
Coordinated Parallelizing Compiler

Optimizations and High-Level Synthesis∗

Sumit Gupta‡ Nikil Dutt‡ Rajesh Gupta§ Alex Nicolau‡

CECS
Technical Report #02-35

December 2002

Center for Embedded Computer Systems
‡ Dept. of Information and Computer Science § Dept. of Computer Science and Engineering

University of California at Irvine University of California at San Diego

{sumitg, dutt, nicolau}@cecs.uci.edu gupta@cs.ucsd.edu

http://www.cecs.uci.edu/∼spark

Abstract

We present a framework for high-level synthesis that enables the designer to explore the best choice of source

level and low level parallelizing transformations for improved synthesis. Within this framework, we have imple-

mented a methodology that applies a set of parallelizing code transformations, both at the source level and during

scheduling. Using these transformations, the designer can optimize high-level synthesis results and reduce the

impact of control flow constructs on the quality of results. In our methodology, we first apply a set of source level

pre-synthesis transformations that include common sub-expression elimination (CSE), copy propagation, dead

code elimination and loop-invariant code motion, along with more coarse level code restructuring transforma-

tions such as loop unrolling. We then explore scheduling techniques that use a set of aggressive speculative code

motions to maximally parallelize the design by re-ordering, speculating and sometimes even duplicating opera-

tions in the design. In particular, we present a new technique called “Dynamic CSE” that dynamically coordinates

CSE and code motions such as speculation and conditional speculation during scheduling. We also show how op-

eration chaining across conditional boundaries can be used to optimize control flow. We have built the Spark

high-level synthesis framework that takes a behavioral description in ANSI-C as input and generates synthesiz-

able register-transfer level VHDL. Our results from three moderately complex design targets, namely, MPEG-1,

MPEG-2 and the GIMP image processing tool validate the utility of our approach to the behavioral synthesis of

designs with complex control flows.

∗A version of this technical report is under revision with the ACM Transactions on Design Automation of Electronic Systems. Also,

some parts of this work were presented at DAC 2002 and ISSS 2002. This work is supported by the Semiconductor Research Corporation:

Task I.D. 781.001

Contents

1 Introduction 6

1.1 What exactly is new here ? . 7

2 Related Work 7

3 Role of Parallelizing Compiler Transformations in High-Level Synthesis 9

4 HTGs: A Intermediate Representation for Control-Intensive Designs 11

5 Pre-Synthesis Optimizations 13

5.1 Common Sub-Expression Elimination . 14

5.2 Loop-Invariant Code Motion . 15

5.3 Loop Unrolling . 16

5.4 Loop Index Variable Elimination . 17

6 Transformations Employed During Scheduling 18

6.1 Speculative Code Motions . 18

6.2 Dynamic Common Sub-Expression Elimination . 19

6.2.1 Conditional Speculation and Dynamic CSE . 20

6.2.2 Dynamic Copy Propagation . 21

6.3 Chaining Operations Across Conditional Boundaries . 22

6.3.1 Operation Chaining with Operations in the Branches of a Conditional Block 23

6.3.2 Creating Wire-Variables to enable Chaining on each Chaining Trail 23

7 Priority-based Global List Scheduling Heuristic 25

7.1 Algorithm to Get the Next Scheduling Step . 29

7.2 Algorithm to Get the Next Basic Block to Schedule . 31

7.3 An Illustrative Example of the Spark Scheduler . 32

7.4 Incorporating Chaining into the Scheduling Heuristic . 33

7.5 Incorporating Chaining into the Code Motion Technique . 34

8 Experimental Setup 37

9 Results for Pre-Synthesis Optimizations 38

9.1 Function Inlining . 38

9.2 Scheduling Results for Pre-Synthesis Optimizations . 40

9.3 Logic Synthesis Results for Pre-Synthesis Optimizations . 41

9.4 Results for Loop Unrolling . 42

9.5 Loop Unrolling with Increased Resource Allocations . 44

2

10 Results for Dynamic CSE 45

10.1 Scheduling Results for Dynamic CSE . 45

10.2 Logic Synthesis Results for Dynamic CSE . 47

11 Results for Chaining Across Conditionals 48

12 Putting it all together 49

13 Conclusions and Future Work 50

3

List of Figures

1 An overview of the proposed high-level synthesis flow incorporating compiler transformations during

the pre-synthesis source-to-source transformation phase and the scheduling phase. 6

2 An overview of the Spark High-Level Synthesis Framework. 10

3 (a) The hierarchical task graph (HTG) representation of the “waka” benchmark. Flow data dependen-

cies are also shown. (b) The HTG representation of a For-Loop. 12

4 CSE: (a) a sample HTG (b) the common sub-expression b+ c in operations 2 and 3 has been replaced

with the variable a from operation 1. (c) Basic block dominator tree for this example. Operation 5

cannot be eliminated by the expression in operation 4, since BB4 does not dominate BB6 14

5 (a) The HTG of an example with a loop. (b) The loop-invariant operations Op1 and Op2 are moved

outside the loop body. 15

6 (a) The HTG of an example with a loop and some operations. (b) The loop is unrolled once 16

7 (a) The loop is unrolled completely from the example in Figure 6(a). (b) Constant propagation of

loop index variable, i. (c) The calculation of array a[] values are performed concurrently followed by

concurrent calculation of the c[] array values . 17

8 Various speculative code motions: operations may be speculated, reverse speculated, conditionally

speculated or moved across entire conditional blocks. 18

9 Dynamic CSE: (a) HTG representation of an example, (b) Speculative execution of operation 2 as

operation 5 in BB1, (c) This allows dynamic CSE to replace the common sub-expression in operation 4. 19

10 (a) Dynamic CSE after conditional speculation: (a) A sample HTG (b) Operation 1 has been condition-

ally speculated into BB2 and BB3. This allows dynamic CSE to be performed for operation 2 in BB9.

(b) Dominator tree for this example . 20

11 An example of operation chaining across conditional boundaries; (a) sample “C” code, (b) its HTG

representation, (c) corresponding hardware, with functional units connected via steering logic. 22

12 Operation 4 is scheduled in the same cycle as operations 1, 2 and 3. Hence, we have to check that

chaining is possible on all chaining trails up from BB8. 23

13 (a) HTG of an example, (b) operation 3 is chained with operations. 1 and 2; so, wire-variable W v and

copy operations 4 and 5 are inserted (c) corresponding hardware; Wv becomes a wire and o1 a register. 24

14 (a) HTG of another example (b) Wire-variable Wv and copy operations (3 and 4) are added in all

chaining trails. 25

15 Priority assignment for the operations in the “waka” benchmark . 26

16 (a) Priority-based List Scheduling Heuristic (b) Determining the list of Available operations. 28

17 (a) Get Next Scheduling Step Algorithm; (b) Get Next Basic Block Algorithm 30

18 (a) HTG representation of an example, (b) After scheduling basic block BB2, (c) Insertion of a new

scheduling step in basic block BB3 enables conditional speculation of operation e. 31

19 (a) HTG representation of an example (b) Operations 1 is speculatively executed as operation 4 in BB1

(c) Operation 3 is conditionally speculated into conditionals BB3 and BB4. Also shown is the dynamic

renaming of variable a with the speculatively calculated value A in operation 5. 32

4

20 Incorporating Chaining into the (a) Priority-based List Scheduling Heuristic (b) Available operations

Algorithm. Although not shown here, if scheduling on a step with chaining enabled fails, then the same

step is scheduled again without chaining. 34

21 (a) TrailSynth: Trailblazing code motion technique modified for high-level synthesis (b) Chaining

heuristic that inserts wire-variables into all chaining trails . 35

22 Effects of the pre-synthesis transformations, loop-invariant code motion (LICM) and common sub-

expression elimination (CSE), on logic synthesis results for the various designs 41

23 Effects of loop unrolling on logic synthesis results for the MPEG-1 Pred2 and Pred1 functions. 43

24 Loop unrolling with a resource allocation of 4 Adders and 2 Shifters for the MPEG-1 Pred2 and Pred1

functions . 45

25 Effects of CSE and dynamic CSE on logic synthesis results for the MPEG-1 Pred2 and Pred1 designs . 47

26 Effects of CSE and dynamic CSE on logic synthesis results for the MPEG-2 dp f rame estimate and the

GIMP tiler functions . 47

27 Effects of chaining across conditionals on the logic synthesis results for the MPEG-1 Pred2 and Pred1

functions and the MPEG-2 dp f rame estimate and the GIMP tiler functions 49

28 Final logic synthesis results after applying loop-invariant code motion (LICM), CSE and dynamic CSE

to the MPEG-1, MPEG-2 and GIMP designs . 51

5

SPARK IR

+

Binding & Control Generation

Code Generation BackEnd

Scheduling

PreSynthesis Optimizations
Compiler Optimizations

Synthesis & Compiler Optimizations
Hierarchical

C Input

Data Flow
Graphs

(HTGs)
 Task Graphs

Parser Front End

RTL VHDL, Behav. VHDL & C

Dynamic
Transformations

Static Code
Restructuring

Figure 1. An overview of the proposed high-level synthesis flow incorporating compiler transformations dur-

ing the pre-synthesis source-to-source transformation phase and the scheduling phase.

1 Introduction

Driven by the increasing size and complexity of digital designs, there has been a renewed interest in high level

synthesis of digital circuits from behavioral descriptions both in the industry and in academia [1, 2, 3, 4, 5]. Recent

years have seen the widespread acceptance and use of language level modeling of digital designs. A high level

language such as a behavioral HDL (hardware description language) or “C” allows for additional freedom in the

way a behavior is described compared to register-transfer level (RTL) descriptions.

However, there are several challenges to this migration to high-level synthesis that limit the utility of high-level

synthesis and its wider acceptance. There is a loss of control on the size and quality of the synthesized result. The

style of high-level programming – in particular, the overall control flow and choice of control flow constructs –

often has an unpredictable impact on the final circuit. Thus, we need techniques and tools that allow us to achieve

the best compiler optimizations and synthesis results irrespective of the programming style used in the high level

descriptions.

Our approach is outlined in Figure 1. It includes a pre-synthesis phase that makes available a number of trans-

formations to restructure a given description. These include transformations to reduce the number of operations

executed such as common sub-expression elimination (CSE), copy propagation, dead code elimination and loop-

invariant code motion [6]. Also, we use coarse-level loop transformation techniques such as loop unrolling to

restructure the code. This increases the scope for applying parallelizing optimizations in the scheduling phase that

follows.

The scheduling phase employs an innovative set of speculative, beyond-basic-block code motions that reduce

6

the impact of syntactic variance or programming style on the quality of synthesis results. These code motions

enable movement of operations through, beyond, and into conditionals with the objective of maximizing per-

formance. Since these speculative code motions often re-order, speculate and duplicate operations, they create

new opportunities to apply additional transformations “dynamically” during scheduling such as dynamic common

sub-expression elimination. These compiler transformations are integrated with the standard high-level synthesis

techniques such as resource sharing, scheduling on multi-cycle operations and operation chaining. Also, since

our methodology targets mixed control-data flow designs, often operations have to be chained across conditional

boundaries. Once a design has been scheduled, in the next step of the methodology in Figure 1, we use a resource

binding and control generation pass, followed by a back-end code generator that can interface with standard logic

synthesis tools to generate the gate level netlist.

1.1 What exactly is new here ?

Given the maturity of high-level synthesis techniques and equally antique compiler techniques, it is natural for

the reader to be skeptical about the novelty of the contributions in this work. Several compiler techniques have

been tried before for high-level synthesis with mixed success. In this work, we have experimented with a large

number of compiler and parallelizing compiler techniques and identified a select set of these techniques that have

the potential for improving high-level synthesis results. However, this requires co-ordination of these techniques

across several optimization layers.

In contrast to high-level synthesis tools, compilers often pursue maximum parallelization by applying paral-

lelizing transformations. For instance, percolation provably exposes maximal parallelism by moving operations

across and out of conditional branches [7]. While this is a very useful result, in high-level synthesis, code transfor-

mations have to be tempered by their effects on the control and area (in terms of interconnect) costs. Indeed, we

show that the chief strength of our heuristics is the ability to select the code transformations so as to improve the

overall synthesis results. In some cases, this means that we actually end up moving operations into the conditional

blocks [8].

The rest of this paper is organized as follows: we first review previous related work. In Section 3, we describe

our high-level synthesis methodology, followed by the representation model used. In Section 5, we describe the

pre-synthesis transformations. Next, we present the speculative code motion transformations, dynamic CSE and

dynamic copy propagation and chaining of operations across conditionals. We then present a priority-based list

scheduling heuristic that incorporates these transformations, followed by experimental results.

2 Related Work

High-level synthesis techniques have been investigated for two decades now. Over the years, several books

have discussed the advances in high-level synthesis techniques [9, 10, 11, 12]. Early high-level synthesis work

7

focused on data-flow designs and applied optimizations such as algebraic transformations, re-timing and code

motions across multiplexors for improved synthesis results [13, 14]. More recent work – during the last decade –

has presented speculative code motions for mixed control-data flow type of designs and demonstrated their effects

on schedule lengths [15, 16, 17, 18, 19, 20, 21, 22, 23].

Synthesis transformations such as chaining operations and scheduling on multi-cycle operations are standard in

several academic and commercial synthesis tools [11, 12]. However, earlier works discussed these transformations

in the context of data-flow designs. In the presence of control, these transformations have to modified to consider

resource utilization across multiple control paths. Furthermore, the control and interconnect (multiplexors et

cetera) costs of these transformations are higher for control-intensive designs.

Prior work on pre-synthesis transformations has focused on altering the control flow or extracting the maximal

set of mutually exclusive operations [24, 25]. Li and Gupta [26] restructure the control flow and attempt to extract

common sets of operations within conditionals to improve synthesis results. Kountouris and Wolinski [27] perform

operation movement and duplication before scheduling and also attempt to detect and eliminate false control paths

in the design.

On the other hand, compiler transformations such as CSE and copy propagation predate high-level synthesis

and are standard in most software compilers [6, 28]. These transformations are applied as passes on the input

program code and as cleanup at the end of scheduling before code generation. Compiler transformations were

developed for improving code efficiency. Their use in digital circuit synthesis has been limited. For instance, CSE

has been used for throughput improvement [29], for optimizing multiple constant multiplications [30, 31] and as

an algebraic transformation for operation cost minimization [32, 33].

A converse of CSE, namely, common sub-expression replication has been proposed to aid scheduling by adding

redundant operations [34, 35]. Partial redundancy elimination (PRE) [36] inserts copies of operations present

in only one conditional branch into the other conditional branch, so as to eliminate common sub-expressions in

subsequent operations. The authors in [32, 37] propose doing CSE at the source-level to reduce the effects of

the factorization of expressions and control flow on the results of CSE. Mutation Scheduling [38] performs local

optimizations such as CSE during scheduling in an opportunistic, context-sensitive manner.

A range of parallelizing code transformation techniques have been previously developed for high-level lan-

guage software compilers (especially parallelizing compilers) [39, 40]. Although the basic transformations (e.g.

dead code elimination, copy propagation) can be used in synthesis as well, other transformations need to be

re-instrumented for synthesis by incorporating ideas of mutual exclusivity of operations, resource sharing and

hardware cost models. Cost models of operations and resources in compilers and synthesis tools are particularly

very different. In circuit synthesis, code transformations that lead to increased resource utilization, also lead to

higher hardware costs in terms of steering logic and associated control circuits. Some of these costs can mitigated

by interconnect aware resource binding techniques [8].

8

Loop transformations can also be used in high-level synthesis. Potasman et al. [41] demonstrated the improve-

ments that can be obtained by applying the parallelizing compiler technique of perfect loop pipelining to data-flow

designs. Holtmann et al. [42] apply loop pipelining to the program path that has the highest predicted probability

to be taken, thereby deferring operations belonging to other paths.

3 Role of Parallelizing Compiler Transformations in High-Level Synthesis

As mentioned in the previous section, recent high-level synthesis approaches have employed beyond-basic-

block code motions such as speculation – derived from the compiler domain – to increase resource utilization. In

previous work, we presented a comprehensive and innovative set of speculative code motions that go beyond the

traditional compiler code motions. We demonstrated their usefulness in reducing the effects of syntactic variance

in the input description on the quality of synthesis results [8, 43].

In this paper, we propose a high-level synthesis methodology that incorporates these and several other tech-

niques derived from the compiler domain, particularly, from parallelizing compilers. However, we propose using

these compiler techniques not only during the traditional scheduling phase of high-level synthesis, but also, during

a pre-synthesis phase in which coarse-grain transformations are applied to the input description before performing

high-level synthesis. This new methodology has been implemented in the Spark high-level synthesis framework.

Spark takes a behavioral description in ANSI-C as input and produces synthesizable register-transfer level (RTL)

VHDL. An overview of the Spark framework is shown in Figure 2. As shown in this figure, Spark also takes addi-

tional information as input, such as a hardware resource library, resource and timing constraints and user directives

for the various heuristics and transformations.

The transformations in the pre-synthesis phase include (a) coarse-level code restructuring by function inlining

and loop transformations (loop unrolling, loop fusion et cetera), (b) transformations that remove unnecessary and

redundant operations such as common sub-expression elimination (CSE), copy propagation, and dead code elim-

ination (c) transformations such as loop-invariant code motion, induction variable analysis (IVA) and operation

strength reduction, that reduce the number of operations within loops and replace expensive operations (multipli-

cations and divisions) with simpler operations (shifts, additions and subtractions).

The pre-synthesis phase is followed by the scheduling and allocation phase (see Figure 2). The synthesis trans-

formations applied during scheduling include chaining operations across conditional blocks, scheduling on multi-

cycle operations, resource sharing et cetera [12]. Besides, the traditional high-level synthesis transformations, the

scheduling phase also employs several compiler transformations applied “dynamically” during scheduling. These

dynamic transformations are applied either to aid scheduling (such as speculative code motions) or to exploit the

new opportunities created by scheduling decisions (such as dynamic CSE and dynamic copy propagation) [44].

The scheduler employs code motion techniques such as Trailblazing that efficiently move operations in moderately

complex control-intensive designs [45].

9

 Task Graphs
(HTGs)

+
Data Flow

Graphs

Hierarchical

C Input

Speculative Code Motions
 Chaining Across Conditions

Percolation/Trailblazing
Candidate OpWalker
Get Available Ops

Loop Pipelining Dynamic CSE & Copy Prop

Transformation ToolboxHeuristics
Scheduling and Allocation

PreSynthesis Optimizations

Control Synthesis & Optimization

Code Generation BackEnd

HTG Scheduling Walker

SPARK IR

Operation/Variable Binding FSM Generation/Optimiz.

Synthesizable RTL VHDL, Behavioral VHDL & C

Loop Unrolling, Loop Fusion, Loop Invariant Code Motion
CSE, IVA, Copy Propagation, Inlining, Dead Code Elim

Parser Front End

& Resource
Library

Constraints

Figure 2. An overview of the Spark High-Level Synthesis Framework.

As shown in Figure 2, the scheduler is organized into two parts: the heuristics that perform scheduling and a

toolbox of synthesis and compiler transformations. This allows the heuristics to employ the various transforma-

tions as and when required, thus enabling a modular approach that allows the easy development of new heuristics.

The scheduling phase is followed by a resource binding and control generation phase. Our resource binding

approach aims to minimize the interconnect between functional units and registers, sometimes at the expense of a

higher number of registers [8]. The control generation pass generates a finite state machine (FSM) that implements

the schedule and the controller for it.

Finally, a back-end code generation pass generates register-transfer level (RTL) VHDL. This RTL VHDL is

synthesizable by commercial logic synthesis tools, hence, completing the design flow path from architectural

design to final design netlist. Additionally, we have also implemented back-end code generation passes that

generate ANSI-C and behavioral VHDL. These behavioral output codes represents the scheduled and optimized

design. The output “C” can be used in conjunction with the input “C” to perform functional verification and also

to enable better user visualization of how the transformations applied by Spark affect the design.

In the rest of this paper, we discuss several of the transformations from the pre-synthesis phase and the schedul-

ing phase implemented in the Spark framework. However, to enable the various coarse and fine-grain transforma-

tions employed by Spark, an intermediate representation more powerful than control-data flow graphs is required,

as explained in the next section.

10

4 HTGs: A Intermediate Representation for Control-Intensive Designs

In order to enable the range of optimizations explored by our work, the Spark system uses an intermediate

representation that maintains the hierarchical structuring of the design such as if-then-else blocks and for and while

loops. This intermediate representation consists of basic blocks encapsulated in Hierarchical Task Graphs (HTGs)

[45, 46, 47]. In the past, control-data flow graphs (CDFGs) [10, 48] have been primary model for capturing design

descriptions for high-level synthesis. CDFGs work very well for traditional scheduling and binding techniques.

However, for source-to-source optimizations and other coarse grain transformations, the abstraction level offered

by CDFGs is too thin to evaluate the trade-offs. Since HTGs maintain a hierarchy of nodes, they are able to

retain coarse, high level information about program structure, in addition to operation level and basic block level

information. This aids in operation movement by reducing the amount of compensation code required. Non-

incremental moves of operations across large blocks of code are possible without visiting each intermediate node

[47].

Of course, several other representation models such as Value Trace (VT) [49], Yorktown Intermediate format

(YIF) [50], Assignment Decision Diagrams (ADDs) [51], Hierarchical Conditional Dependency Graphs (HCDGs)

[52], et cetera have been proposed earlier for high-level synthesis. Also, Rim et al. [22] and Bergamaschi [53]

have proposed new design representation models that attempt to bridge the gap between high-level and logic-level

synthesis and aid in estimating the effects of one on the other. However, we have found HTGs to be the most natural

choice for our parallelizing transformations. Also, our scheduler relies heavily on compiler transformations such

as Trailblazing [47] and Resource-Directed Loop Pipelining [54] that were originally developed using HTGs as

the underlying intermediate representation.

We define HTGs as follows: an HTG is a directed acyclic graph with unique Start and Stop nodes such that there

exists a path from the Start node to every node in the HTG and a path from every node in the HTG to the Stop node.

Edges in a HTG represent control flow. Each node in a HTG can be one of the following three types: single nodes,

compound nodes and loop nodes. Single nodes represent nodes that have no sub-nodes and are used to encapsulate

basic blocks. Basic blocks are a sequential aggregation of operations that have no control flow (branches) between

them. Operations that execute concurrently are aggregated into statements within basic blocks. These statements

correspond to control or scheduling steps in high-level synthesis and to VLIW instructions in compilers [46]. The

second type of HTG nodes, namely, compound nodes, are hierarchical in nature, i.e., they can contain other HTG

nodes. They are used to represent structures like if-then-else blocks, switch-case blocks or a series of HTGs. Loop

nodes are used to represent the various types of loops (for, while-do, do-while). Loop nodes consist of a loop

head and a loop tail that are single nodes and a loop body that is a compound node. Note that operations represent

the expressions in the code and are stored as abstract syntax trees [6]. Each expression or operation is initially

encapsulated in a statement of its own.

Figure 3(a) illustrates the HTG for the synthetic benchmark “waka” [16] along with the data flow dependencies.

11

Single
Node

Single
Node

Join
Block

Then
Branch

If HTG

Block
Cond

Branch
Else

If HTG

Design Level Compound HTG

(a)

For Loop HTG Node

Compound
HTG Node

(Loop Body)

True

Single Node

i < N

i = 0

False
Single Node

Empty BB

Loop Exit

Loop Head

Loop Exit

i = i + 1

(b)

d

a b k

f c

j

i

g e

m l

n

h

p

q

BB0

FT

T F

BB1

BB2

BB5 BB6

BB3

BB4

BB7

BB8

BB9

BB10

If0

If1 <

Figure 3. (a) The hierarchical task graph (HTG) representation of the “waka” benchmark. Flow data depen-

dencies are also shown. (b) The HTG representation of a For-Loop.

In this figure, the dashed arrows indicate control flow and the solid lines indicate data flow. Operations are denoted

by circular nodes with the operator sign within and the triangle indicates a Boolean conditional check. BB0 to BB10

denote basic blocks. This design contains an If-HTG node, whose false/else branch contains another If-HTG node.

As shown in this figure, an if-then-else HTG consists of a single node for the conditional check, a compound HTG

for the true branch, a compound HTG for the false branch and a single node with an empty basic block for the Join

node. The Start node for an If-HTG is the single node with the conditional check and the Stop node is the Join

node. In this example, the true/then branch contains only one basic block (encapsulated in a single node).

The conceptual HTG representation of a For-loop HTG is shown in Figure 3(b); only control flow dependencies

are shown in this figure. A For-loop HTG consists of a single node with an initialization basic block (Start node),

a single node for the conditional check basic block and a compound HTG node for the body of the loop with an

optional basic block for the loop index increment and a loop exit node. There is a backward control flow arc from

the end of the loop body to the conditional check single node. The loop exit is a single node with an empty basic

block; this is also the Stop node. Note that, the Start and Stop nodes of a single node are the node itself.

HTGs are constructed from the input description by first creating a compound HTG node for the design level

HTG. Each sequential piece of code in the input description forms a sub-node of this HTG. The Start and Stop

12

nodes of the design level HTG correspond to the Start node of the first sub-node HTG and Stop node of the last

sub-node in the design respectively. Hence, for the waka design shown in Figure 3(a), the design level HTG node

has three sub-nodes. The first sub-node is a single node with basic block BB0, the second sub-node is the If-HTG

node, IF0 and the third sub-node is the single node with basic block BB10. The Start and Stop nodes for this design

are the single nodes that encapsulate basic blocks BB0 and BB10.

The HTG representation of the waka design in Figure 3(a) also shows the data flow dependencies between the

operations. However, these data flow dependencies are actually stored in data dependency graphs that augment

HTGs. The data dependency graphs in our implementation capture all the different types of data dependencies

present in the input description. This is in contrast to traditional synthesis approaches that typically only capture

flow data dependencies, i.e., the data dependencies between two operations wherein one operation reads the result

produced by the other. However, a design specification in a high-level language usually contains other types of

data dependencies such as write-after-read and write-after-write dependencies [28]. Maintaining only flow data

dependencies means that the information about the variable names from the original description are discarded.

Hence, the correlation between the original description and the intermediate representation is lost. This leads to an

inability to visualize the intermediate results of the various transformations vis-a-vis the original input description.

Hence, we maintain the full set of data dependencies as given in the input description and employ techniques such

as dynamic variable renaming to aid in reducing the restrictions imposed by these dependencies [45].

Another important feature of HTGs is that they are strongly connected components (SCC) [46]. An SCC region

(in this case a HTG node) has the property of having a single entry and a single exit point; for a HTG, these

correspond to the Start and Stop nodes respectively. This property is exploited by code motion techniques such

as Trailblazing [47] to make hierarchical moves when moving operations in a HTG. For example, when the Stop

node of a HTG node is encountered while moving an operation, trailblazing can check if the operation has any

data dependencies with the HTG node. If it does not, the operation can be moved directly to the Start node of the

HTG node without visiting each node in the HTG. For if-then-else blocks, this also means that the operation can

be moved across the conditional block without duplicating into the branches of the conditional. Details of this can

be found in [47].

In the next section, we present source level transformations that use the various properties of HTGs, specifically,

the coarse-level and hierarchical information maintained by HTGs to restructure the code.

5 Pre-Synthesis Optimizations

Operation level compiler transformations such as common sub-expression elimination and coarse-level trans-

formations such as loop transformations have been used extensively in optimizing compilers, especially in the

context of parallelizing compilers [6, 28, 55]. However, high-level synthesis tools have to take into account the

additional area and performance costs of code transformations; these may occur due to the additional control and

13

cond1

....

...
1: a = b + c

3: e = a

2: d = a

cond1

4: g = d + f

....

...
2: d = b + c

1: a = b + c

4: g = d + f3: e = b + c

5: h = d + f

(a) (b) (c)

BB 6

BB 5
BB 4BB 3

BB 2

BB 1 BB 1

BB 2

BB 3 BB 4

BB 6

BB 5

BB 1

BB 2

BB 4 BB 5

BB 6

BB 3

If Node If Node
T F T F

5: h = d + f

Figure 4. CSE: (a) a sample HTG (b) the common sub-expression b+c in operations 2 and 3 has been replaced

with the variable a from operation 1. (c) Basic block dominator tree for this example. Operation 5 cannot

be eliminated by the expression in operation 4, since BB4 does not dominate BB6

steering logic (multiplexors) generated.

We have implemented several compiler transformations in the Spark HLS framework both at the pre-synthesis

phase and at the scheduling phase. In this section, we will discuss common sub-expression elimination (CSE),

loop-invariant code motion and loop unrolling. Although transformations such as CSE were originally proposed as

operation level transformations, recent work has shown that these optimizations are more effective when applied

at the source level with a global view of the code structure [37].

5.1 Common Sub-Expression Elimination

Common sub-expression elimination (CSE) is a well-known transformation that attempts to detect repeating

sub-expressions in a piece of code, stores them in a variable and reuses the variable wherever the sub-expression

occurs subsequently [6]. This is demonstrated by the the example in Figure 4(a). The common sub-expression

b+ c in operations 2 and 3 can be replaced with the result of operation 1, resulting in the code in Figure 4(b).

Whether a common sub-expression between two operations can be eliminated depends on the control flow

between the locations or basic blocks of the two operations. One common approach to capture the relationship

between basic blocks in a control flow graph is using dominator trees [6]. These trees can be constructed using the

following definition: a node d in a control flow graph (CFG) is said to dominate another node n, if every path from

the initial node of the flow graph to n goes through d. The dominator tree for the example in Figure 4(a) is given

in Figure 4(c). In this example, basic block BB2 dominates basic blocks BB3, BB4 and BB5 and is itself dominated

by BB1. BB5 in turn dominates BB6.

In order to preserve the control-flow semantics of a CFG, the common sub-expression in an operation op2 can

only be replaced with the result of another operation op1, if op1 resides in a basic block BB1 that dominates the

basic block BB2 in which op2 resides. So, in the example in Figure 4(a), operations 2 and 3 can be eliminated

using the result of operation 1 as per the dominator tree shown in Figure 4(c). Conversely, BB4 does not dominate

BB6 and hence, the common sub-expression in operation 5 cannot be replaced with the result of operation 4.

14

...

1: a = b + c
2: d = a + c
3: e = e + d

BB 2

....
4: i = i + 1

... BB 5

For Loop
BB 1

BB 3 T F

BB 4

Loop
Exit

BB 2
For Loop

BB 3 T

2: d = a + c
1: a = b + c

...

3: e = e + d
....

4: i = i + 1

... BB 5

BB 4

(b)

Exit
Loop

BB 1

(a)

F

i < n

i < n

Figure 5. (a) The HTG of an example with a loop. (b) The loop-invariant operations Op1 and Op2 are moved

outside the loop body.

Dominator trees have been extensively used previously for data flow analysis and transformations such as loop-

invariant code motion and CSE [6, 56]. They have recently been extended to incorporate the notion of sets of basic

blocks dominating over other basic blocks (see Section 6.2.1) [57]. In our work as well, we apply CSE based on

the dominator information of the basic blocks that contain the operations.

5.2 Loop-Invariant Code Motion

Frequently, there exist computations within a loop body that produce the same results each time the loop is

executed. These computations are known as loop-invariant code and can be moved outside the loop body, without

changing the results of the code. In this way, these computations will execute only once before the loop, instead of

for each iteration of the loop body. Consequently, this leads to better design performance, albeit only if the loop is

executed at least once.

An operation op is said to loop-invariant if: (a) its operands are constant, or (b) all operations that write to the

operands of operation op are outside the loop, or (c) all the operations that write to the operands of the operation

op are themselves loop invariant [6, 28].

Figure 5 demonstrates loop-invariant code motion with an example. In the example in Figure 5(a), the operands

b and c of operations Op1 are not written to by any operation within the loop. Hence, Op1 is loop-invariant.

Similarly, the operand a of operation Op2 is written only by the loop-invariant operation Op1 and its other operand,

c, is not written within the loop. Hence, Op2 is also loop-invariant. Thus, these operations can be moved out of

the loop body into basic block BB1 as shown in Figure 5(b). Operations Op3 and Op4 are not loop-invariant since

one of their operands is written to, from within the loop.

When describing behaviors in high-level languages, designers frequently place several loop-invariant operations

within loops for ease of understanding and readability of the code. Furthermore, loops themselves are used as a

programming convenience and often do not expose all the available parallelism in the design. Hence, fine grain

15

BB 2

BB 5

For Loop
BB 1

BB 3 T

i = 0

BB 2
For Loop

BB 1

BB 3 T

....
2: c[i] = a[i] + e

1: a[i] = a[i] + b

F

i = 0

......

1: a[i] = a[i] + b
2: c[i] = a[i] + e

....

BB 4BB 4

F

Loop
Exit

BB 5

(a) (b)

i <= n i <= n

3: i = i + 1
3: i = i+ 2

4: a[i+1]=a[i+1]+b
5: c[i+1]=a[i+1]+e

Figure 6. (a) The HTG of an example with a loop and some operations. (b) The loop is unrolled once

transformations such as CSE, copy propagation and loop-invariant code motion, need to be complemented with a

set of loop transformations that can significantly alter the structure of the code.

A wide range of loop transformations have been explored in the context of parallelizing compilers [55]. How-

ever, their use in high-level synthesis has been limited. It is not clear if, and under what criteria, are any of these

loop transformations useful. In the next two sections, we discuss one loop transformation, namely, loop unrolling

and one of the subsequent optimizations that can be performed in the context of high-level synthesis.

5.3 Loop Unrolling

Loop unrolling is the process of placing a duplicate of one or more iterations of the loop body at the end of the

current loop body. The loop bounds and loop index variable increment are updated as necessary. Loop unrolling

was developed to enable software compilers to perform optimizations across loop iterations and facilitate global

code optimizations [28]. However, loop unrolling can lead to code explosion; so, loops are unrolled one iteration

at a time, followed by code compaction by parallelizing transformations, until no further improvements can be

obtained. Loops are seldom unrolled fully.

On the other hand, in the context of hardware design descriptions, loops are only a programming convenience

and latency constraints generally dictate the amount of unrolling a loop has to undergo. For instance, if a design is

targeted to, say, three clock cycles, it implies that all the operations within all the iterations of the loop have to be

executed in these three cycles. Hence, when this design is mapped to hardware, it will generate a design in which

the loop is, in essence, unrolled within these three cycles. Some hardware architectures such as microprocessor

functional blocks are low latency designs that must often be executed in just one cycle [58]. Loops in single cycle

designs must be unrolled completely.

Loop unrolling is demonstrated in Figure 6. Figure 6(a) shows the HTG of a synthetic example, which has a

loop and some operations within this loop. Operation Op1 uses the loop index variable i to read the array a and

another operand, b, to generate the result a[i]. This result is used by operation Op2 to generate the result c[i]. When

16

BB 2
For Loop

BB 1

BB 3 T

i = 0

1: a[i] = a[i] + b
2: c[i] = a[i] + e

....

F

BB 5

BB 4

...

(a)

i <= n BB 2
For Loop

BB 1

BB 3 T

i = 0

....

F

BB 5

BB 4

...

(b)

1: a[0] = a[0] + b
2: c[0] = a[0] + e

BB 2
For Loop

BB 1

BB 3 T

i = 0

F

BB 5

BB 4

...

1: a[0] = a[0] + b

(c)

....

2: c[0] = a[0] + e

....

3: i = i + n 3: i = n 3: i = n

4: a[i+1]=a[i+1]+b
5: c[i+1]=a[i+1]+e

6: a[i+n]=a[i+n]+b
7: c[i+n]=a[i+n]+e

4: a[1]=a[1]+b
5: c[1]=a[1]+e

6: a[n]=a[n]+b
7: c[n]=a[n]+e

4: a[1]=a[1]+b

6: a[n]=a[n]+b

5: c[1]=a[1]+e

i <= n i <= n

7: c[n]=a[n]+e

Figure 7. (a) The loop is unrolled completely from the example in Figure 6(a). (b) Constant propagation

of loop index variable, i. (c) The calculation of array a[] values are performed concurrently followed by

concurrent calculation of the c[] array values

this loop is unrolled once, the resulting HTG is as shown in Figure 6(b). This unrolled loop exposes the inherent

parallelism among the operations in the loop body – the operations Op1 and Op4 can be executed concurrently,

followed by the concurrent execution of operations Op2 and Op5. Without loop unrolling, the two iterations of the

loop body would have been executed sequentially.

In the Spark framework, the amount of loop unrolling for each loop is currently user-directed. The designer can

experiment with different unrolls of the loop and determine the trade-offs. Also, unlike software, code explosion is

not a matter of concern in hardware design. However, loop unrolling leads to a larger controller and more complex

interconnect (multiplexors) among operations due to increased resource sharing. As we will show in the results

section, given enough resources, the increase in concurrency offsets the overheads incurred by unrolling.

5.4 Loop Index Variable Elimination

When a loop is unrolled completely, it enables the applicability of another transformation; loop index variable

elimination. We will demonstrate this transformation with the previous example from Figure 6(a). Consider that

the loop in this code is unrolled completely; the resulting design is shown in Figure 7(a). The value of the loop

index variable is now known statically in all the loop iterations. Hence, the initial value assigned to the loop index

variable, i = 0, can be propagated as a constant throughout all the iterations (known as constant propagation). The

resultant design is shown in Figure 7(b).

In this way, the loop index variable is completely eliminated from the loop body. This removes the data depen-

dencies that exist between the operations in the loop body and loop index variable, thus allowing the application

of further code parallelizing transformations. In this example, the code motion transformations applied during the

later scheduling phase can then concurrently calculate all the values of the a[] array followed by the concurrent

17

T

If Node

F
Reverse Speculation

Conditional Speculation

Speculation

Hierarchical
Blocks

Across

Figure 8. Various speculative code motions: operations may be speculated, reverse speculated, conditionally

speculated or moved across entire conditional blocks.

calculation of all c[] array values (assuming that the resources to do so are available), as shown in Figure 7(c).

We have shown earlier that this combination of full loop unrolling along with loop index variable elimination

is an essential transformation for the synthesis of microprocessor functional blocks [58]. However, we apply only

partial loop unrolling for designs from the multimedia and image processing domains, since these designs usually

have latencies of 10s to 100s of cycles. Hence, full loop unrolling would lead to an explosion in the controller size

and interconnect costs.

6 Transformations Employed During Scheduling

One of the aims of the transformations applied in the pre-synthesis stage is to increase the applicability and

scope of the parallelizing transformations employed by scheduling. Scheduling employs several transformations,

some being compiler transformations and some being high-level synthesis transformations. In this section, we

discuss some of them. We start off with an overview of a set of speculative code motions and demonstrate how

these code motions can enable new opportunities for applying compiler transformations such as CSE and copy

propagation, dynamically, during scheduling. We then discuss a classical high-level synthesis transformation,

namely, operation chaining, albeit modified to handle the control-intensive designs that our approach targets.

6.1 Speculative Code Motions

To alleviate the problem of poor synthesis results in the presence of complex control flow in designs, a set of

code motion transformations have been developed that re-order operations to minimize the effects of syntactic

variance in the input description. These beyond-basic-block code motion transformations are usually speculative

in nature and attempt to extract the inherent parallelism in designs and increase resource utilization.

Generally, speculation refers to the unconditional execution of operations that were originally supposed to have

executed conditionally. However, frequently there are situations when there is a need to move operations into

conditionals [43, 8]. This may be done by reverse speculation, where operations before conditionals are moved

into subsequent conditional blocks and executed conditionally, or this may be done by conditional speculation,

18

cond1

...

3: g = d + f2: e = b + c

...

4: d = b + c

BB 2

(a)

If Node

BB 1

T F

BB 3 BB 4
BB 5

BB 6

cond1

...

3: g = d + f

...

2: e = e’

4: d = e’

5: e’ = b + c

BB 3
BB 5

BB 4

BB 6

BB 2
FT

BB 1

If Nodecond1

...

3: g = d + f

...

2: e = e’

5: e’ = b + c

(b)

BB 3
BB 5

BB 4

BB 6

BB 2
FT

BB 1

If Node

4: d = b + c

(c)

Figure 9. Dynamic CSE: (a) HTG representation of an example, (b) Speculative execution of operation 2 as

operation 5 in BB1, (c) This allows dynamic CSE to replace the common sub-expression in operation 4.

wherein an operation from after the conditional block is duplicated up into preceding conditional branches and

executed conditionally. Reverse speculation can be coupled with another novel transformation, namely, early

condition execution. This transformation involves restructuring the original code, so as to evaluate conditional

checks as soon as possible. The motivation for this transformation comes from the fact that once a condition has

been evaluated, all the operations in its branches are ready to be scheduled.

The various speculative code motions are shown in Figure 8 by solid lines. Also, shown is the movement

of operations across entire hierarchical blocks, such as if-then-else blocks or loops. These code motions have

been shown to be effective in improving both the scheduling and the synthesis results of high-level synthesis,

particularly for control-intensive designs.

These beyond-basic-block code motions usually re-order, speculate and sometimes duplicate operations. This

often creates new opportunities for dynamically applying transformations such as common sub-expression elimi-

nation during scheduling as discussed in the next section.

6.2 Dynamic Common Sub-Expression Elimination

To illustrate how these speculative code motions can create new opportunities for applying CSE, consider the

example in Figure 9(a). In this example, classical CSE cannot eliminate the common sub-expression in operation

4 with operation 2, since operation 4’s basic block BB6 is not dominated by operation 2’s basic block BB3 (see

Section 5.1 for a description of dominator trees). Consider now that the scheduling heuristic decides to schedule

operation 2 in BB1 and execute it speculatively as operation 5 as shown in Figure 9(b). Now, the basic block BB1

containing this speculated operation 5, dominates operation 4’s basic block BB6. Hence, operation 4 in Figure 9(b)

can be eliminated and simply replaced by the result of operation 5, as shown in Figure 9(c).

Since CSE is traditionally applied as a pass, usually before scheduling, it can miss these new opportunities

created during scheduling. This motivated us to develop a technique by which CSE can be applied in the manner

shown in the example above, i.e., dynamically while the design is being scheduled. Dynamic CSE is a technique

that operates after an operation has been moved and scheduled on a new basic block [44]. It examines the list

19

(a)

cond1

3: a’ = b + c 4: a’ = b + c

1: a = a’

2: d = a’

(b)

...

cond1
T F

... ...

cond2

1: a = b + c ...

2: d = b + c

BB 6

(c)

cond2

BB 8
BB 7

BB 9

BB 5
T F

BB 4
BB 3BB 2

BB 1 BB 1
T F

BB 3
BB 4

BB 2

BB 5
F

BB 7
BB 8

BB 9

BB 6

T

BB 9

BB 8BB 7BB 6

BB 5

BB 4BB 3BB 2

BB 1If Node 1

If Node 2 If Node 2

If Node 1

Figure 10. (a) Dynamic CSE after conditional speculation: (a) A sample HTG (b) Operation 1 has been

conditionally speculated into BB2 and BB3. This allows dynamic CSE to be performed for operation 2 in

BB9. (b) Dominator tree for this example

of remaining ready-to-be-scheduled operations and determines which of these have a common sub-expression

with the currently scheduled operation. This common sub-expression can now be eliminated if the new basic

block containing the currently scheduled operation dominates the basic block of the operation with the common

sub-expression. We use the term “dynamic” to differentiate from the phase ordered application of CSE before

scheduling.

We can also see from the example in Figure 9 that applying CSE as a pass after scheduling is ineffective

compared to dynamic CSE. This is because the resource freed up by eliminating operation 4, can potentially be

used to schedule another operation in basic block BB6, by the scheduler. On the other hand, performing CSE after

scheduling is too late to effect any decisions by the scheduler.

6.2.1 Conditional Speculation and Dynamic CSE

Besides speculation, another code motion that has a significant impact on the number of opportunities available

for CSE is conditional speculation [8]. Conditional speculation duplicates operations up into the true and false

branches of a if-then-else conditional block. This is demonstrated by the example in Figure 10(a). Consider

that the scheduling heuristic decides to conditionally speculate operation 1 into the branches of the if-then-else

conditional block, I f Node1. Hence, as shown in Figure 10(b), the operation is duplicated up as operations 3 and

4 in basic blocks BB2 and BB3 respectively.

Looking at the original description in Figure 10(a) again, we note that operation 2 in BB9 has a common

sub-expression with operation 1 in BB6. But since BB9, is not dominated by BB6, this common sub-expression

cannot be eliminated by classical CSE. However, after conditional speculation, operations with this common sub-

expression exist in all control paths leading up to BB9. Hence, we can apply dynamic CSE now and operation 2

uses the result, a′, of operations 3 and 4 as shown in Figure 10(b).

20

This leads to the notion of dominance by sets of basic blocks [57]. A set of basic blocks can dominate another

basic block, if all control paths to the latter basic block come from at least one of the basic blocks in the set. Hence,

in Figure 10(b), basic blocks BB2 and BB3 together dominate basic block BB9, hence, enabling dynamic CSE of

operation 2. In this manner, we use this property of domination by sets of basic blocks while performing dynamic

CSE along with code motions such as reverse and conditional speculation that duplicate operations into multiple

basic blocks.

Another case, in which dynamic CSE is applied in conjunction with conditional speculation, arises when an

operation is duplicated into a basic block in which another operation with the same expression already exists. In

this case, the operation being duplicated is instead replaced with a copy operation using the result of the already

present operation with the same expression. Hence, in the example in Figure 10(a), if there had existed an oper-

ation with the same sub-expression (b + c) as operation 1 in the basic block BB2, then dynamic CSE would have

eliminated the common sub-expression when operation 1 got duplicated as operation 3 into BB2. Using these vari-

ous approaches of applying CSE dynamically during scheduling can significantly reduce the number of operations

in the final scheduled design, as demonstrated in the results section (see Section 10).

6.2.2 Dynamic Copy Propagation

The concept of dynamic CSE can also be applied to copy propagation. After applying code motions such as spec-

ulation and transformations such as CSE, there are usually several copy operations left behind. Copy operations

read the result of one variable and write them to another variable. For example in Figure 10(b), operations 1 and

2, copy variable a′ to variables a and d respectively.

These variable copy operations can be propagated forward to operations that read their result. Again, tradi-

tionally, copy propagation is done as a compiler pass before and after scheduling to eliminate unnecessary use of

variables. However, we have found that it is essential to propagate the copies created by speculative code motions

and dynamic CSE during scheduling itself, since this enables opportunities to apply CSE on subsequent operations

that read these variable copies. After copy propagation, these dependent operations can directly use the result of

the operation that creates the variable in the first place, rather than its copy operation. A dead code elimination

pass after scheduling can then remove unused copies.

In this way, the scheduling heuristic can dynamically employ compiler transformations such as speculative code

motions, dynamic CSE and dynamic copy propagation, to increase resource utilization and improve the quality

of synthesis results. These transformations form an integral part of the scheduling strategy employed by the

Spark framework. Besides these compiler transformations, scheduling also employs several high-level synthesis

transformations such as operation chaining. This transformation is discussed in the next section.

21

if (cond)

else

1: t1 = a + b;

 3: t3 = c + d;
 2: t2 = t1;

 4: t2 = e;
 5: t3 = c − d;
6: f = t2 + t3;

cb c

f

e

a d d

t3’’

Op1 Op3 Op5

Op6

t3’

t3t2cond
t1

BB 2
FT

If Node cond

1: t1 = a + b

2: t2 = t1
 3: t3 = c + d

4: t2 = e
 5: t3 = c − d

6: f = t2 + t3

BB 4

BB 6

BB 3
BB 5

BB 1

(b) (c)(a)

+ + −

+

Figure 11. An example of operation chaining across conditional boundaries; (a) sample “C” code, (b) its HTG

representation, (c) corresponding hardware, with functional units connected via steering logic.

6.3 Chaining Operations Across Conditional Boundaries

Operation chaining is an important technique that is supported by most high-level synthesis tools [10]. Chaining

of operations means that the result of one operation is used immediately by the next operation without storing it in

an intermediary latch or register. In the corresponding hardware, the functional units, on to which the operations

are mapped, have to be connected to each other without any memory elements in between. However, in designs

that are a mix of control and data operations, operations may be chained across basic blocks, i.e., across conditional

boundaries. In hardware, this means that the functional units are connected via steering logic such as multiplexors.

Let us understand this with the aid of an example. Consider the sample fragment of “C” code in Figure 11(a)

and the corresponding HTG representation in Figure 11(b). Consider also that this design description has to be

scheduled in one cycle. To achieve this, all the operations in the description have to be chained together, across

the if-then-else conditional block. One possible hardware implementation for this is shown in Figure 11(c). The

operations Op1 to Op6 correspond to the line numbers in Figure 11(a). In the circuit in Figure 11(c), the inputs to

the operation Op6 are obtained by multiplexing the outputs of the Op1, Op3 and Op5, based on the condition cond.

Variables t3′ and t3′′ are the temporary results of operations Op3 and Op5, that are immediately multiplexed to

produce the result t3. Since all the operations in this fragment of code are chained together, none of the variables,

t1, t2 and t3, have to be stored in registers. We will discuss these new types of variables that are not stored in

registers in Section 6.3.2.

Hence, chaining operations across conditional boundaries has two effects on the scheduling strategy: firstly,

the scheduling heuristic has to keep track of the resource utilization of multiple scheduling steps in several basic

blocks that are chained into the same clock cycle. Thus, the scheduler has to use a modified resource utilization

and operation scheduling model that looks across the conditional boundaries. Secondly, chaining an operation

with operations that are in the branches of a conditional check requires a detailed analysis of the control flow paths

in which the chained operations are, as discussed in the next section.

22

6.3.1 Operation Chaining with Operations in the Branches of a Conditional Block

To be eligible for chaining across a conditional boundary, an

cond1 BB 1

BB 7

BB 84: o2 = o1 + d

BB 3 BB 4
BB 5

If Node2
BB 2

BB 6
cond2

2: o1 = b1: o1 = a

State S1

....

State S0
If Node1

.... BB 0

BB 9State S2

3: o1 = c

Figure 12. Operation 4 is scheduled in the

same cycle as operations 1, 2 and 3. Hence,

we have to check that chaining is possible

on all chaining trails up from BB8.

operation has to satisfy two main criteria: (a) a resource on which

the operation can execute should be idle in all the scheduling steps

chained together, including the current scheduling step, and (b) if

there are operations in the steps being chained together that the

current operation being scheduled has dependencies with, then

the total execution time of these chain of operations should be less

than the clock period of the design. Note that a scheduling step is

equivalent to a statement node (see Section 4) and represents an

aggregation of operations that execute in the same cycle within a

basic block.

We explain these two criteria using the example in in Figure 12;

we want to schedule operation 4 in the same cycle as operation 1.

First, the chaining heuristic determines all the basic blocks that

have scheduling steps scheduled in the same cycle as the current step under consideration. The heuristic does

this by traversing all the paths or chaining trails back wards from the basic block that operation 4 is in (BB8),

looking for scheduling steps scheduled in the same cycle. In this example, there are three trails comprising the

basic blocks: <BB8, BB7, BB5, BB3, BB2, BB1>,<BB8, BB7, BB5, BB4, BB2, BB1> and <BB8, BB7, BB6, BB1>.

Note that, in this example, since each basic block has just one scheduling step, the basic block name will be used

to refer to the corresponding scheduling step in it.

Clearly, the first criteria is satisfied in this case, since none of the operations in the steps being chained together

uses an adder (we assume that at least one adder has been allocated to schedule this design). For the second

criteria, we determine the dependency chain of operation 4 in each trail. The operations that will be chained

with operation 4 in the trails are operations 1, 2 and 3 respectively, each of which writes to the variable o1. We

determine that operation 4 can be executed in the same cycle as these operations by using the appropriate value

of o1, depending on the evaluation of the condition. However, to actually chain these operations together, the

chaining algorithm along with the code motion algorithm has to ensure that the correct hardware corresponding to

the chained operations is generated to implement the schedule, as discussed next.

6.3.2 Creating Wire-Variables to enable Chaining on each Chaining Trail

The Spark synthesis tool initially assumes that each variable in the input behavioral description is mapped to a

virtual register. In fact, some of these variables may be eliminated after scheduling by dead code elimination. It is

only during register binding that a variable life-time analysis pass determines which variables are actually mapped

23

cond

(a)

BB 2

If Node cond

(b)

BB 4

BB 1 BB 1

BB 3
BB 4

BB 3

1: Wv = a + b
4: o1 = Wv1: o1 = a + b

2: o1 = d

3: o2 = o1 + e 3: o2 = Wv + e

2: Wv = d
5: o1 = Wv

BB 2

BB 0
BB 0

BB 5 BB 5

(c)

a b

d

e

Op3

Op1

cond

o1 o2

Wv

If Node
+

+

Figure 13. (a) HTG of an example, (b) operation 3 is chained with operations. 1 and 2; so, wire-variable Wv

and copy operations 4 and 5 are inserted (c) corresponding hardware; Wv becomes a wire and o1 a register.

to registers. However, since registers can only be read in the next cycle after being written, to enable operation

chaining, we introduce the notion of a wire-variable. Wire-variables are explicitly marked as being wires and are

not mapped to registers, and thus, can be read in the same cycle as they are written to.

Consider an operation Op1 that writes a result, r1 and another operation Op2 that reads this result:

r1 = Op1(arguments);r2 = Op2(r1)

To chain operations Op1 and Op2, the code has to be modified to:

temp = Op1(arguments);r2 = Op2(temp);r1 = temp

where variable temp is marked as being a wire and r1 is (potentially) mapped to a register1 .

Often, as was the case in the example in Figure 12, a variable may be written by several operations in different

basic blocks. When operations are chained across conditional checks, operations that write to “wire-variables”

have to be inserted in all the trails leading back from the chained operation, i.e., in all the branches of the preceding

conditional blocks. This is explained by an example in Figure 13(a). In this HTG representation, variable o1 is

written to by operations 1 and 2 in basic blocks BB0 and BB2 respectively. Operation 3 in basic block BB5 reads

the value of this variable to produce another variable o2. Consider that the scheduling algorithm schedules the

entire fragment of code in this figure within one clock cycle. Then, to enable operation chaining, a wire-variable

Wv is introduced and the copy operations 4 and 5 are inserted, as shown in Figure 13(b). In the resulting hardware,

shown in Figure 13(c), variable Wv becomes a wire and the variables o1 and o2 are bound to registers. Operation

3 uses the multiplexed result of both the operations that write to wire-variable W v. Note that, the copy operation 4

could also have been inserted into basic block BB3, leading to the same hardware.

Similarly consider the fragment of code in the Figure 14(a). In this example, variable o1 is written to only

in the true branch of a conditional block and is read by operation 2 in basic block BB5. This code implies that

if the condition evaluates to “false”, then a value of o1 from a previous write (not shown here) will be used by

operation 2. In order to chain the operations in this code, a variable copy to wire-variable W v has to be inserted in

both branches of the conditional block, as shown in Figure 14(b). So, the operation 2 now reads the variable Wv

1In the RTL VHDL generated after synthesis, r1 is mapped to a VHDL signal and temp is mapped to a VHDL variable

24

cond

(b)

....

BB 3
BB 2

BB 1

BB 0

BB 4

2: o2 = Wv + b

3: o1 = Wv
1: Wv = d

If Node

BB 5

cond

(a)

....

BB 2

BB 5

BB 3

BB 0

BB 1

BB 4

1: o1 = d

2: o2 = o1 + b

If Node

4: Wv = o1

Figure 14. (a) HTG of another example (b) Wire-variable Wv and copy operations (3 and 4) are added in all

chaining trails.

instead. In hardware, variable Wv will be mapped to a wire and variable o1 to a register. In this way, wire-variables

are introduced as and when required and a dead code elimination pass later removes any unnecessary variables

and variable copies. Hence, the chaining heuristic has to traverse all the chaining trails leading up to the current

scheduling step and insert copy operations to wire-variables for all the variables/operands read by the operation

being scheduled.

Chaining operations across conditional blocks is particularly useful for the design of low latency blocks such as

microprocessor functional blocks [58]. These blocks are usually targeted to an implementation within a single or

a few cycles and hence, all the operations in the design description have to be chained together. In other control-

intensive designs, situations such as those shown in Figures 13 and 14 are more common, wherein there exist copy

operations within conditional branches that assign a value, computed before the conditional, to a variable that is

subsequently read by an operation after the conditional block.

In the next section, we show how chaining operations across conditionals and the various compiler transforma-

tions presented so far can be integrated into a list scheduling heuristic.

7 Priority-based Global List Scheduling Heuristic

Scheduling is the task of assignment of operations to control steps or time intervals so that the allocated re-

sources can compute the operations assigned to each step [10]. For the purpose of evaluating the various code

motion transformations, we have chosen a Priority-based global list scheduling heuristic, although the transfor-

mations presented here can be applied to other scheduling heuristics as well. Priority list scheduling works by

ordering operations to be scheduled based on a priority associated with them.

Our objective is to minimize the longest delay through the design; hence, priorities are assigned to each op-

eration based on their distance, in terms of the data dependency chain, from the primary outputs of the design.

The priority of an operation is calculated as one more than the maximum of the priorities of all the operations

that use its result. The algorithm starts by assigning operations that produce outputs a priority of zero, and hence,

operations whose results are read by these outputs have a priority of one and so on. The priority assignment of

25

operations for the waka benchmark are indicated next to the operations in Figure 15. In this design, the priority

assignment of the output operations, n, l and k is 0, and the operations that depend on them have priority 1 and so

on. The priority of an operation that creates a conditional check (operations p and q in the figure), is assigned as

the maximum priority in the conditional branches of the If-HTG.

The scheduling heuristic assigns a cost for each operation based on

3

n
0

h

1 1m l

1f

p

FT

44

3

2

2
g

i

j

e

0

5

56
kba

d

q
4

4

c

<

False/Else
Branch

Compound

If HTG
Node

If HTG Node

HTG Node

True/Then
Branch

Figure 15. Priority assignment for

the operations in the “waka” bench-

mark

its global priority and favors operations that are on the longest path

through the design. In this way, the cost function attempts to minimize

the longest delay through the design. It is important to note that mini-

mizing a different cost function, such as average delay can be done by

incorporating control flow information into the cost function. Also, if

we have profiling information about which control paths are more likely

to be taken, then we can give operations on those paths a higher priority

than operations on less taken paths.

The scheduling heuristic is presented in Figure 16(a). The inputs to

this heuristic are the unscheduled hierarchical task graph (HTG) of the

design and the list of resource constraints. Additionally, the designer

may specify a list of allowed code motions (i.e. speculation, reverse

speculation, conditional speculation et cetera), whether dynamic vari-

able renaming is allowed, and the code motion technique (percolation or

trailblazing) for moving the operations [45]. The heuristic starts by as-

signing a priority to each operation in the input description as explained

above. Then scheduling is done one control or scheduling step at a time while traversing the basic blocks in the

hierarchical task graph (HTG). In our implementation, control paths are followed such that at the fork node of a

conditional block, the true branch is scheduled first and then the false branch. Within a basic block, each schedul-

ing step corresponds to a statement HTG node in the basic block (see Section 4). The heuristic to get the next

scheduling step is explained later in Section 7.1. At each time step in the basic block, a list of available operations

is collected, for each resource in the resource list, as shown in line 5 in the algorithm in Figure 16(a).

Available operations is a list of operations that can be scheduled on the given resource at the current scheduling

step. Pseudo-code for collecting the list of available operations is given in Figure 16(b). Initially, all unscheduled

operations in the HTG that can be scheduled on the current resource type are added to the available operations

list. These unscheduled operations are collected by traversing the basic blocks on the control flow paths from the

current basic block being scheduled. However, this basic block traversal algorithm skips over the loop body of any

loop nodes it encounters. This is because operations from within loop nodes can only be moved outside the loop

body by transformations such as loop-invariant code motion and loop pipelining. Similarly, when the scheduler is

26

scheduling the loop body of a loop node, available operations are only collected from within the loop body.

Once these unscheduled operations have been collected, operations whose data dependencies are not satisfied

and cannot be satisfied by variable renaming are removed from this list. Similarly, operations that cannot be moved

in the HTG to the current scheduling step using the allowed code motions are also removed from the available list.

This list of allowed code motions is provided by the user and hence, allows experimentation on the effectiveness

of the various code motions [8].

Next, the available operations heuristic determines the list of basic blocks (bbList) that the operation op will

have to be duplicated into. This list, bbList, will be non-empty if the operation op is being conditionally speculated.

The heuristic then calls the function FindResSlot for each basic block bb in bbList; this function determines if

there is an idle resource in the basic block that the op can be scheduled on. If there is no idle resource, the code

motion heuristic employed later by the scheduler may even instruct this function to create new scheduling steps

[59]. If the FindResSlot function is unable to accommodate a duplicated copy of op in any of the basic blocks

in bbList, then the operation op is removed from the available operation list. This is shown in lines 7 to 9 in the

algorithm in Figure 16(b).

Finally, the available operations heuristic calculates a cost for each of the operations that remain in the available

operations list. Currently, this cost is the negative of the operations global priority. The scheduling heuristic picks

the operation with the lowest cost from the available operations list (line 6 of Figure 16(a)). Effectively, this

chooses the operation with the highest priority in the available list and hence, favors operations that are on the

longest path through the design. More work needs to be done to enhance this cost function to include hardware

(control and area) cost models of the code transformations.

The code motion algorithm is then instructed to schedule this operation op with the lowest cost on the current

resource (res) at the current scheduling step (step), by a making a call to the function MoveOp. This function

is presented later in Section 7.5. Once the chosen operation has been moved and scheduled, the dynamic CSE

heuristic comes into play, as shown by the boxed region enclosing lines 8 to 12 in the algorithm in Figure 16(a).

From the remaining operations in the available list, dynamic CSE determines the list of operations, cseOpsList, that

have a common sub-expression with the scheduled operation op. Then, for each operation cseOp in cseOpsList, if

the basic block of cseOp is dominated by the basic block of op after scheduling, then the common sub-expression

in cseOp is replaced with the result from op (by calling ApplyCSE).

We illustrate the dynamic CSE heuristic using the earlier example from Figure 9(a). In this example, consider

that while scheduling basic block BB1, the scheduling heuristic determines that available operations are operations

2, 3 and 4. Of these operations, the heuristic schedules operation 2 in BB1. Then, the dynamic CSE heuristic

examines the remaining operations in the available list, namely operations 3 and 4, and detects and replaces the

common sub-expression (b + c) in operation 4 with the result, e′, of the scheduled operation 5, since BB(op5)

dominates BB(op4).

27

Algorithm 1: Priority List Scheduling Heuristic

Inputs: Unscheduled HTG of design, Resource List R

Output: Scheduled HTG of design

1: Calculate Priority Pr of all Operations in HTG

2: step = getNextSchedulingStep(HT G, φ)

3: while (step 6= φ) do

4: foreach (resource res in Resource List R) do

5: Get List of Available Operations A

6: Pick Operation op with lowest cost in A

7: MoveOp(op, res, step)
8: Get list of operations cseOpsList from A that

have common sub-expressions with op

9: foreach (operation cseOp in cseOpsList) do

10: if (BB(op) dominates BB(cseOp) then

11: ApplyCSE(cseOp, op)

12: endforeach /* Dynamic CSE Heuristic*/

13: endforeach

14: step = getNextSchedulingStep(HT G, step)

15: endwhile (a)

Algorithm 2: Get List of Available Operations

Inputs: Resource res, Scheduling step,

AllowedCodeMotions

Output: Available Operations List A

1: Candidates A = all unscheduled ops U in HTG

that can be scheduled on resource res

2: foreach (op in A) do

3: if (data dependencies of op cannot be satisfied)

4: Remove op from A

5: if (op cannot be moved to step using

AllowedCodeMotions)

6: Remove op from A

7: bbList = Basic Blocks that op will be

duplicated into

8: if (FindResSlot(op, any bb in bbList) = φ)

9: Remove op from A

10: Calculate cost of operation op

11: endforeach
(b)

Figure 16. (a) Priority-based List Scheduling Heuristic (b) Determining the list of Available operations.

The entire scheduling procedure is repeated for all the resources in each scheduling step as the basic blocks in

the HTG are traversed from top to bottom (HTG traversal is explained in more detail in the next two sections).

Since operations with higher priority may be speculated into a basic block, the (lower priority) operations that

were originally placed in that basic block by the designer can be left unscheduled. Either new scheduling steps are

added to the current basic block to schedule them or if reverse speculation has been enabled, then these operations

are reverse speculated into the subsequent conditional branches (if possible).

Scheduling of loops is done in the same manner. However, user-specified loop transformations such as loop

unrolling et cetera are applied first. The scheduler cannot move operations into or out of the loop body. This can

only be done by transformations such as loop-invariant code motion or loop pipelining. The Spark framework can

schedule all types of loops, including those with unknown loop iteration bounds. This is because, in the finite state

machine (FSM) generated by Spark, at the end of a loop body iteration, the FSM either goes back to the first state

in the loop body or goes to the next state after the loop body, depending on whether the loop condition is satisfied

or not. Hence, loop bounds are not required for generating correct, synthesizable VHDL. However, when the loop

28

bounds are not known, several loop transformations cannot be applied to the design and the cycles that the loop

will take to execute cannot be established.

7.1 Algorithm to Get the Next Scheduling Step

The scheduling heuristic in Spark schedules the design by traversing the HTG of the design in a top-down

manner starting at the first (Start) node of the design level HTG and walking down till the last (Stop) node in this

HTG. For getting the steps to schedule in the design, the scheduler calls the algorithm given in Figure 17(a). This

algorithm starts by determining the current basic block, currentBB, that the current scheduling step, step, is in. If

this is the first call to the algorithm (i.e. step is φ), then the currentBB is assigned as the first basic block in the top

level HTG of the design. The next scheduling step is then the scheduling step after the current step in currentBB

(line 6 in the algorithm). If step is currently empty, then nextStep is the first step in currentBB.

Next, the algorithm checks if nextStep is empty; this happens when the current scheduling step, step, is the last

scheduling step in currentBB. In this case, the algorithm should traverse the HTG and get the next basic block in

the HTG to schedule. However, it is at this point that we employ a novel technique that inserts new scheduling

steps in conditional branches that have fewer scheduling steps [59].

Often design descriptions are such that one conditional branch in an if-then-else HTG node has fewer scheduling

steps than the other. We call this an if-HTG with unbalanced conditional branches. In such unbalanced if-HTGs, it

is possible to insert a new scheduling step in the branch with fewer scheduling steps, without increasing the length

of the longest path through the if-HTG. This can increase the opportunities to schedule operations by conditional

speculation (i.e. by duplicating operations into both branches of the conditional block). The procedure in the

boxed section in the algorithm in Figure 17(a) inserts new scheduling steps to better balance out the branches of

conditional blocks.

As shown in line 7, when nextStep is empty, the algorithm determines if the currentBB has a complementary

basic block, complementBB. A complementBB exists if currentBB is in a if-HTG node; if the currentBB is

in the true branch, then its complementBB is the false branch and vice versa. If a complementBB exists and

if it has already been scheduled and it has more scheduling steps than currentBB, then the algorithm creates

a new scheduling step in currentBB. (lines 8 through 12 in Figure 17(a)). The reason that only a scheduled

complementBB is considered is to have an accurate picture of the resource utilization in that basic block before

adding any more scheduling steps to the design.

If a new scheduling step is not created in the currentBB and the nextStep is still empty (line 13), then the

algorithm proceeds to get the next basic block in the HTG by calling the getNextBasicBlock function (discussed

in the next section). If this function returns a new basic block, then the first scheduling step in the new basic block

is set as the nextStep (line 16 in Figure 17(a)).

The new scheduling step insertion procedure can be explained by the example in Figure 18(a). While scheduling

this design, the scheduling heuristic schedules the true branch, i.e., basic block BB2 first, followed by the false

29

Algorithm 3: Get Next Scheduling Step

Inputs: HTG of design, Current Scheduling Step step

Output: Next Scheduling Step nextStep

1: if (Scheduling step step = φ) then

2: currentBB = getFirstBasicBlock(HT G)

3: else

4: currentBB = getBasicBlockOf(step)

5: endif

6: nextStep = Scheduling step after step in currentBB

7: if (nextStep = φ) then

8: complementBB = getComplementBB(currentBB)

9: if (complementBB 6= φ and is scheduled) then

10: if (numOfStepsInBB(currentBB) <

numOfStepsInBB(complementBB)) then

11: nextStep = createNewStepInBB(currentBB)

12: endif /* Balance Conditional Branches */

13: if (nextStep = φ) then

14: nextBB = getNextBasicBlock(currentBB)

15: if (nextBB 6= φ) then

16: nextStep = First schduling step in nextBB

17: endif

18: return nextStep (a)

Algorithm 4: Get Next Basic Block

Inputs: HTG of design, Current Basic Block currentBB

Output: Next Basic Block nextBB

Static: Basic Block Queue bbQueue

1: nextTrueBB = getNextTrueBB(currentBB)

2: if (nextTrueBB 6= φ) then

3: isJoinBB = isThisJoinBB(nextTrueBB)

4: bbVisited = isBBMarkedVisited(nextTrueBB)

5: if (NOT(bbVisited) and NOT(isJoinBB)) or

(bbVisited and isJoinBB) then

6: bbQueue->pushBack(nextTrueBB)

7: if (NOT(bbVisited)) then

8: markBBAsVisited(nextTrueBB)

9: endif

10: nextFalseBB = getNextFalseBB(currentBB)

11: if (nextFalseBB 6= φ and has not been visited) then

12: markBBAsVisited(nextFalseBB)

13: bbQueue->pushBack(nextFalseBB)

14: endif

15: return (nextBB = bbQueue->popFront())

(b)

Figure 17. (a) Get Next Scheduling Step Algorithm; (b) Get Next Basic Block Algorithm

branch, i.e., BB3. So, if the design in this example is allocated two resources, namely, an adder and a subtracter,

then the resulting design after scheduling is as shown in Figure 18(b).

This figure shows that, after scheduling, the false branch of the if-then-else HTG node has fewer scheduling

steps than the true branch. Hence, the procedure outlined above inserts a new scheduling step in basic block BB3.

This new step and the presence of a corresponding idle resource in the other branch (BB2) of the if-HTG node,

enables the conditional speculation of operation “e”, as operations “e1” and “e2” in basic blocks BB2 and BB3

respectively. The resulting design is shown in Figure 18(c).

This example illustrates how inserting new scheduling steps in the shorter of the two branches of a conditional

block can enable code motions such as conditional speculation, without increasing the longest path through the

conditional block. This can lead to shorter schedule lengths for the design and improve resource utilization in

30

e

a

b

c d

T F

e

a

b

c

1e

d
e2

T F

da

b
c

S0

S1
S2

S3

S0

S1

S2

S0

S1

S2

BB 2 BB 3

BB 4
BB 4

BB 2 BB 3 BB 2 BB 3

BB 4

If Node If Node If Node condcondcond

...BB 5 BB 5 BB 5

FT

(a) (b) (c)

BB 1 BB 1 BB 1

Figure 18. (a) HTG representation of an example, (b) After scheduling basic block BB2, (c) Insertion of a new

scheduling step in basic block BB3 enables conditional speculation of operation e.

the conditional block, while at the same time leading to better balanced conditional branches. Also, if profiling

information is available, this heuristic can be modified so that it does not add new scheduling steps in basic blocks

on control paths that are more likely to be taken.

7.2 Algorithm to Get the Next Basic Block to Schedule

The algorithm to get the next basic block in the HTG is given in Figure 17(b). This algorithm traverses the

basic blocks in the design HTG in a top down manner starting at the Start node of the design level HTG. Each

basic block in the HTG design may have two successor basic blocks; one that is reached by traversing the “true”

path and the other by traversing the “false” path. This nomenclature arises to accommodate basic blocks that are

the condition basic blocks of if-then-else blocks or loops (see Section 4). Hence, if the current basic block is a

condition basic block and if its condition evaluates to true, the program flow traverses down the “true” path, else

it traverses the “false” path. For basic blocks that are not condition basic blocks, only the default true path exists.

The last basic block in the design has no successor basic blocks; this is Stop node of the design level HTG.

The algorithm in Figure 17(b) maintains a queue of basic blocks (bbQueue) to process. It gets as input the

current basic block, uses this to update the basic block queue and finally, returns the next basic block from the

queue. This algorithm starts off by looking at the next basic block on the true path as shown in line 1 of in Figure

17(b). If this nextTrueBB exists and if this basic block has not been visited before, it is pushed into the basic block

queue. However, basic blocks that are join nodes of if-then-else HTG nodes, are treated in a special manner. Join

basic blocks are visited twice; once from the true branch of the if-then-else and once from the false branch. Hence,

the first time they are visited (from the true branch), they are marked as having been visited, however, they are

not pushed onto the bbQueue. It is pushed into the queue on the second visit (from the false branch), when the

join basic block has already been marked as “visited” from an earlier visit (lines 3 to 8 of the algorithm). This is

done so as to schedule hierarchical nodes such as if-then-else blocks completely, before proceeding to subsequent

nodes or basic blocks. Also, although not shown in Figure 17(b), this algorithm does not traverse true paths that

are the backward control flow edge of a loop, i.e., the edge that iterates over the loop body.

31

BB 5

T F

...

BB 3 BB 4
BB 5

BB 6

BB 2

BB 1

If Node

1: a = b + c

3: e = a − d

2: g = d + f

cond1 cond1
T F

...

BB 2

BB 4

BB 6

BB 3

If Node

1: a = A

4: A = b + c

2: g = d + f

3: e = a − d

BB 5

T F

...

BB 2If Node

BB 1

BB 3 BB 4

1: a = A 2: g = d + f

cond1

4: A = b + cBB 1

5: e = A − d 6: e = A − d

(c)(b)(a)

BB 6

Figure 19. (a) HTG representation of an example (b) Operations 1 is speculatively executed as operation 4 in

BB1 (c) Operation 3 is conditionally speculated into conditionals BB3 and BB4. Also shown is the dynamic

renaming of variable a with the speculatively calculated value A in operation 5.

Similarly, if a successor basic block exists on the “false” path of the queue and it has not been visited earlier,

it is pushed into the queue. The algorithm returns the first entry in the front of the queue as the next basic block

to schedule. When the last basic block in the HTG of the design has been reached, this algorithm returns an

empty next basic block and hence, the algorithm to get the next scheduling step terminates by returning an empty

scheduling step. This indicates to the scheduling heuristic that it has finished scheduling the HTG of the design.

7.3 An Illustrative Example of the Spark Scheduler

In this section, we will walk through an example to understand how the scheduling heuristic works and particu-

larly to show how code motions are employed by the heuristic. Consider the example in Figure 19(a) and consider

that the resources allocated to schedule this design are one adder and one subtracter. The first node in the HTG

of this example is basic block BB1. The scheduler starts by scheduling on the adder in basic block BB1. Lets say

that among the available operations for the scheduling step in BB1, operation 1 from basic block BB3 is chosen

for scheduling. The code motion technique determines that it has to speculate this operation in order to schedule

it in BB1. The resultant design is shown in Figure 19(b). In this figure, operation 1 is speculatively executed as

operation 4 in BB1 and the result of operation 4, variable A, is still written back to variable a in operation 1 in basic

block BB3. This is to ensure that variable a gets updated with the result A only if the condition cond1 evaluates to

“true”.

Next, the scheduler receives basic block BB3 to schedule from the HTG traversal algorithms in Figure 17(b)

(since BB2 does not have any operations in it). At this point, initially operation 3 will be picked among the available

operations. However, this operation requires conditional speculation to be scheduled in basic block BB3 and as

per our conditional speculation heurisitic [45], we only allow conditional speculation when the basic block in the

other conditional branch of the if-then-else has already been scheduled. In other words, in this case, we cannot

allow conditional speculation of operation 3 into BB3, since basic block BB4 has not yet been scheduled. Thus,

only the copy operation, operation 1, is scheduled into basic block BB3.

32

The scheduler receives basic block BB4 to schedule next, as per the algorithm in Figure 17(b). Operation 2 is

scheduled on to the adder. The scheduler then determines that operation 3 can be scheduled on the subtracter in

this scheduling step by conditionally speculating it into basic blocks BB3 and BB4. The conditional speculation is

allowed this time around because the basic block in the other conditional branch of the if-then-else node, namely,

BB3, has already been scheduled and has an idle resource (subtracter) on which operation 3 can be scheduled.

The resultant design is as shown in Figure 19(c). Operation 3 has been duplicated as operations 5 and 6 in

basic blocks BB3 and BB4. In basic block BB3, operation 5 directly uses the speculatively calculated value A of

operation 1 by employing dynamic renaming [45]. Finally, since basic blocks BB5 and BB6 are empty and there

are no more unscheduled operations, the scheduling heuristic terminates.

This illustrative example demonstrates the working of the scheduling heuristics presented so far. In the next

section, we show how synthesis transformations such as chaining can be incorporated into the various algorithms

of the scheduling heuristic.

7.4 Incorporating Chaining into the Scheduling Heuristic

Chaining can be incorporated into the scheduling heuristic and the heuristic to get the available operations as

shown by the boxed sections of these two heuristics in Figure 20 (a) and (b) respectively. The modified priority-

based list scheduling heuristic keeps track of not only the current scheduling step, but also the previous scheduling

step, prevStep. Chaining across conditional boundaries is attempted if the current scheduling step is in a basic

block different from the basic block that the prevStep was in. This is because chaining of operations within a basic

block, i.e., with no control flow between them, is done within the same scheduling step. Note that although not

shown in the algorithm in this figure, if the scheduling heuristic fails to schedule anything on step with chaining

across conditional boundaries enabled, then it tries to schedule on step again, albeit without chaining.

When chaining across conditional boundaries is enabled, the scheduler determines all the steps in previous

basic blocks that the current step has to be chained with (stepsToChainWith). This is done by the getChainSteps

function; this function (not shown here) traverses back up all the control paths leading up to the current basic

block, looking for steps scheduled in the same cycle as the current scheduling step. If chaining is not enabled, then

stepsToChainWith is empty.

With chaining enabled, the scheduler skips over any resource res in the resource list that is used in any of the

stepsToChainWith. This is shown in lines 8 to 10 in Figure 20(a). If the resource is available for scheduling, then

the scheduling heuristic proceeds as before and calls the heuristic to collect available operations (see Section 7).

The Available Operations heuristic also requires a modification to enable chaining across conditional bound-

aries as shown by the boxed section in Figure 20(b). If stepsToChainWith is not empty, then this heuristic inspects

each step, chainStep, in the stepsToChainWith to determine if the current operation under consideration, op, is

dependent on any operations in chainStep. If it is, then the total run time of the current operation is calculated

33

Algorithm 1’: Scheduling Heuristic with Chaining

Inputs: Unscheduled HTG of design, Resource List R

Output: Scheduled HTG of design

1: Calculate Priority Pr of all Operations in HTG

2: prevStep = step = getNextSchedulingStep(HT G, φ)

3: while (step 6= φ) do

4: if (basicBlock(step) 6= basicBlock(prevStep)) then

5: stepsToChainWith = getChainSteps(step)

6: endif /* Determine whether to do Chaining */

7: foreach (resource res in Resource List R) do

8: if (isResUsed(res, stepsToChainWith)) then

9: Continue to next resource in foreach loop

10: endif /* Can Chaining be done on res */

11: Get List of Available Operations A

12: Pick Operation op with lowest cost in A

13: MoveOp(op, res, step)

14: PerformDynamicCSE(A , op)

15: endforeach

16: prevStep = step

17: step = getNextSchedulingStep(HT G, step)

18: endwhile (a)

Algorithm 2’: Get List of Available Operations

Inputs: Resource res, Scheduling step,

AllowedCMs, stepsToChainWith

Output: Available Operations List A

1: Candidates A = all unscheduled ops U in HTG

that can be scheduled on resource res

2: foreach (op in A) do

3: if (data dependencies of op not satisfied)

4: remove op from A

5: if (op cannot be moved to step with AllowedCMs)

6: remove op from A

7: FindResSlot for op in each bb of basic block list

bbList that op will be duplicated into
8: foreach (chainStep in stepsToChainWith) do

9: TotalRunTime = run time of res + run time of

ops in dependency chain of op in chainStep

10: if (TotalRunTime > clockPeriod) then

11: remove op from A

12: endforeach /* Can op be chained in step */

13: Calculate cost of operation op

14: endforeach (b)

Figure 20. Incorporating Chaining into the (a) Priority-based List Scheduling Heuristic (b) Available oper-

ations Algorithm. Although not shown here, if scheduling on a step with chaining enabled fails, then the

same step is scheduled again without chaining.

as the summation of the execution/run time of the resource res and the execution time of the dependency chain

of operations in chainStep. If this TotalRunTime is greater than the clock period allocated to the design, then

the operation under consideration is removed from the available operations list (lines 7 and 8 in Figure 20(b)).

Note that the resource execution times and the clock period of the design are specified by the user in a hardware

description file that the Spark tool reads during its initialization.

The final modification required in the scheduling framework to enable chaining operations across conditional

boundaries is in the code motion heuristic as explained in the next section.

7.5 Incorporating Chaining into the Code Motion Technique

Once the scheduling heuristic decides to schedule an operation op on a scheduling step, it calls the code motion

technique to actually move this operation. It is the code motion technique’s responsibility to take care of operation

34

Algorithm 5: MoveOp: TrailSynth Technique

Inputs: Operation op, Scheduling step

Output: Operation op is moved to step

1: TrailList = findTrails(op, step)

2: targetBB = getBasicBlockOf(step)

3: foreach (trail in TrailList) do

4: lastBBInTrail = last Basic Block on trail

5: if (lastBBInTrail = targetBB) then

6: trailStep = step

7: Insert op in trailStep

8: else

9: trailStep = FindResSlot(op, lastBBInTrail)

10: Insert duplicate of op in trailStep

11: endif

12: Update data dependencies effected by op move

13: if (trailStep chained across conditionals) then

14: ChainOpWithPrevSteps(op, trailStep)

15: endforeach

(a)

Algorithm 6: ChainOpWithPrevSteps

Inputs: Operation op, Scheduling trailStep,

Output: Inserts Wire-Variables in all chained steps

1: stepsToChainWith = getChainSteps(trailStep)

2: chainingTrailList = getChainingTrails(trailStep)

3: Le f tWv and RightW v = New Left and Right

Operand Wire-Variables for op

4: foreach (chainTrail in chainingTrailList) do

5: depOpList = findDependentOps(op, chainTrail)

6: foreach (depOp in depOpList) do

7: if (depOp writes to left operand of op) then

8: W v = Le f tW v

9: else /* depOp writes to right operand of op */

10: W v = RightW v

11: Make depOp write to wire-variable W v

12: Insert copy operation from Wv to original

variable of depOp in its scheduling step

13: endforeach

14: endforeach (b)

Figure 21. (a) TrailSynth: Trailblazing code motion technique modified for high-level synthesis (b) Chaining

heuristic that inserts wire-variables into all chaining trails

duplication if required and update the data dependencies effected by the code motion. At the same time, the

chaining heuristic inspects each scheduling step into which the scheduled operation has been moved or duplicated

and inserts wire-variables if the scheduling step is chained with any other step into the same cycle.

In the Spark framework we have implemented two code motion techniques: Percolation scheduling [60, 7]

and Trailblazing [47]. However, the Spark framework primarily employs the trailblazing technique to perform

code motions due to its better performance and lower compensation code overheads compared to percolation [45].

Trailblazing is a code motion technique that uses the structured and hierarchical nature of hierarchical task graphs

to perform efficient operation moves [47]. Hierarchical Task Graphs (HTGs), as explained in Section 4, structure

the input description’s operations and global information so that non-incremental moves can be made without

visiting every operation that is bypassed. At the lowest level, trailblazing is able to perform the same fine-grained

transformations as percolation. However, at a higher level, trailblazing is able to move operations across large

blocks of code.

The code motion heuristic incorporating trailblazing is presented in Figure 21(a). We call this heuristic Trail-

35

Synth. The TrailSynth heuristic starts by calling the basic trailblazing algorithm; this algorithm is not presented

here and is similar to the algorithm presented in the context of compilers in [61]. The trailblazing algorithm returns

a list of trails; there is a trail for each control path that leads from the current basic block that operation op is in,

to the scheduling step, step, that the operation op is being scheduled on or to one of the basic blocks on to which

the operation will be duplicated.

The code motion heuristic examines each trail in the list of trails (TrailList) and inserts the operation into the

last basic block on each trail (lines 3 to 11 in Figure 21(a)). Multiple trails indicate that the operation has to

be duplicated into the basic block that each trail ends in, namely, lastBBInTrail. If the trail ends in the basic

block that the scheduling step (step) is in, i.e., the “target” basic block (targetBB), then the operation itself is

inserted into step. For the other trails, the heuristic calls a procedure that finds a scheduling step (trailStep) in

the lastBBInTrail with an un-utilized resource on which operation op can execute. This procedure, FindResSlot,

may also insert a new scheduling step into a basic block if no scheduling step is found with an empty resource slot

[59]. A duplicate copy of op is then inserted into this trailStep in lastBBInTrail. This is shown in lines 9 and 10

of the heuristic.

After the operation has been inserted into the current trail being examined, the code motion heuristic calls

a procedure that updates the data dependencies affected by the operation move and/or duplication (line 12 in

Figure 21(a)). It is at this point that the chaining heuristic comes into play. If the scheduling step on the current

trail (trailStep) that the operation has been moved or duplicated into, is chained across its previous conditional

boundaries, then the code motion heuristic calls the chaining function ChainOpWithPrevSteps presented in Figure

21(b). This function inserts wire-variables into all the chaining trails (chainingTrailList) that lead up to the

trailStep. As explained in Section 6.3.1, chaining trails consist of the basic blocks that have a control-flow path

to the basic block of the current scheduling step and have a scheduling step scheduled in the same cycle as the

current scheduling step.

The chaining heuristic in Figure 21(b) first creates the new wire-variables, Le f tW v and RightW v, for the left

and right operands, respectively, of the operation being scheduled, op (line 3). Then, for each chaining trail,

chainTrail, in the list of chaining trails, chainingTrailList, the heuristic calls the function f indDependentOps.

This function finds the list the operations (depOpList) in chainTrail that the current operation op has a dependency

with. Each dependent operation, depOp, in this list is checked and if depOp writes to the left operand of op, then

the result of depOp is written to Le f tW v instead. Conversely, if depOp writes to the right operand of op, its result

is written to RightW v instead. Also, a copy operation from Le f tW v or RightW v to the original variable that depOp

wrote to, is inserted after depOp in its scheduling step. This entire procedure is outlined within the f oreach loop

in lines 5 to 13 in Figure 21(b).

In this way, this chaining heuristic inserts write operations to wire-variables into the scheduling step, trailStep,

of each trail that the scheduled operation is duplicated or moved into. Note that, if the depOpList is empty for any

36

Benchmark # Basic Blocks # Operations # Resources

MPEG-1 pred2 45 287 2+−,1∗,2 <<,2 ==,2[]

MPEG-1 pred1 17 123 2+−,1∗,2 <<,2 ==,2[]

MPEG-2 d p f rame est 61 272 4+−,1∗,2 <<,2 ==,2[]

GIMP tiler 35 150 3+−,1/,1∗,2 <<,2 ==,2[]

Table 1. Characteristics of the various designs used in our experiments along with the resources allocated for

scheduling them.

chaining trail in chainingTrailList, the chaining heuristic will insert simple copy operations from both the original

left operand of op to its left operand wire-variable (Le f tW v) and from its original right operand to RightW v (as

explained earlier in the example in Figure 14). Hence, all the chaining trails will now have writes to these wire-

variables and the scheduled operation op reads the wire-variables instead of its original operands. Any unnecessary

copy operations are eliminated by a dead code elimination pass performed after scheduling.

8 Experimental Setup

We have implemented the scheduling heuristic along with the pre-synthesis transformations and synthesis and

compiler transformations presented in this paper in the Spark high-level synthesis framework. Spark provides the

ability to control the various code transformations by user-defined scripts and command-line options. This enables

us to experiment with the various transformations presented in this paper. In this section, we present the results

for these experiments and demonstrate the utility of these transformations in improving the quality of synthesis

results.

We have chosen three large and moderately complex real-life applications, representative of the multimedia

and image processing domains, to perform our experiments, namely, the MPEG-1 algorithm [62], the MPEG-2

algorithm [63] and the GIMP image processing tool [64]. From these applications, we have taken a few designs that

are relatively control-intensive. These designs consist of two functions from the Prediction block of the MPEG-

1 algorithm, one function from the Motion Estimation block of the MPEG-2 algorithm and one function from

the GIMP image processing tool. The MPEG-1 functions used are the pred1 and pred2 functions, the MPEG-2

function is the d p f rame estimate function and GIMP function is the tile function (with the scale function inlined)

from the “tiler” transform 2.

Table 1 lists the characteristics of the various designs used in terms of the number of non-empty basic blocks

and the number of operations in the input description. The number of basic blocks is indicative of the control

complexity of the design. All these designs have doubly nested loops. Also, given in this table are the type and

quantity of each resource allocated to schedule these designs for all the experiments presented in the following

2Note that this floating point function has been arbitrarily converted to an integer function for the purpose of our experiments. This

does not affect the nature of the control flow, but only the type of data that is handled.

37

sections. The resources indicated in this table are; +− does add and subtract, == is a comparator, ∗ a multiplier,

/ a divider, [] an array address decoder and << is a shifter. The multiplier (∗) executes in 2 cycles and the divider

(/) in 4 cycles. All other resources are single cycle.

The scheduling results presented in the next few sections are in terms of the number of states in the finite state

machine controller and the cycles on the longest path (i.e. execution cycles). The longest path through a if-then-

else conditional block is the cycles on the longer branch and for loops, the longest path length of the loop body

is multiplied by the number of loop iterations. For all the designs used in our experiments, the loop bounds are

known.

We also present logic synthesis results obtained after synthesizing the RTL VHDL generated by Spark using the

Synopsys Design Compiler logic synthesis tool. The LSI-10K synthesis library is used for technology mapping

and components are allocated from the Synopsys DesignWare Foundation library. The logic synthesis results are

presented in terms of three metrics: the critical path length (in nanoseconds), the unit area (in terms of synthesis

library used) and the maximum delay through the design. The critical path length is the length of the longest

combinational path in the netlist as reported by static timing analysis tool and this length dictates the clock period

of the design. The maximum delay is the product of the longest path length (in cycles) and the critical path length

(in ns) and signifies the maximum input to output latency of the design.

In all the results presented in the next few sections, we start with a “baseline” case that has all the speculative

code motions enabled along with the compiler passes of copy propagation, constant propagation and dead code

elimination that are applied both before and after scheduling. We have shown in past work that employing these

speculative code motions significantly enhances the quality of high-level synthesis results [8, 43]. Hence, this

baseline case represents a design that has already been optimized to a great extent. Using this baseline case, we

demonstrate how the various transformations discussed in this paper can further improve the synthesis results. We

start with the pre-synthesis transformations.

9 Results for Pre-Synthesis Optimizations
9.1 Function Inlining

In our discussion of source level transformations, we have left out one important coarse grain source-to-source

transformation, namely, function inlining. Function inlining is a transformation that replaces a call to a function

by an instance of the function itself. This transformation is usually applied to increase the scope of application of

other compiler transformations. Although this transformation has not been implemented in the Spark framework,

we have applied it manually to the MPEG-1 designs and to the tiler transform from the GIMP. To demonstrate the

effectiveness of function inlining, we present scheduling results for the MPEG-1 designs.

Both the functions, pred2 and pred1, of the MPEG-1 design call the function “calcid” at the start of doubly

nested loops. For this reason and because calcid is a small function that consists of only straight-line code (no

control), it is ideal for inlining. Table 2 presents the scheduling results before and after inlining the calcid function

38

Transformation MPEG-1 pred2 MPEG-1 pred1

Applied # States # cycles # States # cycles

Initial Code 84 4059 44 1825

After inlining 85(+1.2%) 4123(+1.6%) 43(-2.3%) 1761(-3.5%)

Table 2. Results before and after inlining the calcid function for the MPEG-1 pred2 and pred1 functions.

Before inlining calcid has the resource allocation shown in Table 1. After inlining, the operations from the

inlined calcid function share the resources with the existing operations in the pred2 and pred1 functions.

Transformation MPEG-1 pred2 MPEG-1 pred1

Applied # States # cycles # States # cycles

Initial Code + LICM + CSE 74 2974 41 1323

After inlining + LICM + CSE 75(+1.4%) 2702(-9.1%) 41(0%) 1155(-12.7%)

Table 3. Results before and after inlining the calcid function and applying loop-invariant code motion (LICM)

and common sub-expression elimination (CSE) for the MPEG-1 pred2 and pred1 functions. Recall that

before inlining calcid has a full set of resources exclusively to itself.

into the pred2 and pred1 functions. These results show only modest improvements in number of states and longest

path cycles due to inlining and as a matter of fact, the number of cycles increases for the pred2 design. However,

this is because when calcid is synthesized separately from the pred1 and pred2 designs, it has the same number

of resources allocated to it as the pred2 and pred1 designs (see Table 1). But after inlining, the operations that

were part of calcid now have to share the resources allocated to the pred1 and pred2 functions with the existing

operations in these two designs. Hence, the scheduling results in Table 2 demonstrate that after inlining, the

speculative code motions are able to schedule these two functions with calcid inlined in almost the same cycles –

using fewer resources – than when calcid is not inlined and has a set of resources allocated exclusively to it.

To demonstrate that inlining indeed increases the scope of application of other parallelizing transformations, we

present the results for the same experiments, with loop-invariant code motion (LICM) and common sub-expression

elimination (CSE) enabled. These results are presented in Table 3. The first row lists the results when these two

transformations are applied before inlining and the second row lists the results after inlining.

The number of states in the controller is constant for the pred1 design and increases by 1 for the pred2 design

after inlining. However, the number of cycles on the longest path is considerably less when these transformations

are applied after inlining rather than before inlining. We have found that this gap between the non-inlined design

and the inlined design continues to increase as the number of code optimizations applied to the designs increases.

Based on these results, for the rest of the experiments presented in this paper, we use the inlined versions of the

pred2 and pred1 functions as the “baseline” case. Also, as mentioned earlier, the tiler function from the GIMP

also has the “scale” function inlined. These inlining decisions have been made by inspecting the design and based

39

Transformation MPEG-1 pred2 MPEG-1 pred1

Applied # States Long Path # States Long Path

Baseline 85 4123 43 1761

with Loop Inv CM 102(+20.0%) 3394(-17.7%) 53(+23.3%) 1461(-17.0%)

with CSE 73(-14.1%) 3355(-18.6%) 38(-11.6%) 1441(-18.2%)

with LICM + CSE 75(-11.8%) 2702(-34.5%) 41(-4.7%) 1155(-34.4%)

Table 4. Results after applying pre-synthesis transformations on the MPEG-1 pred2 and pred1 functions

Transformation MPEG-2 d p f rame est GIMP tiler

Applied # States Long Path # States Long Path

Baseline 56 684 43 3031

with Loop Inv CM 66(+17.9%) 682(-0.3%) 48(+11.6%) 3163(-21.5%)

with CSE 56(0%) 626(-8.5%) 29(-32.6%) 2631(-34.7%)

with LICM + CSE 56(0%) 599(-12.4%) 29(-32.6%) 2334(-42.1%)

Table 5. Results after applying Pre-Synthesis transformations on the d p f rame estimate function from the

MPEG-2 Motion Estimation block and the tiler function from the Gimp Image Processing tool

on experimentation when it became clear that inlining would significantly enhance the opportunities to apply the

transformations in the Spark toolkit.

9.2 Scheduling Results for Pre-Synthesis Optimizations

Tables 4 and 5 list the scheduling results obtained after the application of the pre-synthesis transformations to

the four designs. The results in the first row are for the baseline case (all code motions enabled along with copy

propagation and dead code elimination); the second row for when only loop-invariant code motion (LICM) is

applied, the third row for when only common sub-expression elimination (CSE) is applied and the fourth row for

when both LICM and CSE are applied. The percentage reductions of each row over the baseline case are given in

parentheses.

The results in the second row of these two tables show that when loop-invariant code motion alone is applied,

the number of states in the controller increases by 11 to 23 %, while the cycles on the longest path through the

design decrease by up to 21 % (for tiler). This is because when loop-invariant operations are moved out of the

loop, the loop body becomes smaller, hence, fewer operations execute per loop execution. This leads to the lower

cycles on the longest path. However, the operations that have been moved outside the loop body require more

states to execute and often this increase in the number of states outside the loop is greater than the decrease in the

number of states required to execute operations within the loop. We will explore the trade-off this creates between

area increase due to controller size and increase in performance due to reduced longest path cycles in the next

40

MPEG-1 Pred2 Function

0

0.2

0.4

0.6

0.8

1

1.2

Critical Path
(c ns)

Total Delay
(c*l ns)

Unit Area

N
or

m
al

iz
ed

 V
al

ue
s

MPEG-1 Pred1 Function

0

0.2

0.4

0.6

0.8

1

Critical Path
(c ns)

Total Delay
(c*l ns)

Unit Area

MPEG-2 DpFrame_Est Function

0

0.2

0.4

0.6

0.8

1

1.2

Critical Path
(c ns)

Total Delay
(c*l ns)

Unit Area

GIMP Tiler Function

0

0.2

0.4

0.6

0.8

1

1.2

Critical Path
(c ns)

Total Delay
(c*l ns)

Unit Area

Baseline Only CSEOnly LICM LICM & CSE

Figure 22. Effects of the pre-synthesis transformations, loop-invariant code motion (LICM) and common

sub-expression elimination (CSE), on logic synthesis results for the various designs

section.

We see from the third row in Tables 4 and 5 that when CSE is applied in addition to the transformations in

the baseline case, the number of states and the longest path cycles decrease significantly for all four designs; by

more than 30 % for the tiler design. Clearly, there exist numerous opportunities to apply CSE in off-the-shelf

code for these industrial applications. Also, as shown by the results in the last row of these tables, when both

loop-invariant code motion and CSE are applied, the improvements in the cycles on the longest path are to some

extent additive, especially for the MPEG-1 designs. The number of states reduces for the MPEG-1 designs and for

tiler and remains constant for the MPEG-2 design. Performance increases for all the designs by between 12 % to

42 %.

9.3 Logic Synthesis Results for Pre-Synthesis Optimizations

We synthesized the VHDL generated by Spark corresponding to the pre-synthesis experiments using the Syn-

opsys Design Compiler. The results for the critical path length, the total delay and the unit area (see Section 8)

are presented in the graphs in Figure 22. The bars in these graphs represent the baseline case (1st bar), when only

LICM is applied (2nd bar), when CSE is applied (3rd bar) and finally, when both LICM and CSE are applied (4th

bar). All the metrics mapped are normalized with respect to the baseline case.

These results show that the critical path length remains fairly constant when these transformations are applied.

41

This is important because it signifies that the clock period in the design does not increase. Also, the total delay

through the circuit reduces since the cycles on the longest path decrease. However, LICM can lead to a higher area

(for the pred2 and d p f rame estimate designs). This increase is less than 20 % and is mainly due to the larger

FSM controller size. With LICM alone, the decreases in total delay through the circuit are up to 20 %. However,

for the d p f rame estimate design, since LICM has little effect on the longest path cycles (see Table 5), its total

delay increases with LICM alone. With CSE and LICM enabled, the total delay for all the designs decreases

by between 17 to 45 %. Area decreases for the pred1 design, but increases by about 15 % for the pred2 and

d p f rame estimate designs. Note that the area for the tiler design remains high due to the area-intensive resources

used in this design, namely, a divider and a multiplier.

Loop-invariant code motion has two opposing effects on the synthesized designs. On the one hand, it reduces the

cycles on the longest path through design by executing fewer operations within the loop body. On the other hand,

LICM also leads to a bigger FSM controller. Also, because LICM increases resource utilization, the complexity

of the steering logic (multiplexors and de-multiplexors) increases and hence, the area increases. However, the

reduction in the size of the controller brought about by CSE overcomes the increases due to LICM. Also, since

CSE eliminates redundant operations, the number of operations mapped to the functional units reduces, hence

reducing area. For the pred2 and d p f rame estimate designs, the increase in area due to higher steering and

control logic is larger than the area reduction due to the operations eliminated by CSE. As a matter of fact, as we

will see in Section 12, when dynamic CSE is applied in conjunction with LICM, the area decreases for all the

designs.

9.4 Results for Loop Unrolling

The Spark framework enables the designer to unroll loops in the source code by specifying the index variable of

the loop to be unrolled and the number of times the loop should be unrolled. This is done by means of a script file

that is read by Spark during initialization. We have used this feature to analyze the affects of loop unrolling on the

functions from the MPEG-1 design. The results are presented in Table 6. The first row in this table lists the results

for the baseline case with no loop unrolls. Since loop unrolling is applied to increase the scope for application of

other optimizing transformations, we have enabled loop invariant code motion (LICM), common sub-expression

elimination (CSE) and dynamic CSE (DCSE) for this baseline case.

The pred2 and the pred1 functions both have doubly nested loops. For our experiments, we choose to unroll

one innermost loop from each design. Hence, Table 6 lists scheduling results for when the “p” loop from the pred2

function and the “j” loop from the pred1 function are unrolled and then the designs are scheduled. The number of

unrolls for each design is specified in the first column of this table; it signifies the number of copies of the original

loop body that is added to the loop. Hence, after one unroll, the new loop body of the loop has two loop bodies of

the original loop.

Note that, when the upper iteration bound of the loop is not divisible by the number of unrolls, then the cycle

42

Transformation MPEG-1 pred2 MPEG-1 pred1

Applied # States # cycles # States # cycles

Baseline+LICM+CSE+DCSE 66 2126 36 835

1 Unroll 77(+16.7%) 2094(-1.5%) 47(+30.6%) 803(-3.8%)

3 Unrolls 99(+50%) 2078(-2.3%) 72(+91.7%) 787(-5.7%)

Table 6. Results after unrolling the “p” loop in the pred2 function and the “j” loop in the pred1 function.

MPEG-1 Pred2 Function

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Critical Path
(c ns)

Total Delay
(c*l ns)

Unit Area

N
or

m
al

iz
ed

 V
al

ue
s

MPEG-1 Pred1 Function

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Critical Path
(c ns)

Total Delay
(c*l ns)

Unit Area
N

or
m

al
iz

ed
 V

al
ue

s

Baseline+LICM+CSE+DCSE 1 Unroll 3 Unrolls

Figure 23. Effects of loop unrolling on logic synthesis results for the MPEG-1 Pred2 and Pred1 functions.

count will not be accurate. This is because, say that the upper iteration bound of the loop is 10, then when the loop

is unrolled twice, there are 3 original loop bodies in the new loop body. Hence, now the loop body will execute 4

times although a conditional check on the loop index variable count within the loop body will exit the loop early

in the 4th iteration of the loop. However, Spark counts cycles for loops as the maximum number of cycles through

the loop body multiplied by the number of loop body iterations. Hence, we only present results for 1 unroll and

3 unrolls in Table 6 and not for, say, 2 and 4 unrolls (the iteration upper bound for the unrolled loops for these

designs is 8 iterations).

The results in Table 6 show that the number of states increase. This is because when the loop body is unrolled,

there are more states required to execute the loop body. Also, there is a modest decrease in the number of cycles

on the longest path for both the designs. This is because there are not enough resources allocated to take advantage

of the increased opportunities available for operation parallelism. This is validated by the logic synthesis results

presented in Figure 23. The graphs in this figure show the results for the baseline case (1st bar), with one loop

unroll (2nd bar) and with three loop unrolls (3rd bar). The results are normalized with respect to the baseline case

values.

From these graphs we see that as the amount of unrolling is increased, both the critical path in the design and the

design area increase significantly. For example, in the case of the pred1 design with 3 loop unrolls, critical path

length increases by over 40 % and the area almost doubles. These increases are because the number of operations

mapped to the same resources increase as the loop are unrolled. This increased resource utilization comes at the

43

Transformation MPEG-1 pred2 MPEG-1 pred1

Applied # States # cycles # States # cycles

Baseline+LICM+CSE+DCSE 65 2062 36 835

1 Unroll 71(+9.2%) 1870(-9.3%) 42(+16.7%) 547(-34.5%)

3 Unrolls 84(+29.2%) 1790(-13.2%) 55(+52.8%) 435(-47.9%)

Table 7. Loop unrolling results using a resource allocation of 4 adders instead of 2 for the pred2 and the

pred1 functions.

price of increasing costs of steering logic such as multiplexors and de-multiplexors and the control logic associated

with them. The increase in the controller size also contributes to the increase in area.

The logic synthesis results in the graphs in Figure 23 show that the increases in critical path length outweigh

the reductions in the number of cycles on the longest path through the design. Effectively, in these experiments,

loop unrolling leads to worse total delays through the circuit and larger design area. However, we can do better

with loop unrolling, if we increase the resources allocated to these designs, as explained in the next section.

9.5 Loop Unrolling with Increased Resource Allocations

For the experiments performed for this paper, we chose a minimal resource allocation. This is to mimic real-life

situations where design area (which is correlated with resource allocation) is often severely constrained. However,

loop unrolling is a technique that increases the opportunities for design parallelization. Hence, in the context

of high-level synthesis, loop unrolling should be applied when there is a low resource utilization, i.e., when the

resources are idle in several cycles. Clearly, our approach of allocating a small number of resources does not leave

many idle resources after applying the current set of parallelization techniques. In this section, we demonstrate

that loop unrolling can lead to the improved synthesis results when a higher resource allocation is available.

For both the MPEG-1 designs, we have found that the ALU is the critical component, since increasing this

component leads to most improvements in the results (with and without loop unrolling). Hence, we increased the

number of adders from two to four and ran our experiments with loop unrolling again. The scheduling results are

presented in Table 7. The metrics presented and loops unrolled are the same as before.

With a resource allocation of 4 adders, the improvements in the number of cycles for the pred2 design are 9.3

% and 13.2 % for 1 and 3 loop unrolls respectively. Similarly, the pred1 function shows reductions of almost 48 %

in cycles when the “j” loop is unrolled 3 times. Also, the increase in the number of states for the both the designs

is almost half as compared to the results with 2 adders. This is because the scheduler is able to schedule the loop

body in much fewer cycles with the increased resource allocation.

The logic synthesis results for loop unrolling with the higher resource allocation of 4 adders are given in Figure

24. From these results, we can see that using the higher resource allocation, loop unrolling can achieve lower

44

MPEG-1 Pred2 Function

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Critical Path
(c ns)

Total Delay
(c*l ns)

Unit Area

N
or

m
al

iz
ed

 V
al

ue
s

MPEG-1 Pred1 Function

0

0.5

1

1.5

2

Critical Path
(c ns)

Total Delay
(c*l ns)

Unit Area

N
or

m
al

iz
ed

 V
al

ue
s

Baseline+LICM+CSE+DCSE 1 Unroll 3 Unrolls

Figure 24. Loop unrolling with a resource allocation of 4 Adders and 2 Shifters for the MPEG-1 Pred2 and

Pred1 functions

delays through the circuit. The increase in critical path length is much lower and both the pred2 and pred1

designs achieve a lower total delay for 1 loop unroll over the baseline case. Clearly, a resource allocation of 4

adders enables the parallelizing optimizations to exploit the increased opportunities available after 1 loop unroll.

However, this resource allocation is not enough for handling the interconnect and controller overhead when

the loops are unrolled 3 times. Although longest delay through the pred1 design is lower by almost 45 % for 3

loop unrolls, the critical path length for the pred2 design increases with 3 loop unrolls and hence, the total delay

through the pred2 design is worse. The area also increases significantly for both the designs with 3 loop unrolls;

it more than doubles for pred1 design.

From these experiments, it is evident that the area-performance trade-offs of loop unrolling are complex. On

the one hand, loop unrolling provides code optimizations more freedom to parallelize the design and on the other

hand, the controller complexity and steering and associated control logic increases dramatically. When a higher

resource allocation is available to schedule the design, loop unrolling can be a useful transformation. Future work

can include developing heuristics to guide this transformation and/or aid the designer in making decisions about

which loops to unroll and to what extent.

10 Results for Dynamic CSE

10.1 Scheduling Results for Dynamic CSE

Next, we compare the effectiveness of the dynamic CSE transformation applied during scheduling with that

of a traditional CSE pass applied before scheduling. The synthesis results for these experiments are presented in

Tables 8 and 9 for the four designs. The first row in these tables lists results for the baseline case with all code

motions enabled along with copy propagation and dead code elimination. The second row is for when only CSE

is applied as a pass before scheduling, the 3rd row for when only dynamic CSE is applied during scheduling and

finally, the 4th row presents results for when both CSE and dynamic CSE are applied. In all these experiments,

dynamic copy propagation is done whenever possible (even when dynamic CSE is not applied). The percentage

45

Transformation MPEG-1 pred2 MPEG-1 pred1

Applied # States Long Path # Regs # States Long Path # Regs

Baseline 85 4123 31 43 1761 22

with CSE 73(-14.1%) 3355(-18.6%) 24(-22.6%) 38(-11.6%) 1441(-18.2%) 19(-13.6%)

with Dyn CSE 64(-24.7%) 2779(-32.6%) 20(-35.5%) 33(-23.3%) 1121(-36.3%) 12(-45.5%)

with CSE & Dyn CSE 63(-25.9%) 2715(-34.1%) 21(-32.3%) 32(-25.6%) 1057(-40%) 13(-40.9%)

Table 8. Scheduling results after applying CSE and Dynamic CSE for MPEG-1 designs

Transformation MPEG-2 d p f rame estimate GIMP tiler

Applied # States Long Path # Regs # States Long Path # Regs

Baseline 56 684 42 43 4031 27

with CSE 56(0%) 626(-8.5%) 40(-4.8%) 29(-32.6%) 2631(-34.7%) 18(-33.3%)

with Dyn CSE 49(-12.5%) 598(-12.6%) 31(-26.2%) 28(-34.9%) 2531(-37.2%) 17(-37%)

with CSE & Dyn CSE 49(-12.5%) 598(-12.6%) 33(-21.4%) 28(-34.9%) 2531(-37.2%) 16(-40.7%)

Table 9. Scheduling results after applying CSE and Dynamic CSE for designs from MPEG-2 and the GIMP

image processing tool

reductions of each row over the baseline case are also given in parentheses. These tables also give the number of

registers required to bind the variables in the designs [8].

The results in these tables demonstrate that applying CSE alone can lead to improvements up to 32 % in the

number of states (for tiler) and between 8 to 34 % in the longest path cycles. In itself, these improvements

are significant. Note that several of these functions are called multiple times from within loops and hence, the

improvements multiply by the number of iterations of the loops.

When dynamic CSE is applied, the improvements are even more dramatic for all the designs as is evident by

the results in the third row of Tables 8 and 9. Clearly, dynamic CSE is able to eliminate many more operations

with common sub-expressions than traditional CSE can. Employing dynamic CSE during scheduling can at times

improve schedule lengths by 18 % over applying CSE as a pass before scheduling. The last row in these tables

show that applying both CSE and dynamic CSE together leads to further improvements in the synthesis metrics

for the MPEG-1 designs.

Also, our experiments show another important result; contrary to common belief, the results show that applying

CSE and dynamic CSE leads to a reduction in the number of registers required. This decrease can be attributed to

three inter-related factors: (a) the reduced schedule lengths imply shorter variable lifetimes, especially for variables

whose results are required for future loop iterations; (b) elimination of an operation by CSE means that instead

of requiring two registers to store the two variables/operands that are read by the operation, only one register is

required to store the result of the operation; and (c) when operations with the same sub-expression are eliminated,

46

MPEG-2 Pred2 Function

0

0.2

0.4

0.6

0.8

1

Critical Path
(c ns)

Total Delay
(c*l ns)

Unit Area

N
or

m
al

iz
ed

 V
al

ue
s

MPEG-1 Pred1 Function

0

0.2

0.4

0.6

0.8

1

Critical Path
(c ns)

Total Delay
(c*l ns)

Unit Area

Only Dynamic CSEBaseline Only CSE CSE & Dynamic CSE

Figure 25. Effects of CSE and dynamic CSE on logic synthesis results for the MPEG-1 Pred2 and Pred1

designs

MPEG-2 DpFrame_Est Function

0

0.2

0.4

0.6

0.8

1

Critical Path
(c ns)

Total Delay
(c*l ns)

Unit Area

GIMP Tiler Function

0

0.2

0.4

0.6

0.8

1

Critical Path
(c ns)

Total Delay
(c*l ns)

Unit Area

Only Dynamic CSEBaseline Only CSE CSE & Dynamic CSE

Figure 26. Effects of CSE and dynamic CSE on logic synthesis results for the MPEG-2 d p f rame estimate and

the GIMP tiler functions

then they can reuse the result of only one of the operations. This saves on storing the results of several operations.

10.2 Logic Synthesis Results for Dynamic CSE

Once again, we synthesized the VHDL corresponding to the experiments presented in the last section using the

Synopsys logic synthesis tool. The logic synthesis results are presented in the graphs in Figures 25 and 26. The

values of each metric are mapped as before: for when all the code motions are enabled but no CSE or dynamic

CSE is applied (1st bar), for when only CSE is applied (2nd bar), when only dynamic CSE is applied (3rd bar) and

the last bar is for when both CSE and dynamic CSE are applied.

The results in these graphs reflect the scheduling results we saw in the previous section. For all cases of applying

CSE and dynamic CSE individually or together, the critical path length remains fairly constant. This coupled with

the reductions in cycles on the longest path we saw earlier, leads to dramatic reductions in the total delay when

dynamic CSE is applied: from about 20 % (for d p f rame estimate) to 40 % (for pred1). Also, dynamic CSE can

lead to lower area; sometimes up to 40 % less (for pred1). This decrease in area can be attributed to two factors.

Firstly, the elimination of some operations due to CSE and dynamic CSE means that fewer operations are mapped

47

Transf. MPEG-1 pred2 MPEG-1 pred1 MPEG-2 d p f rame GIMP tiler

Applied # States # cycles # States # cycles # States # cycles # States # cycles

Baseline 85 4123 43 1761 56 684 33 3031

+Chaining 81(-4.7%) 4095(-.7%) 40(-7%) 1749(-.7%) 56(-0%) 646(-5.6%) 32(-3%) 3021(-.3%)

Table 10. Scheduling results after chaining operations across conditionals for all the four designs

to the functional units and this leads to reduced interconnect (multiplexors and demultiplexors). Secondly, the

reductions in the controller size and the number of registers required lead to further reductions in the area.

The overall results in the graphs in Figures 25 and 26 demonstrate that enabling dynamic CSE reduces the total

delay through the circuit by up to 40 % while at the same time reducing the design area; these improvements

are better than applying only CSE before scheduling. Also, these results validate our belief that transformations

applied dynamically during scheduling can exploit several new opportunities created by scheduling decisions and

the movement of operations due to the speculative code motions.

11 Results for Chaining Across Conditionals

We developed the chaining across conditionals transformation primarily for the synthesis of microprocessor

functional blocks [58]. However, even in the domain of the multimedia and image processing applications consid-

ered in this paper, we find that there exist several opportunities to chain simple assign (copy) operations that occur

in conditional blocks with operations that produce their values. This sometimes can generate a result one cycle

earlier than it would otherwise would have been available (see Section 6.3).

In Table 10 we compare the scheduling results for the baseline case of the four designs (1st row) with the results

for when chaining across conditionals is enabled (2nd row). The improvements in number of states due to chaining

range between 0 % to 7 % and in the cycles on the longest path range between 0.3 % to 5.6 %. Clearly, these

improvements are marginal.

The logic synthesis metrics corresponding to these scheduling results are presented in the graphs in Figure 27.

The first bar is the baseline case and the second bar is with chaining across conditionals. Chaining operations

across conditionals leads to almost constant critical path lengths. This coupled with the modest improvements in

longest path cycles translates to almost constant total delays through the circuit.

The design area decreases only for the pred1, but increases for the other three designs. This increase can

be attributed to the fact that as more operations (even variable copy operations) are packed into a cycle, the

multiplexing costs increase. The decreases in the controller size (if any) work to counterbalance this increase in

area to some extent.

Clearly the gains from chaining across conditionals for the applications considered in this paper are minimal if

any. However, this does not diminish the value of this technique; it is indispensable for the synthesis of micropro-

cessor functional blocks.

48

MPEG-2 Pred2 Function

0

0.2

0.4

0.6

0.8

1

1.2

Critical Path
(c ns)

Total Delay
(c*l ns)

Unit Area

N
or

m
al

iz
ed

 V
al

ue
s

MPEG-1 Pred1 Function

0

0.2

0.4

0.6

0.8

1

Critical Path
(c ns)

Total Delay
(c*l ns)

Unit Area

MPEG-2 DpFrame_Est Function

0

0.2

0.4

0.6

0.8

1

1.2

Critical Path
(c ns)

Total Delay
(c*l ns)

Unit Area

GIMP Tiler Function

0

0.2

0.4

0.6

0.8

1

1.2

Critical Path
(c ns)

Total Delay
(c*l ns)

Unit Area

Baseline With Chaining

Figure 27. Effects of chaining across conditionals on the logic synthesis results for the MPEG-1 Pred2 and

Pred1 functions and the MPEG-2 d p f rame estimate and the GIMP tiler functions

12 Putting it all together

In the last 3 sections, we have analyzed the scheduling and logic synthesis results of the various transfor-

mations presented in this paper. From this analysis, we conclude that the transformations that lead to the most

improvements in the quality of synthesis results are: loop invariant code motion (LICM), common sub-expression

elimination (CSE) and dynamic CSE. Let us now examine how these techniques perform when applied together.

Tables 11 and 12 list the results for applying LICM along with dynamic CSE and CSE. The first row is the

baseline case with only speculative code motions applied, the second row has LICM and dynamic CSE applied

and the last row has LICM, CSE and dynamic CSE applied. When dynamic CSE is enabled along with LICM, the

cycles on the longest path decrease by 16 % for the MPEG-2 d p f rame estimate design and by 44 to 52 % for the

other three designs. The reductions in the number of states in the controller are between 12 to 34 %. Furthermore,

applying CSE gives no further improvements over applying only dynamic CSE.

The logic synthesis results corresponding to these experiments are presented in Figure 28. The first bar corre-

sponds to the baseline case, the second bar to LICM and dynamic CSE applied and the last bar has LICM, CSE

and dynamic CSE applied. The improvements in the cycles on the longest path more or less translate over to the

longest delay through the circuit; this reduces by 20 to 60 %. Also, the area of the design decreases by 5 to 40 %

when these transformations are applied. It is important to note that these improvements are obtained over designs

49

Transformation MPEG-1 pred2 MPEG-1 pred1

Applied # States Long Path # States Long Path

Baseline 85 4123 43 1761

with LICM+DCSE 66(-22.4%) 2126(-48.4%) 36(-16.3%) 835(-52.6%)

with LICM+CSE+DCSE 66(-22.4%) 2126(-48.4%) 36(-16.3%) 835(-52.6%)

Table 11. Results after applying loop-invariant code motion, dynamic CSE and CSE on the MPEG-1 designs.

Transformation MPEG-2 d p f rame est GIMP tiler

Applied # States Long Path # States Long Path

Baseline 56 684 43 4031

with LICM+DCSE 49(-12.5%) 571(-16.5%) 28(-34.9%) 2234(-44.6%)

with LICM+CSE+DCSE 49(-12.5%) 571(-16.5%) 28(-34.9%) 2234(-44.6%)

Table 12. Results after applying LICM, dynamic CSE and CSE for the d p f rame estimate and the tiler designs

already optimized by the speculative code motions [8]. Also, as stated earlier, the area for the tiler design remains

fairly high due to the area-intensive resources used in this design, namely, a divider and a multiplier.

We note that when an optimizing transformation is applied, there are two conflicting factors that come into

play. As the resource utilization increases, the steering logic (multiplexors and demultiplexors) connected to

the functional units and the associated control logic increases. On the other hand, as the number of states in

the controller decreases, the size and complexity of the controller decreases. We find that critical paths often

originate in the controller, go through multiplexors, functional units and demultiplexors, and finally, terminate

in the registers that hold the results. Hence, optimizing transformations often lead to higher area and longer

paths through the steering logic, but lower area and shorter paths through the FSM controller. Depending on the

effectiveness of the transformation on the particular design being synthesized, one of these factors may overshadow

the other. Also, the fact that the critical path length remains fairly constant as these optimizing transformations are

applied is an important result because the critical path length dictates the minimum clock period for the design.

13 Conclusions and Future Work

We have proposed a methodology for high-level synthesis that first applies coarse-grain and fine-grain source

level transformations during a pre-synthesis phase. This pre-synthesis phase is followed by a scheduling phase

that incorporates a range of parallelizing compiler transformations besides the traditional synthesis transforma-

tions. The parallelizing compiler transformations comprise of aggressive speculative code motions aided by trans-

formations applied dynamically during scheduling such as dynamic CSE. These dynamic transformations take

advantage of the movement of operations by the speculative code motions. Also, we have proposed an enhance-

ment of operation chaining that chains operations across conditional boundaries. This transformation is motivated

50

MPEG-2 Pred2 Function

0

0.2

0.4

0.6

0.8

1

Critical Path
(c ns)

Total Delay
(c*l ns)

Unit Area

N
or

m
al

iz
ed

 V
al

ue
s

MPEG-1 Pred1 Function

0

0.2

0.4

0.6

0.8

1

Critical Path
(c ns)

Total Delay
(c*l ns)

Unit Area

MPEG-2 DpFrame_Est Function

0

0.2

0.4

0.6

0.8

1

Critical Path
(c ns)

Total Delay
(c*l ns)

Unit Area

GIMP Tiler Function

0

0.2

0.4

0.6

0.8

1

Critical Path
(c ns)

Total Delay
(c*l ns)

Unit Area

Baseline LICM+DCSE LICM+CSE+DCSE

Figure 28. Final logic synthesis results after applying loop-invariant code motion (LICM), CSE and dynamic

CSE to the MPEG-1, MPEG-2 and GIMP designs

by the control-intensive nature of the applications targeted by our methodology.

We have implemented this synthesis methodology and the various transformations, along with the heuristics

that guide them, in the Spark synthesis framework. Spark takes a behavioral description in ANSI-C as input and

produces synthesizable RTL VHDL. This enables us to perform an analysis of the effects of the various transfor-

mations on the scheduling and logic synthesis results. We presented results for experiments on functional blocks

derived from applications that are representative of the multimedia and image processing domains, namely, the

MPEG-1, MPEG-2 and the GIMP applications. These results demonstrate that when the various transformations

like loop-invariant code motion and dynamic CSE are applied together, improvements of up to 60 % can be ob-

tained in the delay through the design with reductions of up to 40 % in the design area. Furthermore, these

improvements are over a design that has already been optimized by the speculative code motions. In this paper, we

also explored the effects of loop unrolling on synthesis results. In future work, we plan to expand this work and

develop a comprehensive strategy for the application of loop transformations both during the pre-synthesis phase

and during scheduling.

51

Acknowledgments

This project is funded by the Semiconductor Research Corporation (SRC) under Task I.D. 781.001. We would

like to thank Mehrdad Reshadi and Nick Savoiu for their contribution to the Spark framework.

References

[1] K. Wakabayashi. C-based synthesis experiences with a behavior synthesizer, ”Cyber”. In Design, Automation

and Test in Europe, 1999.

[2] Get2Chip Incorporated. Volare multi-level synthesis. http://www.get2chip.com.

[3] L.C.V. dos Santos. Exploiting instruction-level parallelism: a constructive approach. PhD thesis, Eindhoven

University of Technology, 1998.

[4] S. Haynal. Automata-Based Symbolic Scheduling. PhD thesis, University of California, Santa Barbara, 2000.

[5] G. Lakshminarayana, A. Raghunathan, and N.K. Jha. Wavesched: a novel scheduling technique for control-

flow intensive designs. IEEE Transactions on CAD, May 1999.

[6] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles and Techniques and Tools. Addison-Wesley, 1986.

[7] A. Nicolau. A development environment for scientific parallel programs. Technical Report TR 86-722,

Department of Computer Science, Cornell University, 1985.

[8] S. Gupta, N. Savoiu, N.D. Dutt, R.K. Gupta, and A. Nicolau. Conditional speculation and its effects on

performance and area for high-level synthesis. In International Symposium on System Synthesis, 2001.

[9] D. D. Gajski. Silicon Compilation. Addison-Wesley, 1988.

[10] D. D. Gajski, N. D. Dutt, A. C-H. Wu, and S. Y-L. Lin. High-Level Synthesis: Introduction to Chip and

System Design. Kluwer Academic, 1992.

[11] R. Camposano and W. Wolf. High Level VLSI Synthesis. Kluwer Academic, 1991.

[12] G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill, 1994.

[13] M. Potkonjak and J. Rabaey. Optimizing resource utlization using tranformations. IEEE Trans. on CAD,

March 1994.

[14] R. Walker and D. Thomas. Behavioral transformation for algorithmic level IC design. IEEE Trans. on CAD,

Oct. 1989.

52

[15] R. Camposano. Path–based scheduling for synthesis. IEEE Transactions on Computer–Aided Design, Jan.

1991.

[16] K. Wakabayashi and H. Tanaka. Global scheduling independent of control dependencies based on condition

vectors. In Design Automation Conference, 1992.

[17] T. Kim, N. Yonezawa, J.W.S. Liu, and C.L. Liu. A scheduling algorithm for conditional resource sharing - a

hierarchical reduction approach. IEEE Transactions on CAD, April 1994.

[18] I. Radivojevic and F. Brewer. A new symbolic technique for control-dependent scheduling. IEEE Transac-

tions on CAD, January 1996.

[19] R. A. Bergamaschi, S. Raje, and L. Trevillyan. Control-flow versus data-flow-based scheduling: combining

both approaches in an adaptive scheduling system. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, March 1997.

[20] G. Lakshminarayana, A. Raghunathan, and N.K. Jha. Incorporating speculative execution into scheduling of

control-flow intensive behavioral descriptions. In Design Automation Conference, 1998.

[21] L.C.V. dos Santos and J.A.G. Jess. A reordering technique for efficient code motion. In Design Automation

Conference, 1999.

[22] M. Rim, Y. Fann, and R. Jain. Global scheduling with code-motions for high-level synthesis applications.

IEEE Transactions on VLSI Systems, September 1995.

[23] A.A. Kountouris and C. Wolinski. Efficient scheduling of conditional behaviors for high-level synthesis.

ACM Transactions on Design Automation of Electronic Systems (TODAES), July 2002.

[24] R.K. Gupta J. Li. Hdl optimizations using timed decision tables. In Design Automation Conference, 1996.

[25] J.M. Mendas O. Pealba and R. Hermida. Maximizing conditional reuse by pre-synthesis transformations. In

Design, Automation and Test in Europe, 2002.

[26] R.K. Gupta J. Li. Decomposition of timed decision tables and its use in presynthesis optimizations. In

International Conference on Computer Aided Design, 1997.

[27] C. Wolinski A. Kountouris. High level pre-synthesis optimization steps using hierarchical conditional de-

pendency graphs. In Euromicro Confernce, 1999.

[28] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997.

53

[29] Z. Iqbal, M. Potkonjak, S. Dey, and A. Parker. Critical path optimization using retiming and algebraic

speed-up. In Design Automation Conference, 1993.

[30] M. Potkonjak, M.B. Srivastava, and A. Chandrakasan. Multiple constant multiplications: Efficient and ver-

satile framework and algorithms for exploring common subexpression elimination. IEEE Trans. on CAD,

Mar 1996.

[31] R. Pasko, P. Schaumont, V. Derudder, S. Vernalde, and D. Durackova. A new algorithm for elimination of

common subexpressions. IEEE Trans. on CAD, Jan 1999.

[32] M.Janssen, F.Catthoor, and H.De Man. A specification invariant technique for operation cost minimisation

in flow-graphs. In Intl. Symp. on High-level Synthesis, 1994.

[33] M.Miranda, F.Catthoor, M. Janssen, and H.De Man. High-level address optimisation and synthesis tech-

niques for data-transfer intensive applications. IEEE Transactions on VLSI Systems, December 1998.

[34] D.A. Lobo and B.M. Pangrle. Redundant operator creation: A scheduling optimization technique. In Design

Automation Conference, 1991.

[35] M. Potkonjak and J. Rabaey. Maximally fast and arbitrarily fast implementation of linear computations. In

International Conference on CAD, 1992.

[36] R. Kennedy, S. Chan, S.-M. Liu, R. Io, P. Tu, and F. Chow. Partial redundancy elimination in SSA form.

ACM Trans. Progrm. Languages and Systems, May 1999.

[37] S. Gupta, M. Miranda, F. Catthoor, and R. Gupta. Analysis of high-level address code transformations for

programmable processors. In Design, Automation and Test in Europe, 2000.

[38] S. Novack and A. Nicolau. Mutation scheduling: A unified approach to compiling for fine-grain parallelism.

In Languages and Compilers for Parallel Computing, 1994.

[39] J. Fisher. Trace scheduling: A technique for global microcode compaction. IEEE Transactions on Computers,

July 1981.

[40] K. Ebcioglu and A. Nicolau. A global resource-constrained parallelization technique. In 3rd International

Conference on Supercomputing, 1989.

[41] R. Potasman, J. Lis, A. Nicolau, and D. Gajski. Percolation based synthesis. In Design Automation Confer-

ence, 1990.

[42] U. Holtmann and R. Ernst. Combining MBP-speculative computation and loop pipelining in high-level

synthesis. In European Design and Test Conference, 1995.

54

[43] S. Gupta, N. Savoiu, S. Kim, N.D. Dutt, R.K. Gupta, and A. Nicolau. Speculation techniques for high level

synthesis of control intensive designs. In Design Automation Conference, 2001.

[44] S. Gupta, M. Reshadi, N. Savoiu, N.D. Dutt, R.K. Gupta, and A. Nicolau. Dynamic common sub-expression

elimination during scheduling in high-level synthesis. In International Symposium on System Synthesis,

2002.

[45] S. Gupta, N. Savoiu, N.D. Dutt, R.K. Gupta, and A. Nicolau. Using global code motions to improve the qual-

ity of results for high-level synthesis. Technical Report CECS-TR-02-29, Center for Embedded Computer

Systems, Univ. of California, Irvine, 2002.

[46] M. Girkar and C.D. Polychronopoulos. Automatic extraction of functional parallelism from ordinary pro-

grams. IEEE Trans. on Parallel & Distributed Systems, Mar. 1992.

[47] A. Nicolau and S. Novack. Trailblazing: A hierarchical approach to percolation scheduling. In International

Conference on Parallel Processing, 1993.

[48] A. Orailoglu and D.D. Gajski. Flow graph representation. In Design Automation Conference, 1986.

[49] M. C. McFarland. The value trace: A data base for automated digital design. Technical Report DRC-01-4-80,

Carnegie-Mellon University, Design Research Center, 1978.

[50] R.K. Brayton, R. Camposano, G. De Micheli, R.H.J.M. Otten, and J. van Eijndhoven. The Yorktown Silicon

Compiler System, chapter in Silicon Compilation. Addison-Wesley, 1988.

[51] V. Chaiyakul, D.D. Gajski, and L. Ramachandran. Minimizing syntactic variance with assignment decision

diagrams. Technical Report ICS-TR-92-34, UC Irvine, 1992.

[52] A.A. Kountouris and C. Wolinski. Hierarchical conditional dependency graphs as a unifying design rep-

resentation in the codesis high-level synthesis system. In International Symposium on System Synthesis,

2000.

[53] R.A. Bergamaschi. Behavioral network graph unifying the domains of high-level and logic synthesis. In

Design Automation Conference, 1999.

[54] S. Novack and A. Nicolau. An efficient, global resource-directed approach to exploiting instruction-level

parallelism. In Conference on Parallel Architectures and Compilation Techniques, 1996.

[55] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler transformations for high-performance

computing. ACM Computing Surveys, 26(4):345–420, 1994.

55

[56] V.C. Sreedhar, G. R. Gao, and Y.-F. Lee. Incremental computation of dominator trees. ACM Trans. Progrm.

Languages and Systems, March 1997.

[57] V.C. Sreedhar, G. R. Gao, and Y.-F. Lee. A new framework for exhaustive and incremental data flow analysis

using DJ graphs. ACM SIGPLAN Conf. on PLDI, 1996.

[58] S. Gupta, T. Kam, M. Kishinevsky, S. Rotem, N. Savoiu, N.D. Dutt, R.K. Gupta, and A. Nicolau. Coordinated

transformations for high-level synthesis of high performance microprocessor blocks. In Design Automation

Conference, 2002.

[59] S. Gupta, N.D. Dutt, R.K. Gupta, and A. Nicolau. Dynamic conditional branch balancing during the high-

level synthesis of control-intensive designs. In To appear in the Design, Automation and Test Conference,

2003.

[60] A. Nicolau. Uniform parallelism exploitation in ordinary programs. In International Conf. on Parallel

Processing, 1985.

[61] S. Novack and A. Nicolau. A hierarchical approach to instruction-level parallelization. International Journal

of Parallel Programming, 1(23), 1995.

[62] Spark Synthesis Benchmarks FTP site. ftp://ftp.ics.uci.edu/pub/spark/benchmarks.

[63] C. Lee, M. Potkonjak, and W. H. M.-Smith. UCLA Mediabench benchmark suite.

http://www.cs.ucla.edu/∼leec/mediabench/.

[64] GNU Image Manipulation Program. http://www.gimp.org.

56

