
Network Topology Exploration of Mesh-Based

Coarse-Grain Reconfigurable Architectures

Nikhil Bansal† Sumit Gupta† Nikil Dutt† Alex Nicolau† Rajesh Gupta§

CECS
Technical Report # 03-27

August 2003

Center for Embedded Computer Systems
‡ Dept. of Information and Computer Science § Dept. of Computer Science and Engineering

University of California at Irvine University of California at San Diego

nbansal, sumitg, dutt, nicolau @cecs.uci.edu gupta@cs.ucsd.edu

Abstract

Several coarse-grain reconfigurable architectures proposed recently consist of a large number of processing

elements (PEs) connected in a mesh-like network topology. We study the effects of three aspects of network

topology exploration on the performance of applications on these architectures: (a) changing the interconnection

between PEs, (b) changing the way the network topology is traversed while mapping operations to the PEs, and

(c) changing the communication delays on the interconnects between PEs. We propose network topology traversal

strategies that first schedule PEs that are spatially close and that have more interconnections among them. We

use an interconnect aware list scheduling heuristic as a vehicle to perform the network topology exploration

experiments on a set of designs derived from DSP applications. Our experimental results show that a spiral

traversal strategy, coupled with a two neighbor interconnect topology leads to good performance for the DSP

benchmarks considered. Our prototype framework thus provides an exploration environment for system architects

to explore and tune coarse-grain reconfigurable architectures for particular application domains.

Contents

1 Introduction 4

2 Related Work 4

3 Network Topology Exploration 5

3.1 Different Network Topologies . 6

3.2 Different Topology Traversal Strategies . 6

3.3 Different Communication Delays . 7

4 Mapping Applications on to Coarse-Grain Reconfigurable Architectures 7

4.1 Interconnect aware Op to PE mapping . 7

4.2 Implementation in a List Scheduling Heuristic . 8

5 Experimental Setup and Results 10

5.1 Characteristics of Benchmarks . 11

5.2 Effect of Unrolling Factor . 12

5.3 Effect of Varying Configurations . 12

5.4 Effect of Topology Traversal Strategy . 13

5.5 Effect of Delay Model . 14

6 Conclusion and Future Work 14

2

List of Figures

1 Different Connection Topologies . 5

2 (a) Sample DFG (b) Zig-zag topology traversal (c) Op3 suffers a communication delay in this mapping . 6

3 Different network traversal strategies: (a) Zig-zag, (b) Reverse-S, (c) Spiral. 7

4 (a) Sample Data Flow Graph (b) Mapping with penalty of 2 cycles (c) Mapping with no penalty 8

5 (a) Algorithm to schedule a basic block (b) Algorithm for validating the interconnect delays. 9

6 (a) Example of a small DFG. (b) Validating the ability to route data. (c) Showing Paths between PEs . . 10

7 Effect of unrolling factor on performance results for configuration 4414 using zig-zag traversal 12

8 Delay model DM0: Effect of Network Traversal Strategy on performance for configuration 4414 13

9 Delay model DM1: Effect of Network Traversal Strategy on performance for configuration 4414 14

List of Tables

1 Characteristics of Different Architectures . 11

2 Scheduling results for the eight designs on 4414 configuration with zig-zag traversal 11

3 Delay model DM0: Performance comparison for different configurations with zig-zag traversal. 13

4 Delay model DM1: Performance comparison for different configurations with zig-zag traversal. 14

3

1 Introduction

Reconfigurable fabrics have emerged as an important bridge in the gap between ASICs and microprocessors.

They merge the performance of ASICs with the flexibility of microprocessors. Coarse-grain reconfigurable archi-

tectures trade-off some of the configuration flexibility of fine-grain FPGAs in return for smaller delay, area and

configuration time. They provide massive parallelism, high computational capability and their behavior can be

configured dynamically, thus making them a better alternative to ASICs and fine-grain FPGAs in many aspects.

As a result, we have seen the emergence of a wide range of coarse-grain reconfigurable architectures over recent

years [1, 2, 3, 4, 5, 6, 7, 8, 9].

We focus on a set of these architectures that consist of processing elements (PEs) or arithmetic logic units

(ALUs) connected together by a mesh-like network [5, 7, 8]. This is a popular architecture model which is simple

in construction and scalable due to the ability to add more PEs to the mesh (or more grids of PEs connected by

buses). We focus on mapping the time consuming and data-intensive loops of a class of DSP applications to these

coarse-grain architectures. The ample resources available in coarse-grain architectures can be used to exploit the

parallelism in, and thus accelerate, the loops in these applications.

Mapping applications to such architectures is a complex task that is a combination of the traditional operation

scheduling, operation to PE binding (or mapping), and routing problems. Indeed, we believe that the network

topology (interconnections among PEs) and communication delays on these interconnects are critical concerns for

good mapping of applications on these architectures. Also, different network and interconnect topologies offer a

wide design space and it is not clear which topologies perform best for a given class of applications.

In this paper, we explore the effects of varying the network topologies, the topology traversal strategies, and the

delay models for the interconnects on the quality of performance results for applications mapped to these mesh-

based coarse-grain reconfigurable architectures. We employ an operation to PE mapping technique that exploits

temporal locality between operations by mapping operations with data dependencies on spatially close PEs in order

to minimize the data transfer delays. We present a list scheduling heuristic that simultaneously considers routing

of data between operations and present scheduling results for a set of designs derived from DSP applications.

The rest of the paper is organized as follows. Section 2 outlines related work. Next, we describe three important

aspects of network topologies. We present our list scheduling heuristic in Section 4 and in Section 5, we present

our experimental setup and results. Section 6 concludes the paper.

2 Related Work

Recently, several coarse-grain reconfigurable architectures have been proposed (e.g., [1, 2, 3, 4, 5]) and some

have addressed analysis and exploration for their architectures. Mortiz et al. [10] presented a framework that

produces an optimal RAW microprocessor structure [3] under cost and area balance constraints for a given ap-

plication. Nageldinger [11] proposed the KressArray Xplorer for KressArray architectures [1] to find the best

4

(a) (b) (c)

Figure 1. Different Connection Topologies

trade-off between the complexity of the hardware and an optimization objective such as performance. Bossuet

et al. [12] proposed a framework that performs application profiling and performance estimation on a range of

coarse-grain architectures.

In the context of application mapping, Venkataramani et al. [13] presented a compiler framework for mapping

loops written in SA-C language to the MorphoSys architecture [5]. Mei et al. [14] proposed a modulo loop

scheduling approach to map loops on a generic reconfigurable architecture. Lee et al. [15] addressed memory

bandwidth and interconnection issues while mapping algorithms to a generic reconfigurable architecture called

the Dynamically reconfigurable ALU array (DRAA). Note that, there is also a body of prior work on mapping

applications to systolic arrays [16].

Our work differs from, and complements previous efforts by examining the effects of different network inter-

connection topologies, different topology traversal strategies, and different communication delays (again related

to network topology) on system performance.

3 Network Topology Exploration

As stated earlier, we target coarse-grain reconfigurable architectures that consist of a large number of processing

elements (PEs) connected together in a 2-D array or mesh. PEs can only be connected to PEs in the same row or

column. An example of such an architecture is shown in Figure 1(a). In this figure, each square box represents a

processing element (or ALU) and the double headed arrows denote data communication links between PEs. We

call these links between PEs as direct interconnects and we denote such a tightly connected network of PEs as a

grid. Multiple such grids of PEs may be connected together using system buses in a matrix of grids. This is similar

to several coarse-grain architectures that have been proposed recently [5, 7, 8].

In our application mapping framework, we support a family of such coarse-grain architectures by allowing the

designer to vary: (a) the number of PEs in each grid, (b) the number of grids in a matrix, (c) the network topology

or interconnections between the PEs within a grid, (d) the communication penalties on the various interconnects.

All the PEs in the architecture template are considered to be identical and comprise of exactly same functional

units. However, we allow the designer to specify the configuration of a PE, in terms of the type and number of

5

Op1

Op3

Op2

(a) (c)(b)

Op1

Op2

0 1

12

8

4

3

15

2

Figure 2. (a) Sample DFG (b) Zig-zag topology traversal (c) Op3 suffers a communication delay in this map-

ping

functional units existing in a PE, the operations that can be executed on the units, and the execution delay of each

unit.

3.1 Different Network Topologies

The architectures shown in Figure 1 illustrate the range of different network topologies we support within a

grid. Figure 1(a) shows a grid in which PEs are connected to their immediate neighbors in the same row and same

column. In the grid of Figure 1(b), all the PEs are connected to their immediate and 1-hop neighbors, i.e., the

neighbors that can be reached by traversing through one other PE. Similarly, in Figure 1(c), PEs are connected to

all other PEs in the same row and same column.

Grids can in turn be connected to each other by system buses to form a matrix. For example, in the MorphoSys

architecture [5], there are four grids each of size 4x4 (i.e. each grid has 16 PEs) forming a 2x2 matrix. System

row buses connect PEs in the same row of different grids and likewise for shared column buses.

3.2 Different Topology Traversal Strategies

Topology traversal, the order in which PEs are traversed, is another important issue affecting the quality of

mapping results. Consider that we want to map the sample DFG shown in Figure 2(a) to the architecture shown

earlier in Figure 1(a). One traversal order of PEs is shown in Figure 2(b), wherein PEs are traversed in a zig-zag

manner starting from the PE in the top left corner of the grid. Consider now that Figure 2(c) represents the current

state of our mapping. Shaded boxes (processing elements PE0 to PE2) indicate that the PE already has an operation

mapped on it in the current cycle. Note that, we number the PEs from PE0 to PE15 from the top left corner down

to the bottom right corner (corresponding to the zig-zag).

If we map Op1 to PE3 and Op2 to PE4 as shown in Figure 2(c), then we cannot schedule Op3 to execute in the

next cycle. This is because the results from operations Op1 and Op2 cannot reach any PE in the next cycle. Hence,

Op3 will suffer a communication delay of one cycle. However, if we map Op2 to PE7, then we can map Op3 to

either PE3 or PE7.

6

(a) (b) (c)

Figure 3. Different network traversal strategies: (a) Zig-zag, (b) Reverse-S, (c) Spiral.

One drawback of zig-zag traversal is that after completing the mapping of a row, the next PE traversed is not

adjacent to the previous PE. To overcome this limitation, we propose two other topology traversal strategies:

Reverse-S traversal: As shown in Figure 3(b), this strategy traverses the network in a reverse-S manner.

This strategy always traverses spatially adjacent PEs.

Spiral traversal: An improvement over the reverse-S strategy is to traverse the grid in a spiral manner

starting with the PE(s) at the center of the grid, as shown in Figure 3(c). Thus, this strategy first maps

operations to the central PEs that have more adjacent neighbors than the PEs at the edges.

We study the effect of these topology traversal strategies on system/application performance in Section 5.4.

3.3 Different Communication Delays

We enable the designer to specify (a) the communication delay on direct connections between PEs, (b) delay for

1-hop communication (i.e., communication through another PE), and (c) delays on shared system buses connecting

PEs across grids. This models a range of coarse-grain architectures. For example, MorphoSys [5] and MATRIX

[17] have zero communication delay between PEs and one cycle for shared bus communication. We believe that

interconnect speeds will begin to trail computation delays as technology improves and thus, we experiment with

different communication models in Section 5.5.

4 Mapping Applications on to Coarse-Grain Reconfigurable Architectures

Operation to PE mapping in coarse-grain architectures is a combination of traditional operation scheduling,

resource binding, and data routing problems [18] as discussed next.

4.1 Interconnect aware Op to PE mapping

Consider the example DFG shown in Figure 4(a). Let us say that we have to map this application to the coarse-

grain architecture shown in Figure 4(b). Consider also that there is no communication delay on direct interconnects

between PEs. For simplicity, in all our examples we show that operations are mapped on different PEs. In practice,

our scheduler maps two operations on the same PE provided their execution times do not overlap.

7

(a)

Op6

Op5

+

+

+

+

Op4

Op1 Op2 Op3 op1 op2 op3

op4 op5

op6

op1

op3

op2 op4

op6op5

(b) (c)

Figure 4. (a) Sample Data Flow Graph (b) Mapping with penalty of 2 cycles (c) Mapping with no penalty

Assume that a multiplication takes 2 cycles and an addition takes 1 cycle. Then this DFG, in the best case,

should take 5 cycles to execute (the sequence of operations Op2, Op4, and Op6). However, consider the mapping

shown in Figure 4(b). The total execution time for this mapping is 7 cycles since the data from Op1 takes 1 cycle

to reach Op4 and data from Op4 takes 1 more cycle to reach Op6. Thus, we have to take the data communication

overheads between operations into consideration during operation to PE mapping. In Figure 4(c), we show one

possible mapping in which there is no communication overhead and the design takes only 5 cycles to execute.

Hence, the total run time of an application includes the execution time of the operations and the routing delay

for the corresponding operands. The goal of our scheduler is to minimize the total run time of the application and

hence, to map operations such that routing delay is minimized.

4.2 Implementation in a List Scheduling Heuristic

To perform our network topology exploration experiments, we implemented our techniques in a list scheduling

algorithm [18]. However, our strategies are independent of the scheduling heuristic and can be used in other

heuristics such as force-directed scheduling as well.

Our list scheduling heuristic uses interconnect information (connectivity and delays) between PEs and attempts

to map operations with data dependencies on spatially close PEs in order to exploit the inherent parallelism.

The scheduler traverses the control-data flow graph of the application and schedules one basic block at a time.

Currently, we do not support speculation, predication and do not take memory bus bandwidth into consideration

[15].

The heuristic for scheduling a basic block, ScheduleBB, is listed in Figure 5(a). This heuristic takes as input

PEList, the list of all the PEs in the architecture. The PEs in PEList are ordered based on the network traversal

strategy as specified by the user. A global clock cycle currCycle is maintained during scheduling.

The ScheduleBB heuristic starts by collecting a list of available or ready operations, . Available operations

are operations whose data dependencies are satisfied and can be scheduled in the current cycle. The heuristic then

schedules the PEs starting from the front of the PEList. We first make a copy of the available list as currPE for

8

/* Schedules operations in basic block currBB */
ScheduleBB(currBB, PEList, currCycle)

1: List of all available operations in currBB
2: while ()
3: foreach (currPE PEList)
4: CurrPE

5: while (CurrPE)
6: Pick candOp CurrPE with highest priority
7: CurrPE CurrPE - candOp
8: if (IsRoutable(candOp, currPE , currCycle))
9: - candOp
10: Schedule candOp on currPE in currCycle
11: CurrPE /* Exit while(CurrPE) loop */
12: /* end if */
13: /* end while */
14: /* end foreach */
15: currCycle currCycle + 1
16: /* end while */ (a)

/* Verifies routability of candOp on currPE*/
IsRoutable(candOp, currPE, currCycle)

1: foreach (predOp PREDs Opi)
2: predPE PE on which predOp is mapped
3: foreach (path PATHs(predPE , currPE))
4: if (currCycle EndTime(predOp) - 1 + Delay(path))
5: or (PathNotAvailable(path, currCycle))
6: return false
7: /* end of foreach */
8: /* end of foreach */
9: return true (b)

Figure 5. (a) Algorithm to schedule a basic block (b) Algorithm for validating the interconnect delays.

currPE (lines 3 and 4 in Figure 5(a)). Next, the heuristic chooses the operation (candOp) with the highest priority

from currPE . The priority of an operation is calculated as one more than the maximum of the priorities of all the

operations that use its result. Operations whose results are not read (i.e., primary outputs) have a priority of one.

Thus, we give preference to operations on the longest data dependency (critical) paths.

The scheduler calls the IsRoutable function to verify the ability to route data to candOp. This function, outlined

in Figure 5(b), checks if the data from all the predecessors of candOp (operations whose results candOp reads)

are available at currPE in currCycle. Thus, the IsRoutable function checks all the paths from predPE (on which

the predecessor operation is mapped) to currPE by calling the function PATHs (lines 2 and 3 in Figure 5(b)).

These paths and the delays on them are determined statically before scheduling.

9

(c)(b)(a)

Op2

Op3

Op1

Cycle = 1

Cycle = 0

Cycle = 2

PE4
Op1 Op3

Op2
PE6

PE2PE0 PE3

PE15
PE15

PE0 PE3P1

P2

Figure 6. (a) Example of a small DFG. (b) Validating the ability to route data. (c) Showing Paths between
PEs

There are two situations in which we cannot use a path from predPE to currPE : either the cycle in which the

predecessor operation finishes execution (EndTime predOp - 1) summed with the delay of the path (Delay path)

is larger than the current cycle (currCycle), or if the path is not available, i.e., any connection on the path is used

by another data communication in the current cycle. This is given in lines 4 to 6 of the algorithm in Figure 5(b).

If the IsRoutable function finds no path for data to reach currPE in currCycle, then the ScheduleBB considers

the next operation in CurrPE , till all the operations are exhausted. If IsRoutable returns a true result, the candOp

is mapped on currPE and scheduled to execute in currCycle (lines 7 to 11 in Figure 5(a)). Usage information for

all paths required for data transfers is updated. In this way, the ScheduleBB heuristic schedules operations on each

PE in PEList and then increments currCycle when PEList is exhausted. This process is continued until all the

available operations in the current basic block have been scheduled.

The example in Figure 6 illustrates the logic behind the IsRoutable function. If we map Op1 and Op2 to PE4

and PE2 as shown in Figure 6(b), then to map Op3 on PE6, we have to route the result of Op1 to PE6 from PE4. If

the communication delay from PE4 to PE6 is one cycle and Op1 executes in one cycle (it starts execution in cycle

0), then we can schedule operation Op3 in cycle 2 and map it on PE6.

While determining the paths from one PE to another, we only consider the most direct (and shortest) paths

among PEs. Figure 6(c) shows the most direct path, P1, from PE0 to PE3 (since these are in the same row). In

contrast, there are two paths (P1 and P2) between PE0 and PE15.

5 Experimental Setup and Results

In order to perform the network topology exploration, we implemented our techniques and the mapping and

scheduling algorithm in a prototype compiler framework. This framework accepts an application code in C and

applies basic compiler transformations such as copy propagation and dead code elimination. In this section, we

present results for experiments by varying the different network topology parameters.

We modeled six different architecture configurations listed in Table 1. The name of each configuration (column

1) is represented as a 4 digit number (RCDG) where each digit signifies an architecture parameter: R and C

10

Config Grid Direct Num of Resembling
Name Size Connects Grids Architecture
RCDN RxC D N
4414 4x4 1 4 DReAM [8]
4424 4x4 2 4
4434 4x4 3 4 MorphoSys [5]
8811 8x8 1 1 REMARC [7]
8821 8x8 2 1
8831 8x8 3 1

Table 1. Characteristics of Different Architectures

Design Ops Cycles IPC Utilization
FFT 286 76 4.26 6.67%
ATR 508 75 8.47 13.23%

Laplace 608 22 30.40 47.50%
Sor 630 93 7.59 11.86%

Lowpass 652 105 7.85 12.27%
PDE 463 81 5.71 8.93%

Predictor 618 102 6.06 9.47%
Hydro 1290 37 36.85 57.59%

Table 2. Scheduling results for the eight designs on 4414 configuration with zig-zag traversal

represent the number of rows and columns in the grid, D is the number of direct connections each PE has, and G is

the number of grids in the configuration. The last column lists the architectures that these configurations resemble.

The number of PEs in every configuration is 64. Hence, configurations 4414, 4424, and 4434 consist of four grids

of the architectures shown earlier in Figure 1(a), (b), and (c) respectively.

We performed the experiments with two different communication delay models:

Delay Model DM0: Direct connection delay is zero. 1-hop communication through another PE and inter-

grid shared buses take one cycle (corresponds to [5, 17]).

Delay Model DM1: Direct connection delay is one cycle. 1-hop communication and shared buses take two

cycles.

In both of these models, only one pair of PEs can use a shared bus at a time. We take the simplest configuration as

the base case for all our experiments: 4414 configuration with zig-zag topology traversal strategy.

5.1 Characteristics of Benchmarks

We used a set of eight designs drawn from the DSP domain for our experiments. To give some insight into the

characteristics of these designs, we present scheduling results for the designs on base case in Table 2. The columns

in this table list the name of the design, the number of operations in the design, the number of cycles it takes to

execute on the 4414 configuration, the instructions per cycle (IPC) it achieves, and the percentage utilization of

the PEs in the matrix. The typical run time of our scheduler is about 15 user seconds on a 400 Mhz UltraSparc-II.

From the results in Table 2, we see that designs such as Laplace and Hydro achieve a relatively high IPC. This is

because there is significant instruction level parallelism in these designs and few or no inter-iteration dependencies

11

Figure 7. Effect of unrolling factor on performance results for configuration 4414 using zig-zag traversal

– so several iterations can execute in parallel. In contrast, other designs have high inter-iteration read after write

data dependencies. As a result, these designs are not able to fully utilize the PEs available, thus, leading to poor

performance.

5.2 Effect of Unrolling Factor

In order to expose the parallelism of the application, we unroll the loops that increase the number of operations

to map. In case of nested loops, we unroll the innermost loop. Figure 7 shows the effect of varying the unrolling

factor for the base configuration (RCDG = 4414). We got similar results for all the other configurations as well.

The results in Figure 7 demonstrate that the performance improves rapidly as the unrolling factor is increased

from 0 to 10. This is because the opportunities to extract parallelism increase as the number of available operations

increase due to unrolling. When we unroll the loop further, there is not much improvement for all the designs

except Laplace and Hydro. This is because in all other designs, most of the new operations generated due to

unrolling are dependent on some operations from previous iterations. The improvement up to unrolling factor of

10 is due to early scheduling of non-dependent operations. In the designs where there are less inter-iteration RAW

data dependencies (Laplace and Hydro), unrolling keeps improving the performance. Since an unrolling factor of

10 gives substantial ILP, for the rest of the experiments, we unroll the loops in the designs by 10.

5.3 Effect of Varying Configurations

Table 3 compares the number of cycles each design takes to execute on the different architecture configurations

using zig-zag topology traversal. This table also shows the percentage reduction in cycles on 4434 configuration

over 4414 configuration.

The results in this table demonstrate that the performance improves significantly as the number of direct connec-

tions increase from 1 to 2 (for example from configuration 4414 to 4424). A higher number of direct connections

increases the opportunity to map the dependent operations without incurring any communication penalty.

12

No. of Cycles for Different Configurations
Design 4414 4424 4434 Total 8811 8821 8831 Total

Reduc. Reduc.
FFT 76 67 67 11.8 % 74 67 67 9.4 %
ATR 75 69 69 8.0 % 74 68 66 10.8 %

Laplace 22 20 20 10.0 % 20 18 17 15.0 %
Sor 93 83 83 10.7 % 94 85 83 10.1 %

Lowpass 105 97 87 17.14 % 99 94 85 14.1 %
PDE 81 72 72 11.1 % 78 71 67 14.4 %

Predictor 102 93 93 8.8 % 100 91 89 11.0 %
Hydro 37 35 35 5.3 % 36 35 34 5.5 %

Table 3. Delay model DM0: Performance comparison for different configurations with zig-zag traversal.

Figure 8. Delay model DM0: Effect of Network Traversal Strategy on performance for configuration 4414

In contrast, there is almost no performance improvement when number of direct connections increase from 2

to 3 (configuration 4424 to 4434). This is because, when we change the configuration from 4424 to 4434, the

connectivity improves only for the PEs at the corner of each grid since remaining PEs are already connected to

other PEs in the same row and column (because of smaller grid size). However, for the larger grids, connectivity

improves for all the PEs. As a result performance does improve from configuration 8821 to 8831 for some designs.

These experiments show that a network topology in which each PE has two connections to other PEs in the same

row and column is sufficient to exploit the ILP for these designs.

5.4 Effect of Topology Traversal Strategy

In this section, we show the effect of the different topology traversal strategies discussed in Section 5.4 on

the scheduling results (cycles). Figure 8 shows the scheduling results for three traversal strategies for the base

configuration (RCDG = 4414). The bars in these graphs represent the results with the zig-zag traversal (first bar),

reverse-S traversal (second bar), and spiral traversal (third bar).

From this figure, we can see that reverse-S traversal gives modest improvements in some cases. The largest

improvements in performance (cycles) are achieved using spiral traversal (up to 17 % for ATR over zig-zag

traversal). We found that this is because mapping operations first to the PEs at the center of the grid – that are

more well-connected than PEs at the edges – enables more opportunities to schedule the dependent operations.

13

No. of Cycles for Different Configurations
Design 4414 4424 4434 Total 8811 8821 8831 Total

Reduc. Reduc.
FFT 133 123 117 12.0 % 130 124 117 10.0 %
ATR 102 97 96 5.8 % 99 99 96 3.0 %

Laplace 26 25 23 11.5 % 24 23 21 12.5 %
Sor 121 112 107 11.6 % 119 112 105 11.8 %

Lowpass 147 133 117 20.4 % 137 125 117 14.6 %
PDE 101 92 91 9.9 % 100 94 91 9.0 %

Predictor 143 129 129 9.8 % 138 128 122 11.6 %
Hydro 45 42 42 6.7 % 45 42 41 8.9 %

Table 4. Delay model DM1: Performance comparison for different configurations with zig-zag traversal.

Figure 9. Delay model DM1: Effect of Network Traversal Strategy on performance for configuration 4414

5.5 Effect of Delay Model

In this section, we present the results corresponding to delay model DM1 and compare them with the results

shown in previous sections. Recall that in this model, delay between adjacent PEs is one cycle and delay on buses

is two cycles. Table 4 shows the performance of various architecture configurations with this delay model using

zig-zag topology traversal and Figure 9 shows the effect of different topology traversal strategies.

The results in Table 4 show that in most of the benchmarks, the gains over different configurations become

more prominent as the penalty on various connections is increased. This is because as the communication penalty

is more in this model, any saving in communication delay (due to better connectivity) leads to relatively higher

improvement. Figure 9 shows that with the DM1 delay model, almost every design gives some improvement with

the spiral traversal over zig-zag traversal as opposed to model DM0 in which some benchmarks do not show any

improvement.

6 Conclusion and Future Work

We explored three aspects of network topology in mesh-based coarse-grain reconfigurable architectures: (a)

interconnects in the network, (b) topology traversal, and (c) communication delays. Our experimental results

show that a topology in which each PE is connected to two other PEs in the same row and column is enough to

exploit all the available instruction-level parallelism (ILP) in the set of DSP applications we explored. Also, we

14

achieve higher performance by employing the spiral network topology traversal strategy since it exploits spatial

locality between PEs and first maps PEs that have more interconnections. In future work, we plan to explore

speculative code motions and loop transformations to improve the ILP in these designs.

References

[1] R. W. Hartenstein and R. Kress. A datapath synthesis system for the reconfigurable datapath architecture. In

ASP-DAC, 1995.

[2] C.Ebeling, D. C. Cronquist, P. Franklin, J. Secosky, and S. G. Berg. Mapping applications to the rapid

configurable architectures. In FCCM, 1997.

[3] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar, and S. P. Amarasinghe. Space-time scheduling

of instruction-level parallelism on a RAW machine. In International Conference on Architectural Support

for Programming Languages and Operating Systems, 1998.

[4] S. Cadambi and S. C. Goldstein. Fast and efficient place and route for pipeline reconfigurable architectures.

In ICCD, 2000.

[5] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and E. M. C. Filho. Morphosys: an integrated

reconfigurable system for data parallel and computation-intensive applications. In IEEE Transactions on

Computers, 2000.

[6] R. Hartenstein. A decade of reconfigurable computing: A visionary retrospective. In Design, Automation

and Test Conference in Europe, 2001.

[7] T. Miyamori and K. Olukotun. Remarc: Reconfigurable multimedia array coprocessor. In FPGA, 1998.

[8] J. Becker, M. Glesner, A. Alsolaim, and J. Starzyk. Architecture and application of a dynamically re-

configurable hardware array for future mobile communication systems. In IEEE Symposium on Field-

Programmable Custom Computing Machines, 2000.

[9] P. Schaumont, I. Verbauwhede, M. Sarrafzadeh, and K. Keutzer. A quick safari through the reconfigurable

jungle. In Design Automation Conference, 2001.

[10] C. A. Mortiz, D. Yeung, and A. Agarwal. Exploring optimal cost-performance designs for raw microproces-

sors. In IEEE Symposium on Field-Programmable Custom Computing Machines, 1998.

[11] U. Nageldinger. Coarse-grained reconfigurable architectures design space exploration. In Ph.D. Thesis,

University of Kaiserlautern, Germany, 2001.

[12] L. Bossuet, G. Gogniat, and J. Philippe. Fast design space exploration method for reconfigurable architec-

tures. In Engineering Of Reconfigurable Systems and algorithms, 2003.

[13] G. Venkataramani, W. Najjar, F. Kurdahi, N. Bagherzadeh, and W. Bohm. A compiler framework for mapping

applications to a coarse-grained reconfigurable computer architecture. In CASES, 2001.

[14] B. Mei, S. Vernalde, D. Verkest, H. Man, and R. Lauwerneins. Exploiting loop-level parallelism on coarse-

15

grained reconfigurable architectures ucing modulo scheduling. In Design, Automation and Test Conference

in Europe, 2003.

[15] J. Lee, K. Choi, and N. D. Dutt. Compilation approach for coarse-grained reconfigurable architectures. In

Design and Test, 2003.

[16] P. Quinton and Y. Robert. Systolic Algorithms and Architectures. Prentice Hall, 1991.

[17] E. Mirsky and A. DeHon. Matrix: A reconfigurable computing architecture with configurable instruction

distribution and deployable resources. In FCCM, 1996.

[18] G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill, 1994.

16

