Energy Efficient Code Generation Using rISA*

Aviral Shrivastava, Nikil Dutt
aviral@ics.uci.edu, dutt@ics.uci.edu

Center for Embedded Computer Systems,
University of California, Irvine, CA, USA.
http://www.ics.uci.edu/~aces

*This work was partially supported by SRC contract 2003-HJ-1111
and NSF Grants CCR 0203813 and CCR 0205712

reduced bit-width **I**nstruction **S**et Architecture (rISA)

- **Dual Instruction Set**
 1. Normal 32-bit wide instructions
 2. 16-bit wide instructions (rIS)

 Normal 32-bit Instruction

<table>
<thead>
<tr>
<th>20-bit</th>
<th>4-bit</th>
<th>4-bit</th>
<th>4-bit</th>
</tr>
</thead>
</table>

 16-bit rISA Instruction

<table>
<thead>
<tr>
<th>7-bit</th>
<th>3-bit</th>
<th>3-bit</th>
<th>3-bit</th>
</tr>
</thead>
</table>

 Fewer opcodes, Accessibility to 16 registers

- **Popular feature to reduce code size**
 - ARM7TDI, MIPS, ARC, Tangent A5
rISA Code

rISA: reduced bit width Instruction Set Architecture

<table>
<thead>
<tr>
<th>Normal</th>
<th>Normal</th>
<th>Normal</th>
<th>Normal</th>
<th>Normal</th>
<th>Normal</th>
<th>Normal</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>rISA</td>
<td>rISA</td>
<td>rISA</td>
<td>Normal</td>
</tr>
</tbody>
</table>

- rISA-ization (sounds like resize-ation):
 - normal instructions → rISA instructions

Reducing Energy Consumption using rISA

- Existing rISA compilers aim to achieve maximum code compression
 - Energy reduction is a byproduct
- Further energy savings can be achieved by compiling for minimum energy

- We propose a code generation approach targeted to reduce energy consumption using rISA
rISAsization: At what granularity?

Previous approaches: Function level

rISAsization: Increased Register Pressure

Accessibility to only 8 registers

Fewer opcodes
rISAization: Instruction Level

Previous approach: Function level
Our approach: Instruction level

rISAization at Instruction Level granularity is better!

Instruction-Level rISAization: Overhead

Need Mode change instructions
- \textit{mx} – change mode from normal to rISA
- \textit{rISA_mx} – change mode from rISA to normal
Where to Insert Mode Change Operations?

Solution 1

Solution 2

Original code

Static Code Size = 17
Dynamic Code Size = 150

Energy (Solution1) > Energy(Solution2)

Compilation Flow for rISA

Solved using a graph theoretic approach in the paper.

Generic Instructions

Mark rISAizable Instrs

Profitability Analysis

Convert to rISA Instrs

Insert mode change Instrs

Insert rISA_nop Instrs

Target Instructions

Profile Information
Experimental Setup

- Non-cached Architecture
- Cached Architecture

Modeling Infrastructure
- Platune on-chip Power Models [VaGi00]
- Instruction Memory Subsystem Energy
 - Cache Energy
 - Memory Energy
 - Bus Energy
 - Translation Logic Energy

26% Energy Savings on Non Cached Architecture

- 26% overall energy savings
- 5% savings due to energy aware compilation

Instruction Memory Energy Savings
Conclusion

- rISA is a popular architectural feature in processors to reduce code size and energy.

- We presented a rISA compilation technique to further reduce instruction memory energy.

- Our approach shows an average 30% reduction in instruction memory energy.