

2.50E+05

3.00E+05

3.50E+05

(2,1) (3,1) (4,1) (4,2) (6,3) (8,4)

m
ic
ro
se
co
nd
s

Genetic
ISEGEN

Speedup on fft00

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

(2,1) (3,1) (4,1) (4,2) (6,3) (8,4)

Genetic
ISEGEN

Runtime on fft00

0.00E+00

2.00E+06

4.00E+06

6.00E+06

8.00E+06

1.00E+07

1.20E+07

1.40E+07

1.60E+07

1.80E+07

2.00E+07

(2,1) (3,1) (4,1) (4,2) (6,3) (8,4)

m
ic
ro
se
co
nd
s

Genetic
ISEGEN

Figure 11. Comparison of Application Speedup and Algorithm Runtime with number of AFUs = 4

against the genetic algorithm clearly shows that our ISEGEN is still much faster. Note that all the other
experiments were conducted with) � � and the evaluation of regions having a high growth potential was

Figure 12. Speedup comparison for AES.

effective in obtaining a high speedup.

5.2 Experiments with ���

��� is a cryptographic benchmark with a large DFG; its critical basic block contains ��� nodes with
a symmetric structure. Since the optimal algorithms (Exact and Iterative) could not run on such a large
application, we chose the genetic solution (that also matches the optimal solution in smaller benchmarks)
for comparing our results. Because of its non-exponential complexity, ISEGEN easily handles large DFGs.
We deliberately chose ��� to demonstrate the efficacy of our ISEGEN approach in matching expert
design quality. We increased the maximum number of AFUs from � to �, and studied the application
speedup with variations in I/O constraints as shown in Figure 12.

On average, ISEGEN obtains ��� more speedup than the genetic solution by effectively exploiting the
regularity in the data flow graph of AES. Figure 14 shows how the structure yielded multiple instances of
the same cut thereby exposing the regularity in the application. Since AES has a large number of nodes, it
is intuitive to expect an increase in speedup by increasing the allowed number of AFUs and I/O constraints.
However, it is interesting to note that contrarily to our expectation, for a smaller number of allowed AFUs
(= �), the speedup could not scale with relaxing I/O constraints (as shown in the first plot of Figure 12).
The reason is clear from the plot of Figure 14. It shows that there are �� instances of the first cut for the
I/O constraint of ��� �	 (or ��� �), while there are only � instances for the I/O constraint of ��� �	. As is
evident from Figure 12, the �� instances generated for ��� �	 cover the DFG better than the � instances
generated for ��� �	. However, with increase in the allowed number of AFUs, the speedup begins to scale

Figure 13. First cut (having 8 instances) generated for AES under I/O Constraints: (4,1). Each instance
of the cut contains 49 nodes covering about 60% of the DFG.

with relaxing I/O constraints.
Figure 13 shows that there are 8 instances of the same cut (with an I/O constraint of (4,1)) covering

400 out of the 696 nodes (i.e., about 60% of the DFG) and all the instances were found by ISEGEN in
the first cut. Therefore, our ISEGEN not only generates ISEs resulting in high speedup but also exploits
the reusability of ISEs by producing all the instances in the DFG (as also shown in Figure 14). Thus, the
solutions generated by ISEGEN are indeed close to those generated by an expert designer.

Reusability of Cuts in AES

0

2

4

6

8

10

12

14

(2,1) (3,1) (4,1) (4,2) (6,3) (8,4)
I/O Constraints

N
um

be
r o
f I
ns
ta
nc
es

CUT 1
CUT 2
CUT 3
CUT 4

Figure 14. Study of Reusability of ISEs on AES with varying number of AFUs

6 Conclusions

The hardware-software partitioning problem when applied at the instruction-level granularity consti-
tutes the problem of ISE generation. The contributions presented in this report are as follows. First, we
clearly identified the properties of ISEs that are of interest to an expert designer. Second, we adapted
a well-known Kernighan-Lin heuristic to perform ISE generation with a low computational complexity.
Finally, we show that our ISEGEN approach produces high-quality ISEs — close to those sought after
by an expert designer. Furthermore, ISEGEN runs up to ��� faster than a previous genetic approach and
generates solutions comparable with the optimal ISE generation approaches. Our future work will focus
on the deployment of ISEs in a real system and evaluating the impact of ISEs on code size and energy
reduction.

References

[1] F. Vahid and T. D. Le. Extending the Kernighan/Lin Heuristic for Hardware and Software Functional
Partitioning. In Kluwer Journal on Design Automation of Embedded Systems, 1997.

[2] C. M. Fiduccia and R. M. Mattheyses. A Linear-time Heuristic for Improving Network Partitions. In
Proc. of DAC, 1982.

[3] L. Tai, D. Knapp, R. Miller, and D. Macmillen Scheduling using Behavioral Templates. In Proc. of
DAC, 1995.

[4] T. J. Callahan, P. Chong, A. Dehon, and J. Wawrzynek. Fast Module Mapping and Placement for
Datapaths in FPGAs. In Proc. of FPGA, 1998.

[5] D. S. Rao and F. J. Kurdahi. On Clustering for Maximal Regularity Extraction. IEEE TCAD, 1993.

[6] M. Kahrs. Matching a Parts Library in a Silicon Compiler. In proc. of ICCAD, 1986.

[7] K. Kuetzer. DAGON: Technology Binding and Local Optimization by DAG Matching. In proc. of
DAC, 1987.

[8] K. Atasu, L. Pozzi and P. Ienne. Automatic Application-Specific Instruction-Set Extensions under
Microarchitectural Constraints. In Proc. of DAC, 2003.

[9] P. Biswas, V. Choudhary, K. Atasu, L. Pozzi, P. Ienne and N. Dutt. Introduction of Local Memory
Elements in Instruction Set Extensions. In Proc. of DAC, 2004.

[10] N. Clark, H. Zhong and S. Mahlke. Processor Acceleration through Automated Instruction Set
Customization. In Proc. of MICRO, 2003.

[11] P. Yu and T. Mitra. Scalable Custom Instructions Identification for Instruction-Set Extensible Pro-
cessors. In Proc. of CASES, 2004.

[12] F. Sun, S. Ravi, A. Raghunathan and N. K. Jha. Synthesis of Custom Processors based on Extensible
Platforms. In Proc. of ICCAD, 2002.

[13] M. Arnold and H. Corporaal. Designing Domain-specific Processors. In Proc. of CODES, 2001.

[14] H. Choi, J. S. Kim, C. W. Yoon, I. C. Park, S. H. Hwang and C. M. Kyung. Synthesis of Application
Specific Instructions for Embedded DSP Software. IEEE TC, 1999.

[15] J. Cong, Y. Fan, G. Han, and Z. Zhang Application-Specific Instruction Generation for Configurable
Processor Architectures. In Proc. of FPGA, 2004.

[16] C. Alippi, W. Fornaciari, L. Pozzi and M. Sami. A DAG based Design Approach for Reconfigurable
VLIW Processors. In Proc. of DATE, 1999.

[17] R. Razdan and M. D. Smith. A High-performance Microarchitecture with Hardware-programmable
Functional Units. In Proc. of MICRO, 1994.

[18] Machine SUIF. http://www.eecs.harvard.edu/hube/software/software.html.

A Proof of the Rules for updating ������� and �������

Rule 1: After toggling a node n from S to H or H to S, for a cut �, �
��
��� ��	 � ���� ��	 � ������� ��	

and �
��
��� ��	 � ���� ��	 � ������� ��	. This implies that ���� ��	 � �
����� ��	 � ��������� ��		 and

���� ��	 � �
��
��� ��	 � ��������� ��		.

Thus, toggling back the node n to restore the values of ���� and ���� necessitates negation of �������
and �������. This proves Rule 1.

Rule 2: The inputs and outputs of a node n can be shared by the inputs or outputs of only parents,
children or siblings of n and no other nodes. Therefore, Rule 2 holds true.

For the proofs of Rules 3 through 5, please refer to Figure 15. The possible relationships between
the node that is toggled i.e., n and the node m whose addendums are affected because of toggling n are
depicted in Figure 15(a-c). In order to prove Rules 3 through 5, we need to infer the effect of toggling m
before and after toggling n from S to H, on the number of input and output contributions to the ISE. Let
the input and output contributions exclusively generated owing to the relationship between m and n be
���
��	� and ���
��	� respectively. A contribution to ���������	 due to this relationship can be obtained by
subtracting the value of ���
��	� before toggling m from the value of ���
��	� after toggling m. Similarly, a
contribution to ���������	 can be evaluated from the corresponding values of ���
��	�. Let the contributions
to ���������	 and ���������	 from the other input operands and the other output operands of m be x and y
respectively. We now prove the Rules 3 through 5 by deducing the input and output contribution to the ISE
owing to the relationship between m and n and then projecting its effect on the changes in the addendums
of m with the toggling of n.

Rule 3: n has one or more children as shown in Figure 15(a).

1. m is the one and the only child of n i.e., * � � +.

(a) m is in software:
Before toggling n – Before toggling m � Both n and m in S � No contribution to
ISE � ���
��	� � � and ���
��	� � �. After toggling m � n in S but m in H �
Contribution only to the input of ISE � ���
��	� � � and ���
��	� � �. � ���������	 � #� �
and ���������	 � ".
After toggling n – Before toggling m � n in H but m in S � Contribution only to the
output of ISE � ���
��	� � � and ���
��	� � �. After toggling m � Both n and m in
H � No contribution to ISE � ���
��	� � � and ���
��	� � �. � ���������	 � # and
���������	 � " � �. Hence, ���������	 � �� and ���������	 � ��. This proves Rule
3.1.a.

(b) m is in hardware: The proof of Rule 3.1.b follows symmetrically from Rule 3.1.a.

2. n has � � children i.e., * � �� +.

(a) There are exactly two children, an S-node and an H-node: Let m refer to the S-node.
Before toggling n – Before toggling m � Both n and m in S � No contribution to ISE
� ���
��	� � � and ���
��	� � �. After toggling m � n in S but m in H � No
contribution to ISE � ���
��	� � � and ���
��	� � �. � ���������	 � # and ���������	 � ".
After toggling n – Before toggling m � n in H but m in S � Contribution only to the
output of ISE � ���
��	� � � and ���
��	� � �. After toggling m � Both n and m in
H � No contribution to ISE � ���
��	� � � and ���
��	� � �. � ���������	 � # and

���������	 � " � �. Hence, ���������	 � � and ���������	 � ��. Let m now refer to the
H-node.
Before toggling n – Before toggling m � n in S but m in H � Contribution only to the
input of ISE � ���
��	� � � and ���
��	� � �. After toggling m � Both n and m in H
� No contribution to ISE � ���
��	� � � and ���
��	� � �. � ���������	 � # � � and
���������	 � ".
After toggling n – Before toggling m � Both n and m in H � No contribution to ISE
� ���
��	� � � and ���
��	� � �. After toggling m � n in H but m in S � No
contribution to ISE � ���
��	� � � and ���
��	� � �. � ���������	 � # and ���������	 � ".
Hence, ���������	 � �� and ���������	 � �. This proves Rule 3.2.a.

(b) All children are S-nodes: Let m refer to the any of the children.
Before toggling n – Before toggling m � Both n and m in S � No contribution to
ISE � ���
��	� � � and ���
��	� � �. After toggling m � n in S but m in H �
Contribution only to the input of ISE � ���
��	� � � and ���
��	� � �. � ���������	 � #� �
and ���������	 � ".
After toggling n – Before toggling m � n in H but m in S � No contribution to ISE
� ���
��	� � � and ���
��	� � �. After toggling m � Both n and m in H � No
contribution to ISE � ���
��	� � � and ���
��	� � �. � ���������	 � # and ���������	 � ".
Hence, ���������	 � �� and ���������	 � �. This proves Rule 3.2.b.

(c) All children are H-nodes: Let m refer to the any of the children.
Before toggling n – Before toggling m � n in S but m in H � No contribution to ISE
� ���
��	� � � and ���
��	� � �. After toggling m � Both n and m in S � No
contribution to ISE � ���
��	� � � and ���
��	� � �. � ���������	 � # and ���������	 � ".
After toggling n – Before toggling m � Both n and m in H � No contribution to
ISE � ���
��	� � � and ���
��	� � �. After toggling m � n in H but m in S �
Contribution only to the output of ISE � ���
��	� � � and ���
��	� � �. � ���������	 � #
and ���������	 � " � �. Hence, ���������	 � � and ���������	 � ��. This proves Rule
3.2.c.

(d) Only one child is an S-node, other � � nodes are H-nodes: Let m refer to the S-node.
Before toggling n – Before toggling m � Both n and m in S � No contribution to ISE
� ���
��	� � � and ���
��	� � �. After toggling m � n in S but m in H � No
contribution to ISE � ���
��	� � � and ���
��	� � �. � ���������	 � # and ���������	 � ".
After toggling n – Before toggling m � n in H but m in S � Contribution only to the
output of ISE � ���
��	� � � and ���
��	� � �. After toggling m � Both n and m in
H � No contribution to ISE � ���
��	� � � and ���
��	� � �. � ���������	 � # and
���������	 � " � �. Hence, ���������	 � � and ���������	 � ��. Let m now refer to any
of the children as H-nodes.
Before toggling n – Before toggling m � n in S but m in H � No contribution to ISE
� ���
��	� � � and ���
��	� � �. After toggling m � Both n and m in S � No
contribution to ISE � ���
��	� � � and ���
��	� � �. � ���������	 � # and ���������	 � ".
After toggling n – Before toggling m � Both n and m in H � No contribution to ISE
� ���
��	� � � and ���
��	� � �. After toggling m � n in H but m in S � No
contribution to ISE � ���
��	� � � and ���
��	� � �. � ���������	 � # and ���������	 � ".
Hence, ���������	 � � and ���������	 � �. This proves Rule 3.2.d.

n
m

n

m par

S->H S->H

(a) m is a child of n (b) m is a parent of n (c) m is a sibling of n

m

S->H

n

Y’ Y’ Y’

Figure 15. Possible Relationships between nodes m and n.

(e) Only one child is an H-node, other � � nodes are S-nodes: Let m refer to the H-node.
Before toggling n – Before toggling m � n in S but m in H � Contribution only to the
input of ISE � ���
��	� � � and ���
��	� � �. After toggling m � Both n and m in S
� No contribution to ISE � ���
��	� � � and ���
��	� � �. � ���������	 � # � � and
���������	 � ".
After toggling n – Before toggling m � Both n and m in H � No contribution to ISE
� ���
��	� � � and ���
��	� � �. After toggling m � n in H but m in S � No
contribution to ISE � ���
��	� � � and ���
��	� � �. � ���������	 � # and ���������	 � ".
Hence, ���������	 � �� and ���������	 � �. Let m now refer to any of the children as
S-nodes.
Before toggling n – Before toggling m � Both n and m in S � No contribution to ISE
� ���
��	� � � and ���
��	� � �. After toggling m � n in S but m in H � No
contribution to ISE � ���
��	� � � and ���
��	� � �. � ���������	 � # and ���������	 � ".
After toggling n – Before toggling m � n in H but m in S � No contribution to ISE
� ���
��	� � � and ���
��	� � �. After toggling m � Both n and m in H � No
contribution to ISE � ���
��	� � � and ���
��	� � �. � ���������	 � # and ���������	 � ".
Hence, ���������	 � � and ���������	 � �. This proves Rule 3.2.e.

Rule 4: m is the parent of n as in Figure 15(b).

1. m is an S-node.

(a) m has no other children:
Before toggling n – Before toggling m � Both n and m in S � No contribution to
ISE � ���
��	� � � and ���
��	� � �. After toggling m � n in S but m in H �
Contribution only to the output of ISE � ���
��	� � � and ���
��	� � �. � ���������	 � #
and ���������	 � " � �.
After toggling n – Before toggling m � n in H but m in S � Contribution only to the
input of ISE � ���
��	� � � and ���
��	� � �. After toggling m � Both n and m in H
� No contribution to ISE � ���
��	� � � and ���
��	� � �. � ���������	 � # � � and
���������	 � ". Hence, ���������	 � �� and ���������	 � ��. This proves Rule 4.1.a.

(b) m has some of the other children as S-nodes:
Before toggling n – Before toggling m � Both n and m in S � No contribution to
ISE � ���
��	� � � and ���
��	� � �. After toggling m � n in S but m in H �
Contribution only to the output of ISE � ���
��	� � � and ���
��	� � �. � ���������	 � #
and ���������	 � " � �.

After toggling n – Before toggling m � n in H but m in S � Contribution only to
the input of ISE � ���
��	� � � and ���
��	� � �. After toggling m � Both n and m
in H � Contribution only to the output of ISE � ���
��	� � � and ���
��	� � �. �
���������	 � # � � and ���������	 � " � �. Hence, ���������	 � �� and ���������	 � �.
This proves Rule 4.1.b.

(c) m has all the other children as H-nodes:
Before toggling n – Before toggling m � Both n and m in S � No contribution to
ISE � ���
��	� � � and ���
��	� � �. After toggling m � n in S but m in H �
Contribution only to the output of ISE � ���
��	� � � and ���
��	� � �. � ���������	 � #
and ���������	 � " � �.
After toggling n – Before toggling m � n in H but m in S � No contribution to ISE
� ���
��	� � � and ���
��	� � �. After toggling m � Both n and m in H � No
contribution to ISE � ���
��	� � � and ���
��	� � �. � ���������	 � # and ���������	 � ".
Hence, ���������	 � � and ���������	 � ��. This proves Rule 4.1.c.

2. m is an H-node. By symmetry, Rules 4.2.a, 4.2.b and 4.2.c follow from the proofs of Rules 4.1.a,
4.1.b and 4.1.c respectively.

Rule 5: n has one or more siblings as shown in Figure 15(c).

1. The parent of n is an H-node i.e., par in H.

(a) All the siblings are H-nodes: Let m refer to any of the siblings of n.
Before toggling n – Before toggling m � n in S but m in H � No contribution to ISE
� ���
��	� � � and ���
��	� � �. After toggling m � Both n and m in S � No
contribution to ISE � ���
��	� � � and ���
��	� � �. � ���������	 � # and ���������	 � ".
After toggling n – Before toggling m � Both n and m in H � No contribution to
ISE � ���
��	� � � and ���
��	� � �. After toggling m � n in H but m in S �
Contribution only to the output of ISE � ���
��	� � � and ���
��	� � �. � ���������	 � #
and ���������	 � " � �. Hence, ���������	 � � and ���������	 � ��. This proves Rule
5.1.a.

(b) Only one sibling is in S, while the rest, if they exist, are in H: Let m refer to the sibling in S.
Before toggling n – Before toggling m � Both n and m in S � Contribution only to
the output of ISE � ���
��	� � � and ���
��	� � �. After toggling m � n in S but m
in H � Contribution only to the output of ISE � ���
��	� � � and ���
��	� � �. �
���������	 � # and ���������	 � ".
After toggling n – Before toggling m � n in H but m in S � Contribution only to the
output of ISE � ���
��	� � � and ���
��	� � �. After toggling m � Both n and m in
H � No contribution to ISE � ���
��	� � � and ���
��	� � �. � ���������	 � # and
���������	 � " � �. Hence, ���������	 � � and ���������	 � ��. This proves Rule 5.1.b.

2. The parent of n is an S-node or an external input i.e., par in S or an external input.

(a) All the siblings are S-nodes. Let m refer to any of the siblings of n.
Before toggling n – Before toggling m � Both n and m in S � No contribution to
ISE � ���
��	� � � and ���
��	� � �. After toggling m � n in S but m in H �

Contribution only to the input of ISE � ���
��	� � � and ���
��	� � �. � ���������	 � #� �
and ���������	 � ".
After toggling n – Before toggling m � n in H but m in S � Contribution only to the
input of ISE � ���
��	� � � and ���
��	� � �. After toggling m � Both n and m in H
� Contribution only to the input of ISE � ���
��	� � � and ���
��	� � �. � ���������	 � #
and ���������	 � ". Hence, ���������	 � �� and ���������	 � �. This proves Rule 5.1.c.

(b) Only one sibling is in H, while the rest, if they exist, are in S.. Let m refer to the sibling in H.
Before toggling n – Before toggling m � n in S but m in H � Contribution only to the
input of ISE � ���
��	� � � and ���
��	� � �. After toggling m � Both n and m in S
� No contribution to ISE � ���
��	� � � and ���
��	� � �. � ���������	 � # � � and
���������	 � ".
After toggling n – Before toggling m � Both n and m in H � No contribution to ISE
� ���
��	� � � and ���
��	� � �. After toggling m � n in H but m in S � No
contribution to ISE � ���
��	� � � and ���
��	� � �. � ���������	 � # and ���������	 � ".
Hence, ���������	 � �� and ���������	 � �. This proves Rule 5.1.d.

Rule 6: When a node is toggled from S to H, changes in addendums of the node itself and its neigh-
boring nodes take place based on the above rules. When the node is toggled back from H to S, the changes
must be undone to restore the state of all the nodes. Therefore, all the above rules can be applied for
toggling a node from H to S with the sign reversed for the values of ������� and �������.

B Analysis of ISEGEN Complexity

With the help of the above six rules, the addendums, ������� and ������� can be easily updated in O(p),
where p is the maximum number of neighbors that a node can have. The critical region of our ISEGEN
algorithm lies in the gain function, ������� �	 and �������������������	 that maintains the data struc-
tures affected by toggling a node. The complexity of ������� �	 is composed of the complexities of its 5
components: �� ��, �� ����", ���
 ����, ��� and ���.

Both �� ����" and ���
 ���� can be computed in constant time. In order to ensure constant time
evaluation of ���, all the nodes are annotated with � �� �� � 	� and � �� �� � ���� before ISEGEN
starts. � �� �� � 	� can be statically computed by considering external inputs and other barrier nodes
as a single node (with all edges from the individual nodes mapped to edges emanating from this node)
and calculating the minimum distances to all the other nodes from this node. Similarly, � �� �� � ����
can also be statically computed by coalescing external outputs and other barrier nodes into a single node.
Again, constant time evaluation of ��� is possible by statically precalculating the hardware latencies of
the independently connected components of a DFG. The most critical component is �� �� that involves
computing the merit function, ��	 and checking convexity violation, both of which can be done in O��	
with the help of the function, �������������������	. Together with the innermost loop, the complexity
of ������� �	 is O��
 	� 		 i.e., O�	�		. The worst-case complexity of �������������������	 is also
O�	�		 and therefore the worst-case running time of ISEGEN is O�	� 	
 	�		.

