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Abstract

Procrastination scheduling has gained importance for energy efficiency due to the rapid increase
in the leakage power consumption. Under procrastination scheduling, task executions are delayed to
extend processor shutdown intervals, thereby reducing the idle energy consumption. We propose algo-
rithms to compute the maximum procrastination intervals for tasks scheduled by either the fixed priority
or the dual priority scheduling policy. We show that dual priority scheduling always guarantees longer
shutdown intervals than fixed priority scheduling. We further combine procrastination scheduling with
dynamic voltage scaling to minimize the total static and dynamic energy consumption of the system. Our
simulation experiments show that the proposed algorithms can extend the sleep intervalstupe®
while meeting the timing requirements. The results show 0B%energy gains over dynamic voltage
scaling.
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1 Introduction

Embedded systems are pervasive in the consumer electronics, telecommunications, entertainment, in-
dustrial control and medical sectors. These systems are usually portable with limited battery life and
power management is a crucial component in the operation of these systems. A processor is central to
an embedded system and consumes a significant portion of the total energy. Total energy consumption
consists of dynamic and static parts. The dynamic power consumption is due to the circuit switching ac-
tivity, whereas static power consumption is present even when no logic operations are being performed.
There are two primary ways to reduce power consumption of the processor: prosiesstownand
processoslowdown Slowdown based on Dynamic Voltage Scaling (DVS) has been shown to signif-
icantly reduce the dynamic energy consumption at the cost of increased execution time. Note that the
longer execution time, while decreasing the dynamic power consumption, increases the static energy
consumption. The primary components of static power consumption are the standby currents including
the device leakage currents. With device scaling to sub-100 nm process technologies, leakage currents
are increasingly a dominant component of the standby power consumption [23]. This implies that a
straightforward slowdown while meeting timing requirements is no longer sufficient for reducing over-
all energy consumption. Instead, a balance between the amount of processor slowdown and processor
shutdown is needed to minimize the overall energy consumption for a given set of tasks.

Most of the earlier works on energy aware scheduling have addressed the problem of minimizing
the dynamic power consumption. Among the earliest works, &aoal. [36] presented an off-line
algorithm to schedule a given set of jobs with arrival times and deadlines. The solution is optimal,
based on the assumption of a continuous voltage range and the Earliest Deadline First (EDF) scheduling
policy. Generalization of the problem, considering discrete voltage levels and fixed priority scheduling
have been addressed in [17] [30] [37]. Low power scheduling for periodic real-time systems has also
been widely studied. The extent of slowdown that the system can sustain is computed based on known
feasibility results for periodic task-sets. Computation of slowdown factors for an independent task-
set, based on dynamic (EDF) and fixed (rate monotonic) priority scheduling, is addressed in [29, 3,
34, 8]. Earlier work, including our own, have addressed extension of slowdown algorithms to handle
task synchronization [13, 38] and aperiodic tasks through periodic servers [24]. Dynamic slowdown
techniques in [28, 3, 16] show additional savings in energy by reclaiming run-time slack arising from
variation in the task execution times. Such combined static and dynamic slowdown approaches have
shown to result in significant energy savings. The problem of maximizing the system value for a given
energy budget, as opposed to minimizing the total energy, is addressed in [33, 31, 32, 2].

Recently, leakage abatement has been an important focus of the work on power and energy minimiza-
tion. Leakage is an increasing concern with a predicted five-fold increase in the leakage power with each
technology generation [4]. Techniques such as input vector control [15] and power supply gating [26]
have been proposed to minimize leakage. The exponential dependence of sub-threshold leakage current
on the threshold voltage has led to Multi Threshold CMOS (MTCMOS) circuit techniques [5]. Scaling
the threshold voltage by controlling the body bias voltage has also been proposed to minimize leakage
[27, 23]. Scheduling techniques based on adaptive body biasing have shown to reduce the total static
and dynamic power consumption [23, 18].

While many works have addressed leakage minimization, these are based on the premise that the en-
ergy savings are proportional to the extent of slowdown. This need not be true considering the increase
in leakage current and the power consumption of other components such as memory and I/O [7]. This



motivates a combined slowdown and shutdown approach for energy minimization. Among the earliest
works, Iraniet. al.[12] consider the combined problem of DVS and shutdown to schedule a given set of
tasks with deadlines. The authors propo8ecmpetitiveoff-line algorithm based on the assumption of

a continuous voltage range and a convex power consumption functiortLake[20] addresgprocras-
tination scheduling in periodic real-time systems and have proposed Leakage Control EDF (LC-EDF)
and Leakage Control Dual Priority (LC-DP) scheduling algorithms. Procrastination by a component
refers to its choice to enter or remain in a shutdown mode even when there are pending tasks.

Integration of procrastination and dynamic voltage scheduling is a promising way to reduce overall
energy consumption. We have earlier addressed use of procrastination in EDF scheduling [14]. The
results show up to 18% energy savings. In this paper, we address scheduling in fixed and dual priority
task systems. We show that procrastination under LC-DP algorithm byet.eal. [20] can lead to
deadline misses. We present a remedy to this problem with a procrastination algorithm that guarantees
all task deadlines.

Our contributions are as follows: (1) we compute task procrastination intervals under the fixed priority
scheduling policy as well as the dual priority scheduling policy; (2) we show that the procrastination
intervals under dual priority scheduling can be greater than that of fixed priority scheduling which can
further reduce the idle energy consumption of the system; (3) based on the leakage energy characteristics
of the 7hmtechnology, we combine dynamic voltage scaling with procrastination to minimize the total
energy consumption.

The rest of the paper is organized as follows: Section 2 formulates the problem with motivating
examples. In Section 3, we present the procrastination algorithm for fixed priority and dual priority
scheduling policies. Section 4 explains the integration of procrastination and dynamic voltage scaling.
The leakage power model is discussed in Section 5 and the experimental results are given in Section 6.
Finally, Section 7 concludes the paper with future directions.

2 Preliminaries

In this section, we introduce the necessary notation and formulate the problem. An example follows
to illustrate how scheduling by LC-DP algorithm can result in tasks missing the deadline.

2.1 System Model

A task set ofn periodic real time tasks is representedlas {11,...,Tn}. A taskT; is a 3-tuple
{Ti, Di, G}, whereT; is the period of the task; is the relative deadline artg is the worst case execution
time (WCET) of the task at the maximum processor speed. The tasks are scheduled on a single processor
system based on a preemptive scheduling policy. A task set is saidféaibleif all tasks meet the
deadline. The processor utilization for the task Bet; $i! ; Ci/Ti < 1, is a necessary condition for the
feasibility of any schedule [21]. In this work, we assume task deadlines are equal to the Perod@
and tasks are scheduled by a fixed or dual priority scheduling policy [21]. All tasks are assumed to be
independent and preemptive.

A wide range of processors like the Intel XScale [11], PowerPC 405LP [9] and Transmeta Crusoe
[35] support variable voltage and frequency levels. Dynamic voltage scaling (DVS) based on slowdown
factors has shown to result in significant energy savingsslofvdown factor(n;) is defined as the
normalized operating frequency, i.e., the ratio of the current frequency to the maximum frequency of



the processor. Since processors support discrete frequency levels, the slowdown factors are discrete
points in the range [0,1]. Tasks are assigned slowdown factors based on the functional and performance
requirements of the system to minimize the total energy consumption.

Procrastination scheduling has been shown to increase the processor sleep intervals, by delaying task
executions when the processor is shutdown (sleep state). We say a pas&rastinated(or delayed)
if on task arrival, the processor is in a shutdown state and continues to remain in the shutdown state,
despite the task being ready for execution. The procrastination interval of a task is the time interval
by which a task is procrastinated. Note that the processor is shutdown, only when the processor ready
queue is empty.

2.2 Dual Priority Scheduling

We briefly describe the dual priority scheduling policy, since the task promotion times used in dual
priority scheduling are used in computing the task procrastination intervals. Dual priority scheduling
was proposed in [6] to improve the response time of aperiodic tasks while meeting the deadlines of all
periodic tasks. Dual-priority scheduling uses three distinct priority queues in decreasing order of priority
. upper, middle and lower. Each periodic task has two priorities, one when itis in the lower priority queue
and the other in the upper priority queue. The middle priority queue is used by the aperiodic tasks that
arrive in the system. Each taskon arrival is added to the lower priority queue. After a fixed time called
thepromotion timeY;, the task is promoted to its upper priority queue. Tasks can be preempted by other
higher priority tasks in the same priority queue. The promotion time of each task is computed based on
the response time analysis of fixed priority schedulingR Ifs the worst case response time of a task
andD; its deadline, then the promotion tim4, of a task satisfies the following condition:

Yi<Di—R. 1)

The detailed scheduling algorithm and the computation of the task promotion times are given in [6]. Our
algorithms use task promotion times in the computation of maximum task procrastination intervals.

2.3 Procrastination under LC-DP Scheduling

Lee et. al. have proposed the LC-DP algorithm to extend the idle intervals under fixed priority
scheduling [20]. The procrastination intervals are based on task promotion times computed under the
dual priority scheduling [6]. The scheduling rules of LC-DP as proposed bet.e#d. are as follows:

1. If the processor is busy and a new task arrives, the task is directly added to the upper priority
queue.

2. Whenever a task is promoted to the upper priority queue, all tasks in the lower priority queue are
promoted to the upper priority queue.

3. When the processor is in the sleep state, tasks are added to the lower priority queue.

4. The procrastination interval is the minimum of the promotion times of all tasks in the lower priority
queue.
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Figure 1. (a) Task set description with task arrival times, execution times and task deadlines. (b) Task schedule by the LC-DP
algorithm and tasko misses its deadlines (¢) Procrastination intervals under dual priority scheduling that results in a feasible
schedule (d) Procrastination intervals under fixed priority scheduling that results in a feasible schedule.

Note that Rules 1 and 2 are in contrast to the dual priority scheduling scheme where every task remains
in the lower priority queue until its promotion time. We show that the above rules do not guarantee all
task deadlines.
Consider a task set of two tasks with the following parameters where the tasks are executed at the
maximum speed.
11 ={2,5,5} and12 = {4,10,10}

The promotion times for the tasks as computed by the dual priority algorithi are3 andY, = 2.
We assume the processor is idle prior to time 0 and taski; andtz arrive at timea; = 0 anday = 1
respectively, as shown in Figure 1(a).

The task schedule according to the LC-DP algorithm is shown in Figure 1(b). Based on the task arrival
times, the promotion time of both taskstis- 3. The LC-DP algorithm delays the task executions up to
timet = 3. Att = 3, both tasks are promoted to the upper priority queue andiaskecutes up to time
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t = 5, when the next instance arrives. Since tasks are immediately added to the upper priority queue
when the processor is busy, the next instancg bfas the highest priority and executes up to time?.

TaskTt, begins execution at time= 7 and at time = 10 the third instance af; arrives and preempts
taskt,. Taskt, executes up to time= 12 and task, which is not yet complete misses its deadline of

t = 11. Thus we see that the LC-DP algorithm can result in an infeasible schedule.

Adding newly arrived tasks to the upper priority queue when the processor is busy, as opposed to
adding the tasks to the lower priority queue, can increase the processor demand during an interval result-
ing in a deadline miss. We show later in this paper, that the task executions can be delayed by the task
promotion times only under the dual-priority scheduling policy. The dual priority schedule of the task
set is seen in Figure 1(c). At tinmie= 3, both tasks are promoted to the upper priority queue. Though
instances of task; arrive at timet = 5 andt = 10, they arrive in the lower priority queue and are pro-
moted to the upper priority queue only after residing in the lower priority queue up to their promotion
time interval of 3 time units. Thus task can execute for 4 time units befdre- 11 to meet the deadline.

The schedule is shown in Figure 1(c).

We also consider task procrastination under the fixed priority scheduling policy. In Section 3, we
prove that delaying a task execution by the minimum promotion ti¥jeofer all lower and equal
priority tasks ensures all deadlines. Thus the execution ofttaskn be delayed by only 2 time units
and the maximum procrastination intervals for the taskZare 2 andZ, = 2. A feasible schedule with
task executions delayed up to time 2 is shown in Figure 1(d).

3 Procrastination Scheduling

In this section, we propose algorithms to compute maximum task procrastination intervals that guar-
antee feasibility of the task-set. The basis of the algorithm are the two main results presented next.

3.1 Dual Priority Scheduling

Dual priority scheduling was proposed to improve the response time of aperiodic tasks. As discussed
in Section 2.2, a promotion timé is associated with each taskwhen it is promoted from the lower to
upper priority queue. Delaying task executions by their promotion time ensures all task deadlines under
the dual priority scheduling policy.

Theorem 1 Given tasks are scheduled by the dual-priority scheduling policy, all task deadlines are
guaranteed if the maximum procrastination interval,a each task; satisfies:

Z <Y (2)
where Yrepresents the promotion time of task

Proof: Note that, task procrastination is analogous to executing aperiodic tasks in the system.
Periodic tasks are delayed in both cases by either explicit procrastination or by servicing aperiodic tasks.
A processor shutdown under procrastination scheduling can be considered as generating an aperiodic
task with large execution time. Since the processor is shutdown when idle and task promotion times are
used for procrastination, the duration of the sleep interval under procrastination scheduling is equal to
the duration for which the aperiodic task would be serviced. If the aperiodic task is considered as deleted
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when the processor wakes up under procrastination scheduling, then the schedule of the periodic tasks
is identical under both procrastination scheduling and scheduling with aperiodic tasks. Thus the validity
of the procrastination scheduling follows directly from the correctness of the dual-priority scheduling
algorithm. |

3.2 Fixed Priority Scheduling

We have shown that the task promotion times cannot be used as the maximum procrastination inter-
val under fixed priority scheduling. On the other hand, task feasibility is guaranteed if the maximum
procrastination interval of each task is bounded by the promotion times of all equal and lower priority
tasks.

Theorem 2 Let tasks be ordered in non-increasing order of their priority. Given tasks are scheduled
under the fixed priority scheduling policy, all task deadlines are guaranteed if the maximum procrasti-
nation interval, Z, of each task; satisfies:

Vizi Zi<Y] 3
where Yrepresents the promotion time of taskased on dual priority scheduling.

Proof: We prove the claim by contradiction. Suppose the claim is false aridoketthe earliest
time when a task, say, misses its deadline. L¢tbe the the latest time befotesuch that there are
no pending jobs with arrival times befoteand a priority greater than or equal to task Since no
requests can arrive before system start titimae = 0), t’ is well defined. The only jobs that execute
in the intervallt’,t] are the jobs released in that interval with a priority greater than or equal to that of
taskti. LetA C {11,...T;} be the set of jobs that execute[tht], then the workload of the jobs i is
bounded by the response tink®, of taskt;. However, the processor demand in an interval can increase
due to procrastination scheduling. Tasks can be procrastinated if the processor is in a shutdown state at
time instancd’. We show that the total procrastination interval is bounded;byBy Theorem 2, the
maximum procrastination interval of each taskAinis bounded by;. Since a task i\ arrives at time
t’, it is true that tasks are not procrastinated beyndy;. Once the processor resumes execution, there
is no further procrastination up to tinteas there are pending tasks at all time within the inteftVa].
Since a task misses its deadline, it must be true®hatY; > X, whereX =t —t’ is the length of the
interval[t’. t]. The release time and deadline of taskes in the intervalt’,t] and it is true thaX > D;.
Thus it follows that

R +Yi > Dj
which contradicts the definition of task promotion interval, given by Equation 1. Hence all tasks meet
the deadline under procrastination scheduling. |

3.3 Procrastination Algorithm

The procrastination algorithm is designed to ensure that notfasldelayed by more than its maxi-
mum procrastination interval. Note that the procrastination algorithm is independent of the scheduling
policy, however the computation of the maximum procrastination intervals is governed by the schedul-
ing policy implemented in the system. The algorithm, describing how procrastination is handled in the
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system, has been proposed in our earlier work [14]. Our earlier work has addressed procrastination in
dynamic priority systems [14] and we consider fixed and dual priority scheduling in this work.

Task executions are procrastinated when the processor is in the sleep state and it is necessary that
the power managehandling task procrastination be implemented as a separate controller. When the
processor enters sleep state, it hands over the control to the power manager (controller), which handles
all the interrupts and task arrivals while the processor is in sleep state. The controller has a timer to
keep track of time and it wakes up the processor after a specified time period. When the processor is in
sleep state and the first taskarrives, the timer is set t. The timer counts down every clock cycle.

If another taskrj arrives before the counter expires, the timer is updated to the minimum of the current
timer value and;. This ensures that no task in the system is procrastinated by more than its maximum
procrastination interval. When the counter counts down to zero (expires), the processor is woken up and
the scheduler dispatches the highest priority task in the system for execution. All tasks are scheduled at
their assigned priority levels.

When no pending tasks are present in the processor ready queue, the processor can be shutdown. Note
that a shutdown has its associated overhead and shutdown decisions need to be made wisely to result in
energy savings. In making shutdown decisions with procrastination scheduling, it is important to know
the minimum idle period guaranteed by the procrastination algorithm. The following results give the
length of guaranteed idle period.

Corollary 1 Given tasks are scheduled by the dual-priority scheduling policy, the minimum idle period,
Zmin, guaranteed by the procrastination algorithm is given by

Zmin= MiMm<i<n Y (4)
where Yrepresents the promotion time of task

Corollary 2 Given tasks are scheduled by the fixed priority scheduling policy, the minimum idle period,
Zmin, guaranteed by the procrastination algorithm is given by

Zmin= MiMm<i<n Y (5)
where Yrepresents the promotion time of taskased on dual priority scheduling.

The claim follows immediately from the procrastination algorithm and the results given by Theorem
1 and Theorem 2. Though the minimum idle period under both scheduling policies is the same, the task
procrastination intervals under dual priority scheduling are always greater than or equal to that by fixed
priority scheduling. The following result proves the same.

Theorem 3 Let Z'P and Z°P represent the maximum procrastination interval of taskinder fixed
priority scheduling and dual priority scheduling respectively, then

ZPP > ZFP (6)

Proof: Our computation of task procrastination interval is based on the task promotionvtime,
under dual-priority scheduling. The procrastination interval of a tasikder dual priority scheduling,
ZPP is bounded byY; (Theorem 1). The task procrastination interval under fixed priority scheduling,
ZFP, is also bounded by,. In addition,Z"P is also constraint to be no greater than the promotion times
of all lower priority tasks (Theorem 2). These additional constraints can result in low&rfhgnore
thanY; and hence it is true tha@’" is greater than or equal & " |
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4 Integrating Procrastination and Slowdown

As mentioned earlier, slowdown caused by DVS can increase the component of energy consumption
due to static power. For a given technology choice, indeed, there is an optimum speed at which the
processor should be clocked to reduce the overall energy consumption. This is indicatedriictie
speedodf the processor and is denotedmpyit .

4.1 Critical Speed

Taking into account the leakage power and the power consumption of components such as memory
and 1/O that are not subject to DVS, the minimum voltage level at which the processor can run to meet
the timing constraints need not correspond to a lower energy pointet-aad. [7] consider memory
power consumption to show that slowdown beyond a point does not result in lowering the total energy.
Miyoshi et. al. [25] show that the slowdown decision can differ with different processor families in
minimizing the total energy. With the increasing leakage contribution in present and future CMOS
technologies, it is important to compute the optimal point beyond which slowdown does not reduce the
energy consumption. This optimal operating point at which the energy consumption is minimized is
referred to as theritical speed

4.2 Slowdown Factor Computation

Note that the task slowdown can be computed with any known dynamic voltage scaling algorithm.
Since executing below the critical speed consumes more time and energy, the minimum value for the
slowdown factor is set to the critical spe@tkit). We update a task slowdown factor to the critical speed
if it is smaller tham¢it. The computed slowdown factors are updated by the following procedure:

i=1...n if(Ni <nNerit) Ni < Nerit (7)

Since we only increase slowdown factors of a feasible task set, the feasibility of the task set is maintained.

4.3 Combining Slowdown and Procrastination

Since we update the task slowdown factors based on the critical speed, the system can have inherent
idle time while operating at the energy optimal point. If the computed slowdown factors do not utilize
100% of the processor, we can compute procrastination intervals which will further reduce the idle
energy consumption. We use the results in Section 3 to compute maximum task procrastination intervals.
Even though the results in Section 3 do not consider task slowdown, we can transform the task set to
incorporated slowdown factors. Given a tasklset {1y, ..., T} with a slowdown factorg; for taskt; =
{Ti,D;i,Ci}, we transform the task set 6 = {1, ..., T} where each transformed taskjs= {T;, D;, %}

The task promotion times and the procrastination intervals are computed based on this transformed task
set. Since the executing time of each task under slowdown is bound€d'fpy the procrastination
intervals for the transformed task set ensures meeting all task deadlines under slowdown.



Table 1.70nmtechnology constants [23]

const value | const value | const value
K1 0.063 Ke 52610 Vim 0.244
Ko 0.153 Kz -0144 | 1} 4810710
K3 5.3810°7 | V4do 1 Ceff 0.43107°
Ka 1.83 Vb 0 Lg 37
Ks 4.19 a 1.5 Lg 410

5 Power Model

In this section, we describe the power model used to compute the static and dynamic components of
power consumption of CMOS circuits. The dynamic power consumgag) of CMOS circuits is
given by,
Pac = Cet Vgqf (8)

whereVyq is the supply voltagef, is the operating frequency a@d+ ¢ is the effective switching capaci-

tance. Among the different leakage sources [1], the major contributors of leakage are the sub-threshold
leakage and the reverse bias junction current. We use the power model and the technology parameters
described by Martiret. al.[23]. The sub-threshold currehf,pn, as a function of the supply voltadq

and the body bias voltagéys is given below :

lsubn= K3(5‘K4VddeKSVIDs 9)

whereKs, K4 andKs are constant fitting parameters. The leakage power dissipation per device due to
sub-threshold leakagdés,n,y and reverse bias junction currdif) is given by,

Poc = Vudlsubnt [Vosllj (10)

and the total leakage power consumptioihds Poc, wherelq is the number of devices in the circuit.
The relation of threshold voltagé,, and Vs is represented bywin = Vih1 — K1 - Vgg — K2 - Vps Where
K1, Ko andV;; are technology constants. The cycle titpgas a function of th&/yq and the threshold
voltageVin, is given by,

LgK
tinV:( d™6 (11)

Vad — Ven)®

The technology constants for therditechnology are presented in Table 1 as given in [23]. The value
for Ce based on the Transmeta Crusoe processor, scaleahintédhnology based on the technology
scaling trends [4], is also given in the table. To reduce the leakage substantially, Wg &se 0.7V.

The static and dynamic power consumption as the supply voltage is varied in the rarfgé ah@ 10V
is shown in Figure 2.

In addition to the gate level leakage, there is an inherent cost in keeping the processor on which must
be taken into account in computing the optimal operating speed. Certain processor components consume
power even when the processor is idle. Some of the major contributors are (1) the PLL circuitry, which
drives up to 20MmAcurrent [10, 35] and (2) the I/O subsystem which is supplied a higher voltage (2.5V
to 3.3V) that the processor core. This intrinsic cost (power) of keeping the system on is referrBghto as
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The power consumption of these components will scale with technology and architectural improvement
and we assume a conservative valu€gpf= 0.1W. The total power consumptioR, of the processor is

P = Pac + Poc + Pon (12)

wherePac andPpc denote the dynamic and static power consumption respectively. The variation of the
power consumption with supply voltage is shown in Figure 2.

5.1 Critical Speed

To evaluate the effectiveness of dynamic voltage scaling, we compute the energy consumption per
cycle for different supply voltage values. Due to the decrease in the operating frequency with voltage,
the leakage can adversely effect the total energy consumption with voltage scaling. We compute the
energy per cycle to decide the aggressiveness of voltage scaling. The contribution of the dynamic energy
Eac and the leakage ener@inc per cycle is given by,

Eac = CetViy (13)

Epc = f=1. Lg- (IsubVad + [Vbglj) (14)

wheref~1is the delay per cycle. The energy to keep the system on increases with lower frequencies and
is given by,Eon = f~1Pyn. The total energy consumption per cyd®ycle With varying supply voltage
levels is given below and shown in Figure 3.

Ecycle= Eac+ Epc + Eon (15)

We define thecritical speedas the operating point that minimizes the energy consumption per cycle.
Figure 3 shows the energy characteristics for then7@chnology. From the figure, it is seen that the
critical pointis atvgq = 0.7V. From the voltage frequency relation described in EquatioVddl+= 0.7V
corresponds to a frequency a6 GHz. The maximum frequency¥iq = 1.0V is 3.1 GHz, resulting
in a critical slowdown ofj¢rit = 1.26/3.1 = 0.41.

5.2 Shutdown Overhead

In previous works, the overhead of processor shutdown/wakeup has been neglected or considered
only as the actual time and energy consumption incurred within the processor. However, a processor
shutdown and wakeup has a higher overhead than the energy required to turn on the processor. For ex-
ample, processors lose all register and cache contents when switched to the deepest sleep mode, leading
to additional overhead. The various overheads associated with a processor shutdown and wakeup are
enumerated below:

1. Prior to a shutdown, all registers must to be saved in main memory.
2. The dirty data cache lines need to be flushed to main memory before a shutdown.

3. The inherent energy and delay cost of processor wakeup, as specified in datasheets.
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Power

Figure 2. Power consumption @fOnmtechnology for Crusoe processdPpc is the leakage poweFac is the dynamic
power andPgp, is the intrinsic power consumption in on state.

4. On wakeup, components such as data and instruction caches, data and instruction translation look
aside buffers (TLBs) and branch target buffers (BTBs) are empty and result in extra misses on a
cold start (empty structures).

This results in extra memory accesses and hence energy overhead. This cost will vary, depending on the
nature of the application and the processor architecture.

We perform an energy overhead estimation, similar to our earlier work [14], which is used in our
simulations. With typical embedded processors having cache sizes between 32KB and 128KB, we
conservatively assume a 32KB instruction and data cache. Assuming 20% lines of the data cache to be
dirty before shutdown results in 6554 memory writes. With an energy cost of 13nJ [19] per memory
write, the cost of flushing the data cache is computed @as.86n wakeup, there is an additional cost
due to cache miss. Note that a context switch occurs when a task resumes execution and has its own
cache miss penalty. However, shutdown has its own additional cost than a regular context switch due to
the fact that these structures are empty. We assume 10% additional misses rate in both the instruction
and data cache. Therefore, the total overhead of bringing the processor to active mode is 6554 cache
misses. A cost of 15nJ [19] per memory access, results jid 88erhead. Adding the cache energy
overhead to the energy of charging the circuit logic (I)0the total cost is 85 98+ 300= 483uJ.

Due to the cost of shutdown, the shutdown decision needs to be made wisely. An unforeseen shut-
down can result in extra energy and/or missing task deadlines. Based on the idle power consumption,
we can compute the minimum idle period, referred to asidieethresholdintervaltinresholg t0 break
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Figure 3. Energy per Cycle fafOnmtechnology for the Crusoe processbtac is the switching energ¥-pc is the leakage
energy andEgn is the intrinsic energy to keep the processor on.

even with the wakeup energy overhead. Since the idle power consumption at the lowest operating volt-
age/frequency is 240W, and the shutdown energy overhead iS#8&hresholgis 201ms We assume a

sleep state power of pBV, which can account for the power consumption in the sleep state and that of
the controller.

6 Experimental Setup

We implemented the proposed scheduling techniques in a discrete event simulator. To evaluate the
effectiveness of our scheduling techniques, we consider several task sets, each containing up to 20 ran-
domly generated tasks. We note that such randomly generated tasks is a common validation methodology
in previous works [3, 20, 34]. Based on real life task sets [22], tasks were assigned a random period and
WCET in the range [10 ms,125 ms] and [0.5 ms, 10 ms] respectively. All tasks are assumed to execute
up to their WCET. We use the processor power model described in Section 5 to compare the energy
consumption of the following techniques :

¢ No DVS (no-DVS): where all tasks are executed at maximum processor speed.

¢ Traditional Dynamic Voltage Scaling (DVS) : where tasks are assigned the minimum possible
slowdown factor.

12
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Figure 4. Energy consumption normalized to no-DVS, based on fixed and dual priority scheduling policies.

e Critical Speed DVS (CS-DVS): where all tasks are assigned a slowdown greater than or equal to
the critical speedncrit ).

e Procrastination with fixed priority scheduling (CS-DVS-P1): This is the Critical Speed DVS (CS-
DVS) slowdown with the procrastination technique under fixed priority scheduling.

¢ Procrastination with dual priority scheduling (CS-DVS-P2): This is the Critical Speed DVS (CS-
DVS) slowdown with the procrastination technique under dual-priority scheduling.

We assume that the tasks have a rate monotonic priority ordering and the task slowdown factors are
computed by the algorithm given in [34]. We assume that the processor supports discrete voltage levels
in steps of 5V inthe range BV to 1.0V. These voltage levels correspond to discrete slowdown factors
and each computed slowdown factor is mapped to the smallest discrete level greater than or equal to it.
When procrastination is not implemented, the processor wakes up on the arrival of a task in the system
and the idle interval is the time period before the next task arrival. The procrastination schemes add the
minimum guaranteed procrastination interval to the next task arrival time to compute the minimum idle
interval. The processor is shutdown if the upcoming idle period is greatetthanoid the minimum
idle period to result in energy gains. Note that the same shutdown policy is implemented under all
scheduling algorithms discussed in the paper.
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Figure 5. Comparison of # wakeups and idle energy of CS-DVS-P1 and CS-DVS-P2 normalized to CS-DVS.

Experimental Results

The energy consumption of all the techniques are shown in Figure 4 as a function of the processor
utilization at maximum speed. When the processor is maximally stressed for computation, there are
no opportunities for energy reduction. As the processor utilization decreases, slowdown results in en-
ergy reduction. The no-DVS scheme consumes the maximum energy and the energy consumption of
the techniques is normalized to no-DVS. It is seen from the figure that all techniques perform almost
identical up to the critical speed which maps to 40% utilization. When the task slowdown factors fall
below the critical speed, DVS technique starts consuming more energy due to the dominance of leakage.
The CS-DVS technique executes at the critical speed and shuts down the system to minimize energy.
However, if the idle intervals are not sufficient to shutdown, CS-DVS can consume more energy than the
DVS technique as seen at utilization of 20% and 30%. CS-DVS leads to as much as 22% energy gains
over no-DVS and %% gains over DVS. Procrastination schemes further minimize the idle energy by
stretching idle intervals and increasing the opportunity of shutdown. Comparing the total energy con-
sumption, the energy consumption of CS-DVS-P1 and CS-DVS-P2 are close and both schemes results
up to an additional 18% gains over CS-DVS. The comparison of the relative gains of CS-DVS-P1 and
CS-DVS-P2 over CS-DVS is presented next.

Figure 5 compares the number of wakeups (shutdowns) and the idle energy consumption of the pro-
crastination schemes normalized to CS-DVS. Note that, since the slowdown factors are mapped to dis-
crete voltage/frequency levels, there are idle intervals at higher utilization as well. These idle period
can be used in dynamic reclamation [3] for more energy savings. However, we use these idle inter-
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vals to shutdown the processor to compare the benefits of the procrastination schemes. Procrastination
clusters the task executions and enables having longer and fewer sleep time intervals thereby decreas-
ing the idle energy consumption. Compared to CS-DVS, procrastination always lowers the idle energy
consumption with the idle energy consumption decreasing with a decrease in the processor utilization
(at maximum speed). Procrastination under dual priority scheduling (CS-DVS-P2) performs better than
procrastination under fixed priority scheduling (CS-DVS-P1). Since the task procrastination intervals
under CS-DVS-P2 are always greater than or equal to that under CS-DVS-P1, the number of shutdowns
and the idle energy consumption of CS-DVS-P2 are smaller than that under the CS-DVS-P1 scheme.
The task procrastination intervals under CS-DVS-P1 and CS-DVS-P2 are identical at lower utilization
(20% and 10%) which results in a similar idle energy consumption and number of shutdowns for both
procrastination schemes. The idle energy consumption is reduced to as much as 25% percent by pro-
crastination. It is seen from the figure that the idle energy consumption and the number of shutdowns
follow the same trend.

Figure 6 compares the relative sleep time intervals of both procrastination schemes normalized to CS-
DVS. The average sleep interval is seen to increase with a decrease in processor utilization. Itis seen that
CS-DVS-P1 increases the average sleep interval by 2 to 5 times. Since tasks have larger procrastination
intervals under CS-DVS-P2, it further extends the sleep intervals with the average sleep intervals being
4 to 5 time that of CS-DVS. This extended and fewer sleep intervals are beneficial in minimizing the
total system energy as it can allow a further shutdown of components such as memory banks and other
I/O devices, which have larger shutdown overheads. The figure also compares the average idle interval
(time intervals when no task is executing i.e. an active idle or sleep state). It is seen that the average idle
interval increases by up to 3 to 7 times under CS-DVS-P1 and up to 5 to 7 times under CS-DVS-P2. This
suggests that CS-DVS has many smaller idle intervals which result either in more shutdown overhead or
additional leakage energy consumption if not shutdown. With procrastination, the power manager also
has fewer shutdown decisions to make.

7 Conclusions and Future Work

In this paper, we see that scheduling policies that combine task slowdown with procrastination are
important for energy efficiency. As leakage is significantly contributing to the total power consumption,
it is important to compute the optimal operating speed and maximize the sleep intervals. Procrastination
significantly reduces the number of wakeups while stretching the sleep intervals. The extended sleep
periods result in an energy efficient operation of the system while meeting all timing requirements. We
have proposed algorithms to computed maximum task procrastination intervals under both fixed priority
and dual priority scheduling policies. The dual priority scheduling guarantees more energy savings
than fixed priority scheduling through extended procrastination. We plan to extend these techniques to
schedule the system wide resources for minimizing the total energy consumption.
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