
Energy Aware EDF Scheduling with Task Synchronization for
Embedded Real Time Systems

Ravindra Jejurikar Rajesh K. Gupta

Center for Embedded Computer Systems,
Department of Information and Computer Science,

University of California at Irvine,
Irvine, CA 92697

E-mail:fjezz,rgupta g@ics.uci.edu

CECS Technical Report #02-24

Aug 10, 2002

Abstract

Slowdown factors determine the extent of slowdown a computing system can experience based on
functional and performance requirements. Dynamic Voltage Scaling (DVS) of a processor based on
slowdown factors can lead to considerable energy savings. For the Earliest Deadline First (EDF)
scheduling, the problem of DVS in the presence of task synchronization has not yet been addressed.
We compute slowdown factors for tasks which synchronize for access to shared resources. Tasks syn-
chronize to enforce mutually exclusive access to these resources and can be blocked by lower priority
tasks. We compute static slowdown factors for the tasks which guarantee meeting all the task dead-
lines. Our simulation experiments show on an average 30% energy gains over the known slowdown
techniques.

1

Contents

1 Introduction 1

2 Preliminaries 2
2.1 System Model . 2
2.2 Variable Speed Processors . 2
2.3 Motivating example . 3

3 Static Slowdown Factors 4
3.1 EDF Scheduling . 5
3.2 Critical Section at Maximum Speed (CSMS) . 5
3.3 Constant Static Slowdown (CSS) . 5
3.4 Examples . 6
3.5 Computation time . 6

4 Experimental Results 6
4.1 Static slowdown . 8

5 Conclusions and Future Work 9

A Appendix 12
A.1 Task Description Format (TDF) . 12

List of Figures

1 Motivation for Static slowdown techniques (a) Task arrival times and deadlines (pe-
riod=deadline) with critical sections. (b) Processor Utilization as the static slowdown
factor: η = 2

8 +
7
15 = 0:716, jobτ1;3 misses deadline. (c) Slowdown ofη1 = 0:5;η2 =

0:457 with critical section at maximum speed. (d) Uniform constant slowdown of
η = 7

8 = 0:875, meets deadlines while observing blocking. 3
2 Generic simulator . 7
3 Power functionf (s) vs. s2 . 7
4 Normalized energy consumption for the slowdown methods 9

List of Tables

1 Energy Consumption . 9

2

1 Introduction

Power is one of the important metrics for optimization in the design and operation of embedded
systems. There are two primary ways to reduce power consumption in embedded computing systems:
processor shutdown and processor slowdown. Slowdown using frequency or voltage scaling is more
effective in power consumption. Scaling the frequency and voltage of a processor leads to an increase
in the execution time of a job. In real-time systems, we want to minimize energy while adhering to the
deadlines of the tasks. Power and deadlines are often contradictory goals and we have to judiciously
manage time and power to achieve our goal of minimizing energy. DVS (Dynamic Voltage Scaling)
techniques exploit the idle time of the processor to reduce the energy consumption of a system. We deal
with computing the voltage schedule for a periodic task set.

In this paper, we focus on the system level power management via computation of static slowdown
factors. We assume a real-time system where the tasks run periodically in the system and have dead-
lines. These tasks are to be scheduled on a single processor system based on the Earliest Deadline First
(EDF) [13] scheduler. The tasks access shared resources in a mutually exclusive manner. Tasks need to
synchronize to enforce mutual exclusion. We compute static slowdown factors in the presence of task
synchronization to minimize the energy consumption of the system.

Shin et al. [22] have computed uniform slowdown factors for an independent task set. In this tech-
nique, rate monotonic analysis is performed on the task set to compute a constant static slowdown factor
for the processor. Gruian [6] observed that performing more iterations gives better slowdown factors for
the individual task types. Yao, Demers and Shanker [25] presented an optimal off-line speed schedule
for a set ofN jobs. The time complexity of their algorithm isO(N2) and can be reduced toO(N log2N)
by the use of segment trees [17]. The analysis and correctness of the algorithm is based on an underlying
EDF scheduler, which is an optimal scheduler [13]. An optimal schedule for tasks with different power
consumption characteristics is considered by Aydin, Melhem and Moss´e [1]. The same authors [2] have
proven that the utilization factor is the optimal slowdown when the deadline is equal to the period. Quan
and Hu [18] [19] discuss off-line algorithms for the case of fixed priority scheduling.

Since the worst case execution time (WCET) of a task is not usually reached, there is dynamic slack
in the system. Pillai and Shin [16] recalculate the slowdown when a task finishes before its worst case
execution time. They use the dynamic slack while meeting the deadlines. Low-power scheduling using
slack estimation heuristic [8] is studied by Kim et al.

All the above techniques assume the tasks to be independent in nature. Scheduling of task graphs on
multiple processors has also been considered. Luo and Jha [14] have considered scheduling of periodic
and aperiodic task graphs in a distributed system. Non-preemptive scheduling of a task graph on a multi
processor system is considered by Gruian and Kuchcinski [7]. Zhang et al. [26] have given a framework
for task scheduling and voltage scheduling of dependent tasks on a multi-processor system. They have
formulated the voltage scheduling problem as an integer programming problem. They prove the voltage
scheduling problem for the continuous voltage case to be polynomial time solvable.

In real life applications, tasks access the shared resources in the system. Due to this task synchroniza-
tion, tasks can be blocked for a shared resource. Jejurikar and Gupta [?] have addressed the computation
of slowdown factors for task with task synchronization. The authors compute static slowdown factors
for tasks scheduled by a Rate Monotonic Scheduler (RMS) [12]. In this paper, we consider the case of
EDF scheduling on a uniprocessor system. We compute static slowdown factors in the presence of task
synchronization. We gain as much as 40% to 60% energy savings over the known techniques.

1

The rest of the paper is organized as follows: Section 2 formulates the problem with a motivating
example. In Section 3, we give the slowdown algorithms in the presence of task synchronization. The
implementation and experimental results are given in Section 4. Section 5 concludes the paper with
future directions.

2 Preliminaries

In this section, we introduce the necessary notation and formulate the problem. We first describe the
system model followed by an example to motivate the problem.

2.1 System Model

A periodic task set ofn periodic real time tasks is represented asΓ = fτ1; :::;τng. A 3-tupleτi =<
Ti;Di;Ci > is used to represent each taskτi, whereTi is the period of the task,Di is the relative deadline,
andCi is the WCET for the task, given it is the only task running in the system. The system has a set
of shared resources. Access to the shared resources are mutually exclusive in nature and the accesses
to the resources have to be serialized. Common synchronization primitives include semaphores, locks
and monitors [23]. We assume that semaphores are used for task synchronization. All tasks are assumed
to be preemptive, however the access to the shared resources need to be serialized. Due to the resource
sharing, task can beblockedby lower priority tasks.

When a task has been granted access to a shared resource, it is said to be executing in itscritical
section. Thekth critical section of taskτi is represented aszi;k. Each task specifies the access to the shared
resources and the worst case execution time of each critical section. With the specified information we
can compute the maximum blocking time for a task. The blocking time for tasks depends upon the
resource access protocol being used. LetBi be the maximum blocking time for taskτi under the given
resource access protocol. We assume critical sections of a task are properly nested.

Each invocation of the task is called ajob and thekth invocation of taskτi is denoted asτi;k. The
tasks are scheduled on a single processor which supports multiple frequencies. Every frequency level
has a power consumption value and is also referred to as power state of the processor. Our aim is to
schedule the given task set and the processor speed such that all tasks meet their deadlines and the
energy consumption is minimized. The processor speed can be varied to minimize energy usage. The
slowdown factorat a given instance is the ratio of the scheduled speed to the maximum processor speed
. If the processor speed is a constant value over the entire time interval, it is called aconstant slowdown.
The execution time of a job is proportional to the processor speed. The goal is to minimize the energy
consumption while meeting deadlines.

2.2 Variable Speed Processors

A wide range of processors support variable voltage and frequency levels. Voltage and frequency
levels are in a way coupled together. When we change the speed of a processor we change its operat-
ing frequency. We proportionately change the voltage to a value which is supported at that operating
frequency. The important point to note is when we perform a slowdown we change both the frequency
and voltage of the processor. We use the terms slowdown state and power state interchangeably. We
assume that the speed can be varied continuously fromSmin to the maximum supported speedSmax.

2

We normalize the speed to the maximum speed to have a continuous operating range of[smin;1], where
smin = Smin=Smax.

2.3 Motivating example

Consider a simple real time system with two periodic tasks having the following parameters :

τ1 = f8;8;2g;τ2 = f15;15;7g (1)

��
��
��

��
��
�� critical section

non critical section

T2

T1

T2

T1

0 4 8 10 12 14 16 18 202 6 22 24

T2

T1

0 4 8 10 12 14 16 18 202 6 22 24

task

T1

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

T2

0 4 8 10 12 14 16 18 202 6 22 24

��
��
��
��

��
��
��
��

�
�
�
�

���
���
���

���
���
���

�
�
�

�
�
�

���������
���������
���������
���������

���������
���������
���������
���������

�������
�������
�������
�������

�������
�������
�������

�������
�������
�������

������
������
������

������
������
������

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

�������
�������
�������

�������
�������
�������

���
���
���

���
���
���

task

0 4 8 10 12 14 16 18 202 6 22 24

missed
deadline

(b)

time

task

(c)

time

n1 = 0.5

n2 = 0.457

(d)

time

n1 = 0.875

n2 = 0.875

deadline
task

(a)

time

n1 = 0.716

n2=0.716

Figure 1. Motivation for Static slowdown techniques (a) Task arrival times and deadlines (period=deadline) with critical

sections. (b) Processor Utilization as the static slowdown factor:η = 2
8 + 7

15 = 0:716, job τ1;3 misses deadline.

(c) Slowdown ofη1 = 0:5;η2 = 0:457 with critical section at maximum speed. (d) Uniform constant slowdown of

η = 7
8 = 0:875, meets deadlines while observing blocking.

Both tasks access a shared resource through a semaphoreS. The critical section for taskτ1 is z1;1 =
[1;2] and that forτ2 is z2;1 = [0:5;5:5]. This task set is shown in Figure 1(a). The jobs for each task
are shown at their arrival time with their workload. The jobs are to be scheduled on a single processor

3

by an Earliest Deadline First (EDF) scheduler. The task set is schedulable at full speed. We cannot
compute slowdown factors ignoring the blocking factors. The processor utilization of the given task set
is, U = 2

8 +
7
15 = 0:716, allowing for a uniform slowdown ofη = 0:716. However jobτ1;3 misses its

deadline, as it is blocked by taskτ2;2 for 6:67 time units. This is shown in Figure 1(b). Thus we need to
consider the blocking times to compute the slowdown factors for the task.

We consider executing the critical sections at no slowdown and compute the slowdown for the task set.
Taskτ1 can be blocked for 5 time units and has 1 unit of critical section, allowing its non critical section
a slowdown ofη1 =

1
8�(1+5) = 0:5. With η1 = 0:5, taskτ2 can be slowed down byη2 =

2=15
1�(3=8+5=15) =

0:457. At this slowdown all tasks meet their deadline. This schedule is shown in Figure 1(c). Having
a uniform slowdown for the entire task can be more energy efficient. Since taskτ1 can be blocked for
up to 5 time units andC1 = 2, a constant slowdown ofη = 2

8 +
5
8 = 0:875 guaranteesτ1 meeting the

deadlines. At this slowdownτ2 also meets all deadlines and is shown in Figure 1(d).
We use the simplistic power model ofP= η2 to compare the energy consumption. We compute the

energy consumed by both tasks. From Figure 1(d) energy consumed by both tasks isE = 9:87(
7
8)

2 =

7:875. The energy consumed from Figure 1(c) isE = 7+1:21(
1
2)

2 + 2: 1
0:457:(0:457)2 = 8:414. It is

usually the case that the constant static slowdown is more energy efficient than running the critical
section at full speed.

3 Static Slowdown Factors

We compute static slowdown factor for a system with an underlying Earliest Deadline First Scheduler.
In this section, we give an algorithm to compute the static slowdown factors for tasks which share
the resources in the system. We assume that the access to the shared resources is granted in mutual
exclusion [23] by the use of semaphores [23]. The schedulability test of independent tasks is given by
Liu and Layland [12]. With the deadline equal to period, a slowdown equal to the processor utilization
factor is the optimal slowdown for the task set. EDF is an optimal scheduling policy when all tasks are
independent of each other. However in real-life applications, tasks share the resources in the system.
This could lead to tasks being blocked for a particular resource. Blocking of tasks can cause priority
inversion [21] and result in deadline misses. The problem of scheduling tasks in the presenc of resource
sharing is NP-hard [15, 5, 24]. Resource access protocols have been designed to bound the blocking
times andsufficientschedulability tests have been given in the presence of maximum blocking times.
Resource access protocols such aspriority inheritance protocol, priority ceiling protocolandpriority
limit protocol [21] deal with the case of fixed priority scheduling.Dynamic Priority Ceilings[4], Stack
Resource ProtocolandMinimal Stack Resource Protocol[3] have been designed to handle tasks with
dynamic priorities which encompasses EDF scheduling. Any resource management protocol can be
used to manage the access to the resource. LetBi be themaximum blocking timefor taskτi under the
given resource access protocol.

4

3.1 EDF Scheduling

Let Γ = fτ1; � � �;τng be the tasks in the system ordered in non-decreasing order of their deadline. The
task set is schedulable if the condition :

8i
i = 1; :::;n

Bi

Di
+

i

∑
k=1

Ck

Dk
� 1 (2)

is satisfied. We give two methods to compute static slowdown factors for periodic task set. One method
computes slowdown factors for the tasks with the critical sections being executed at maximum speed.
The other method computes a constant slowdown for the entire periodic task set. The non-critical and
critical sections of each task have a uniform slowdown factor.

3.2 Critical Section at Maximum Speed (CSMS)

We compute the static slowdown factors for the tasks with all critical sections being executed at full
speed. We make a distinction between the critical and non-critical section of a task. LetCncs

i andCcs
i be

the non-critical section and critical section of taskτi respectively(Cncs
i +Ccs

i = Ci). Using Equation 2,
we compute static slowdown factors for all the tasks. Tasks are ordered in non-descending order of their
deadline (i.e. in non-increasing order of their preemption level). We compute the slowdown factors in
an iterative manner, from the higher to the lower priority tasks. An indexq points to the latest task that
has been assigned a slowdown factor. Initially,q= 0. Each of the taskτi , q< i � n has to be assigned a
slowdown factor. Each taskτi exactly meets its deadline if:

Bi

Di
+ ∑

1�r�q

(
Cncs

r

ηr
+Ccs

r)
1

Dr
+ ∑

q<p�i
(
Cncs

p

ηi
+Ccs

p)
1

Dp
= 1 (3)

Note that the tasksτr , 1� r � q have already been assigned a slowdown factorηr . For the rest of
the tasks we assume that they will use the same and yet to be computed slowdown factor,ηp as given in
Equation 3. We compute a new slowdown factor for all tasksτp, q< p� n. There is a task with index
m for which the slowdown factor is the largest among all other tasks:ηm = maxp(ηp). Note that this is
not necessarily the last task,n. Having the indexm, all tasks betweenq andm can be slowed down by
a factor equal to the slowdown factor of taskτm = maxp(ηp). Thus, we assign the tasksτr , q< r � m,
a slowdown factor ofηr = maxp(ηp). The algorithm terminates when all tasks have been assigned a
slowdown factor.

3.3 Constant Static Slowdown (CSS)

A constant slowdown for the processor is a desired feature. There is an overhead associated with
changing power states and a constant slowdown eliminates this overhead. A constant slowdown is
desired especially if the resource does not support run time change in the operating speed. Each taskτi

exactly meets its deadline if:
1
ηi

(
Bi

Di
+

i

∑
k=1

Ck

Dk
) = 1 (4)

A slowdown ofη = maxi(ηi) gives a constant static slowdown for all the tasks.

5

3.4 Examples

We compute the slowdown factors for the example in Section 2. The task set isτ1 = f8;8;2g;τ2 =
f15;15;7g and their blocking factors areB1 = 5 andB2 = 0.

We compute the uniform constant slowdown:

η1 =
2+5

8 = 7
8 = 0:875 and

η2 =
2
8 +

7+0
15 = 0:716

This gives a constant static slowdown ofη = 0:875.
The slowdown factors with critical sections at maximum speed are: Iteration 1,

1
η1
(1

8)+
1+5

8 = 1, givesη1 = 0:5 and
1

η2
(1

8 +
2
15)+

1
8 +

5
15 = 1 givesη2 = 0:476

Thus we assign a slowdown ofη1 = 0:5 for the non-critical section.
Iteration 2,

1
η2
(2

15)+
1

0:5(
1
8)+

1
8 +

5
15 = 1, givesη2 = 0:457

This gives a slowdown ofη1 = 0:5 andη2 = 0:457.

3.5 Computation time

Given the tasks are sorted in non-decreasing order of their deadline, the CSS algorithm has a linear
time complexity. If we have to perform a sort on the task set it will increase the complexity toO(nlogn).
Each iteration of the CSMS algorithm has the same time complexity as that of the CSS algorithm. In
practice, the number of iterations are only a few. Almost all examples have only one iteration giving a
linear time complexity. But in the worst case there can ben iterations. Thus the worst case complexity
of the CSMS algorithm isO(n2). Thus both the algorithms have polynomial time complexity.

4 Experimental Results

We have written a simulator inparsec[10], a C based discrete event simulation language. We have
implemented the scheduler and the slowdown algorithms in this simulator. The simulator block diagram
is shown in Figure 2. It consists of two main entities, theTask Managerand theReal Time Operating
System(RTOS). The task manager has the information of the entire task set. It generates jobs for each
task type depending on its period and sends it to the RTOS entity.

The RTOS is the heart of the simulator. It schedules the jobs on the resource(processor) and checks
for deadline misses. The jobs access the shared resource by the resource access protocol. The static
speed regulator changes the speed of the processor at run-time. Theprofile managerprofiles the energy
consumed by each task and calculates the total energy consumption of the system. It keeps track of all
the relevant parameters viz. energy consumed, missed deadlines, voltage changes and context switches.

We use the power model as given in [20] [9] to compute the energy usage of the system. The power
P as a function of slowdown is given by

P= f (s) = 0:248�s3+0:225�s2+0:0256�s+

6

jobjobjob

Resource
(processor)

S
C

H
E

D
U

LE
R

T1

Tn

��
��
�
�
�
�

����
�
�
�
�

�
�
�
�

PARSEC Simultion Platform

- k1 cycles

- k2 cycles
- V(s)

- P(s)

RTOS

Regulator
resource
shared

resource
shared

resource
shared

R
es

ou
rc

e
A

cc
es

s
P

ro
to

co
l

resource
shared

Task

Task

Task Mamanger

Static speed
Task Execution Time

Profile
Manager

Figure 2. Generic simulator

p
311:16�s2+282:24�s� (0:0064�s+0:014112�s2) (5)

The above equation is obtained by substitutingVdd = 5V andVth = 0:8V and equating the power and
speed equations given below. The speeds is the inverse of the delay.

Pswitching=Ce f fV
2
dd f (6)

Delay=
kVdd

(Vdd�Vth)2
α

1
f

(7)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
ow

er
(P

)

slowdown factor(s)

P=f(s)
P=s2

Figure 3. Power functionf (s) vs. s2

The plot of the power function in shown in Figure 3. It is seen that it trackss2 closely. The switching
capacitance and the relation between gate delay and the operating speed are used to accurately derive
the power function.

7

4.1 Static slowdown

We compare the processor energy usage for the following techniques:

� Critical Section at Maximum Speed (CSMS): The algorithm to compute the slowdown factors
for each task is discussed in Section 3. The static factors are computed by performing EDF analysis
with no slowdown for the critical sections. The case ofD < p is also considered.

� Constant Static Slowdown (CSS): A constant static slowdown is computed for all the tasks in-
cluding the critical sections. The algorithm is given in the Section 3.

We compare the results of our algorithm to the static slowdown algorithm for independent tasks by
Aydin et al. [2] which is the processor utilization factor. Since all tasks have the same slowdown,
the blocking time will increase by the same factor and we guarantee deadlines. (If tasks have
different slowdown factors, the blocking time can increase more than expected and lead to deadline
misses.) We transform the task set to an independent task set.

� Transformation I (T1) : For each taskτi, the execution timeCi is increased by its blocking timeBi .
Since a task can experience a maximum blocking time ofBi , it is guaranteed to meet its deadline
in the presence of blocking (provided all blocking tasks have the same or higher slowdown). The
transformed task set isΓ0

= fτ0

1; � � �;τ
0

ngwhere each taskτ0

i =<Ti ;Di; (Ci+Bi)>. The transformed
tasks can be considered independent and we compute slowdown factors. A constant slowdown for
all tasks guarantees deadlines.

� Transformation II (T2) : We add a new task called the blocking taskτb in the system. Let
Cb = maxi(Bi) andTb = mini(Ti), then the blocking taskτb =< Tb;Tb;Cb >. This task is assigned
the highest priority task in the system. Given the sorted list of tasks in descending order of priority,
τb is added at the head of the list. By adding taskτb with highest preemption level, utilization factor
of Cb will be added in the slowdown computation of each taskτi . Satisfying the schedulability
task for this transformed task set satisfies the schedulability test given in Equation 2. A constant
slowdown for all tasks guarantee deadlines. Thus the computed slowdown factors will guarantee
meeting all deadlines.

The above algorithms were used for three application sets given in the Prototyping Environment for
Embedded Real Time Systems [11] (PERTS) software. The application sets are from various domains
and comprise ofFlight Control System (FCS), End to End Scheduling (EES), andMultiple Resource
Scheduling (MRS). A task set on multiple resources is converted to an equivalent task set by scaling the
execution period.

Each system (example) has resources which are shared by the tasks in a mutually exclusive manner.
We have used the Dynamic Priority Ceiling Protocol (DPCP) [4] to manage the resource accesses and
have computed the maximum blocking time for each task under this protocol. The slowdown factors
have been computed using the various algorithms and the task set is simulated for a time period equal
to the hyper-period of the task set. The energy consumption is shown in Table 1. It is seen that the CSS
algorithm performs better than the other algorithms in all the examples. It does better than the CSMS
where a slowdown is computed for the non critical sections of all the tasks. A uniform slowdown is
more energy efficient if an equal amount of slack is utilized (due to slowdown). The amount of slack
utilized by the CSMS algorithm is not much greater than the the slack utilized by the CSS algorithm. So

8

Table 1. Energy Consumption

example CSS CSMS T2 T1

FCS 2806.04 3056.12 3625.89 4362.43

EES 881.65 1258.93 945.71 1314.52

MRS 1410.81 2142.16 1697.05 2298.86

Comparison of Energy consumption

normalized to the CSS schedule

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

FCS EES MRS

Examples

n
o

rm
a
li

z
e
d

E
n

e
rg

y

C
o

n
s
u

m
p

ti
o

n

CSS

CSMS

T2

T1

Figure 4. Normalized energy consumption for the slowdown methods

an uniform slowdown is more energy efficient. Figure 4 shows the energy consumption of each method
normalized to the energy consumption of the CSS algorithm.

The slowdown factors computed by T1 are worse compared to CSS as the blocking factors are added
to each task. This increases the processor utilization factor of each task proportional to the blocking
factor. This adds up to an additional (unnecessary) blocking time in the analysis, leading to a higher
(worse) slowdown factor. This results in a lot of slack in the system and T1 has the worst energy
consumption. Energy consumption of T2 is closer to that of CSS. The workload of the blocking task in
T2 is the maximum over the blocking factors of each task. Since the blocking task has the minimum
period, it contributes to a considerable increases in utilization factor, leading to worse slowdown factors.
In two of the three examples, energy consumption of CSMS is greater than that of T2. Running the
critical section at full speed is usually not energy efficient.

5 Conclusions and Future Work

In this paper, we have given algorithms to compute static slowdown factor for a periodic task set.
We take into consideration the effect of blocking that arises due to task synchronization. Experimental

9

results show that the computed slowdown factors save on an average 25%-30% energy over the known
techniques. The algorithms have the polynomial time complexity. The techniques and very energy
efficient and can be easily implemented in a RTOS. This will have a great impact on the energy utilization
of portable and battery operated devices.

We plan to further exploit the static and dynamic slack in the system to make the system more energy
efficient. As a future work, we plan to compute the slowdown factors when the processor supports
discrete voltage levels. We will be implementing the techniques in a RTOS such as eCos and measure
the power consumed on a real processor.

References

[1] H. Aydin, R. Melhem, D. Moss´e, and P. M. Alvarez. Determining optimal processor speeds for
periodic real-time tasks with different power characteristics. InEuromicro Conference on Real-
Time Systems, Delft, Holland, June 2001.

[2] H. Aydin, R. Melhem, D. Moss´e, and P. M. Alvarez. Dynamic and aggressive scheduling tech-
niques for power-aware real-time systems. InReal-Time Systems Symposium, London, England,
December 2001.

[3] T. P. Baker. Stack-based scheduling of realtime processes. InRealTime Systems Journal, pages
67–99, 1991.

[4] M. Chen and K. Lin. Dynamic priority ceilings: A concurrency control protocol for real-time
systems. InReal Time Systems Journal, pages 325–346, 1990.

[5] M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide to the Theory of Np-
Completeness. W. H. Freeman & Co., 1979.

[6] F. Gruian. Hard real-time scheduling for low-energy using stochastic data and dvs processors. In
International Symposium on Low Power Electronics and Design, pages 46–51, 2001.

[7] F. Gruian and K. Kuchcinski. Lenes: task scheduling for low-energy systems using variable supply
voltage processors. InProceedings of the Asia South Pacific Design Automation Conference, 2001.

[8] W. Kim, J. Kim, and S. L. Min. A dynamic voltage scaling algorithm for dynamic-priority hard
real-time systems using slack time analysis. InDesign Automation and Test in Europe, 2002.

[9] P. Kumar and M. Srivastava. Predictive strategies for low-power rtos scheduling. InProceedings
of IEEE International Conference on Computer Design: VLSI in Computers and Processors, pages
343–348, 2000.

[10] P. C. Laboratory. Parsec: A c-based simulation language. University of Califronia Los Angeles.
http://pcl.cs.ucla.edu/projects/parsec.

[11] R. T. S. Laboratory. Prototyping environment for real-time systems (perts). University of Illinois
at Urbana Champaign (UIUC). http://pertsserver.cs.uiuc.edu/software/.

10

[12] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard real time
environment. InJournal of the ACM, pages 46–61, 1973.

[13] J. W. S. Liu.Real-Time Systems. Prentice-Hall, 2000.

[14] J. Luo and N. Jha. Power-conscious joint scheduling of periodic task graphs and a periodic tasks in
distributed real-time embedded systems. InInternational Conference on Computer Aided Design,
2000.

[15] A. K. Mok. Fundamental Design Problems of Distributed Systems for Hard Real-Tima Environ-
ment. PhD thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts., 1983.

[16] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-power embedded operating
systems. InProceedings of 18th Symposium on Operating Systems Principles, 2001.

[17] F. P. Preparata and M. l. Shamos.Computational Geometry, An Introduction. Springer Verlag,
1985.

[18] G. Quan and X. Hu. Energy efficient fixed-priority scheduling for real-time systems on variable
voltage processors. InProceedings of the Design Automation Conference, pages 828–833, June
2001.

[19] G. Quan and X. Hu. Minimum energy fixed-priority scheduling for variable voltage processors. In
Design Automation and Test in Europe, pages 782–787, March 2002.

[20] V. Raghunathan, P. Spanos, and M. Srivastava. Adaptive power-fidelity in energy aware wireless
embedded systems. InIEEE Real-Time Systems Symposium, 2001.

[21] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols: An approach to real-time
synchronization. InIEEE Transactions on Computers, pages 1175–85, 1990.

[22] Y. Shin, K. Choi, and T. Sakurai. Power optimization of real-time embedded systems on variable
speed processors. InProceeding of the International Conference on Computer-Aided Design, pages
365–368, 2000.

[23] A. Silberschatz, P. B. Galvin, and G. Gagne.Operating System Concepts. John Wiley and Sons,
Inc., 2001.

[24] J. A. Stankovic, M. Spuri, M. D. Natale, and G. Buttazzo. Implications of classical scheduling
results for real-time systems. InIEEE Transactions on Computers, 1994.

[25] F. Yao, A. J. Demers, and S. Shenker. A scheduling model for reduced CPU energy. InIEEE
Symposium on Foundations of Computer Science, pages 374–382, 1995.

[26] Y. Zhang, X. S. Hu, and D. Z. Chen. Task scheduling and voltage selection for energy minimization.
In Proceedings of the Design Automation Conference, 2002.

11

A Appendix

We used the following examples in our experiments. They were used in the PERTS tool at UIUC.

� Fight Control System

� Multi Processor System

� End to End Scheduling

Some of the examples used multiple processors. We scaled the execution periods to map them to a
single processor system. The examples are given on the next page.

A.1 Task Description Format (TDF)

We have defined a Task Description Format (TDF) to describe the tasks. We can define the semaphore
P and V opeations and the critical sections can be specified. It is used to specify all the task properties.
The format is intutive and easily readable. All the examples are given in TDF.

12

