
Verify 2003

System Debugging and Verification :
A New Challenge

Daniel Gajski Samar Abdi
Center for Embedded Computer Systems

http://www.cecs.uci.edu
University of California, Irvine

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

Overview

• Simulation and debugging methods

• Formal verification methods

• Comparative analysis of verification techniques

• Model formalization for SoC verification

• Conclusions

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

Design Verification Methods

• Simulation based methods
Specify input test vector, output test vector pair
Run simulation and compare output against expected output

• Semi-formal Methods
Specify inputs and outputs as symbolic expressions
Check simulation output against expected expression

• Formal Methods
Check equivalence of design models or parts of models
Check specified properties on models

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

Simulation

• Task : Create test vectors and simulate model
• Inputs

Specification
− Typically natural language, incomplete and informal
− Used to create interesting stimuli and monitors

Model of DUT
− Typically written in HDL or C or both

• Output
Failed test vectors
− Pointed out in different design representations by debugging tools

Typical simulation environment

DUT

St
im

ul
us

M
on

ito
rs

Specification

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

Improvements to Simulation Environment

• Main drawback is coverage
Several coverage metrics
− HDL statements, conditional branches, signal toggle, FSM states

Each metric is incomplete by itself
Exhaustive simulation for each coverage type is impractical

• Possible Improvements
Stimulus optimizations
− Language to specify tests concisely vs. exhaustive enumeration
− Write tests for uncovered parts of the model

Monitor optimizations
− Assertions within design to point to simulation failures
− Better debugging aids (correlation of code, waveforms and netlist)

Speedup techniques
− Cycle simulation vs. event driven
− Hardware prototyping on FPGA

Modeling techniques
− Models at higher abstraction level simulate faster

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

Stimulus optimizations

• Testbench Authoring Languages
Generate test vectors instead of writing them down
− Pseudo random, constrained and directed tests

Several commercial and public domain “verification languages”
− e, Vera, Jeda, TestBuilder

• Coverage Feedback
Identify design parts that are not covered
Create new tests to cover those parts
− controllability is a problem !

x y z x y z

1
1

1
0

coverage analysis

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

• Assertions in the model
Properties written as assertions in design
− Example : signals a and b are never ‘1’ at the same time
− Errors detected before reaching primary output (helps debugging)

Several methods of inserting assertions
− Assertion languages, e.g. PSL, SystemVerilog, e

− assert always !(a & b)
− Pragmas

• Debugging aids
Correlation between different design representations
− Waveforms, schematic, code, state machines

Monitor optimizations

…….
c = a and b
…….

a
b

c

a
b
c

Spec

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

Speedup techniques

• Cycle simulation
Observe signals once per clock cycle
Cannot observe glitches within a clock cycle

• Emulation
Prototype hardware model on FPGAs
Much faster than software simulation
In-circuit emulation
− FPGA is inserted on board instead of real component

Simulation acceleration
− Emulate parts of hardware by interfacing with software simulator

Spec

Non-
synthesizable

synthesizable

SW

FPGA ISS / HDL simulator

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

Modeling techniques

• Use higher levels of abstraction for faster simulation
Untimed functional / Specification model
− Executable specification to check functional correctness
− Simulates at the speed of C program execution but no timing

Timed architecture model
− Used to evaluate HW/SW partitioning
− Computation distributed onto system components

Transaction level model
− Used to evaluate system with abstract communication
− Transactions vs. bit toggling (data abstraction)

Bus functional model
− Communication modeled at pin-accurate / time accurate level
− Computation modeled at functional level

Cycle accurate model
− HW and SW at cycle accurate level
− Communication at cycle accurate level

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

Overview

• Simulation and debugging methods

• Formal verification methods

• Comparative analysis of verification techniques

• Model formalization for SoC verification

• Conclusions

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

Formal Verification Methods

• Equivalence Checking
Compare optimized/synthesized model against original model

• Model Checking
Check if a model satisfies a given property

• Theorem Proving
Prove implementation is equivalent to specification in some formalism

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

Logic Equivalence Checking

• Task : Check functional equivalence of two designs
• Inputs

Reference (golden) design
Optimized (synthesized) design
Logic segments between registers, ports or black boxes

• Output
Matched logic segment equivalent/not equivalent

• Use canonical form in boolean logic to match segments

1 = 1’ ?
2= 2’ ?

in
pu

ts

ou
tp

ut
s

1
2

in
pu

ts

ou
tp

ut
s1’

2’

Equivalence
result

Reference design

Optimized design

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

FSM Equivalence Checking (1/2)

• Finite State Machine
M : < I, O, Q, Q0, F, H >
− I is the set of inputs
− O is the set of outputs
− Q is the set of states
− Q0 is the set of initial states
− F is the state transition function Q × I Q
− H is the output function Q O

• FSM as a language acceptor
Define Qf to be the set of final states
M accepts string S of symbols in I if
− applying symbols of S to a state in Q0 leads to a state in Qf

Set of strings accepted by M is its language
• Product FSM

Define product FSM as a parallel composition of two machines
− M1: < I, O1, Q1, Q01, F1, H1 > , M2: < I, O2, Q2, Q02, F2, H2 >
− M1×M2 : <I, O1×O2, Q1×Q2, Q01×Q02, F1× F2, H1×H2 >

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

FSM Equivalence Checking (2/2)

• Task : Check if implementation is equivalent to spec
• Inputs

FSM for specification (Ms)
FSM for implementation (Mi)

• Output
Do Mi and Ms give same outputs for same inputs ?

• Idea (Devadas, Ma, Newton ’87)
Compute Mi×Ms
Qf(Mi×Ms) = States which have different outputs for Mi and Ms
Check if any state in Mi×Ms is reachable (language emptiness)

p

q

x

y
a

b

r

s

x

y
a

b
ty

b

pr

qr

ps pt

qs qt

xx

yx

xy
xy

yy

yy
aa

bb

bb

× =

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

Model Checking (1/2)

• Task : Property P must be satisfied by model M
• Inputs

Transition system representation of M
− States, transitions, labels representing atomic properties on states

Temporal property
− Expected values of variables over time
− Causal relationship between variables

• Output
True (property holds)
False + counter-example (property does not hold)
− Provides test case for debugging

True /
False + counter-exampleModel

Checker

P = P2 always leads to P4s1

s4 s3

s2P1

P3P4

P2

M

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

Model Checking (2/2)

• Idea (Clarke, Emerson ’81)
Unroll transition system to
an infinite computation tree
− Start state is the root (S1)

Define properties using
− On all paths (A)
− On some path (E)
− Always / Globally (G)
− Eventually (F)

Some examples
− EG p
− AG p
− EF p
− AF p

• State space explosion
What next ?

s1

s4 s3

s2

Transition system

s1

s2 s4

s3 s4 s4

s4s4s2 s4

Computation Tree

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

Theorem Proving (1/2)

• Task : Prove implementation is equivalent to spec in given logic
• Inputs

Formula for specification in given logic (spec)
Formula for implementation in given logic (impl)
Assumptions about the problem domain
− Example : Vdd is logic value 1, Gnd is logic value 0

Background theory
− Axioms, inference rules, already proven theorems

• Output
Proof for spec = impl

AutomatedManual

Proof
Goal

Assumptions /
Background

theories /
Inference

rules

decomposition | proof

T
he

or
em

 P
ro

ve
r

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

Theorem Proving (2/2)

• Example
CMOS inverter (Gordon’92)
Using higher order logic

• Assumptions
Vdd(y) := (y=T)
Gnd(y) := (y=F)
Ntran(x,y1,y2) := (x->(y1=y2))
Ptran(x,y1,y2) := (┐x->(y1=y2))

• Impl(x,y) := w1, w2. Vdd(w1) Λ
Ptran(x,w1,y) Λ Ntran(x,y,w2) Λ Gnd(w2)

• Spec(x,y) := (y=┐x)
• Proof

Impl(x,y) = ….. (assumption / thm / axiom)
= ….. (assumption / thm / axiom)
= ….. (assumption / thm / axiom)
= Spec(x,y)

ш

Vdd

Gnd

x y

w1

w2

CMOS inverter

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

Drawbacks of formal methods

• Equivalence checking
Designs to be compared must be similar for LEC
− Correlated logic segments are identified by design structure
− Drastic transformations may force manual identification of segments

FSM EC requires spec and implementation to
− Be represented as finite state machines
− Have same input and output symbols

• Model Checking
State explosion problem
− Insufficient memory for designs with > 200 state variables

Limited types of designs
− Design should be represented as a finite transition system

• Theorem Proving
Not easy to deploy in industry
− Most designers don’t have background in math logic (esp. HOL)
− Models must be expressed as logic formulas

Limited automation
− Extensive manual guidance to derive proof sub-goals

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

Improvements to Formal Methods

• Symbolic Model Checking (McMillan ’93)
Represent states and transitions as BDDs
− Allows many more states (~10^20) to be stored
− Compare sets of states for equality using SAT solver

• Bounded Model Checking (Biere et.al. ’99)
Restricted to bugs that appear in first K cycles of model execution
− Unfolded model and property are written as propositional formula
− SAT solver or BDD equivalence used to check model for property

• Partial Order Reduction (Peled ’97)
Reduces model size for concurrent asynchronous systems
− Concurrent tasks are interleaved in asynchronous models
− Check only for 1 arbitrary order of tasks

• Abstraction (Long, Grumberg, Clarke ’93)
Cone of influence reduction
− Eliminate variables that do not influence variables in spec

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

Semi-formal Methods (Symbolic Simulation)
• Task : Check if implementation satisfies specification
• Inputs

Simulation model of the circuit
Specification of expected behavior (as boolean expressions)

• Output
Expression for the signals in design

• Idea (Bryant ’90)
Encode set of inputs symbolically (using BDD)
Evaluate output expressions during simulation
Compare simulation output with expected output
− using BDD canonical form

Simulation
model

a
b
c
d

f(a,b,c,d)
?
= g(a,b,c,d) Specification

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

Overview

• Simulation and debugging methods

• Formal verification methods

• Comparative analysis of verification techniques

• Model formalization for SoC verification

• Conclusions

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

Evaluation Metrics

• Coverage
How exhaustive is the technique ?
− % of statements covered
− % of branches taken
− % of states visited / state transitions taken

• Cost and Effort
How expensive is the technique ?
− Dollars spent per simulation / emulation cycle
− Training time for users

• Scalability
How well does the technique scale with design size / abstraction ?
− Tool capacity
− Tool applicability for various modeling abstraction levels

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

Coverage

Equivalence checking
Theorem proving
Model checking

Symbolic simulation

Simulation with Assertions

Pseudo-random simulation

• Formal methods provide
complete coverage

For a specified property
For a reference model

• Simulation with assertions
Improves understanding of
design
− White box vs. black box testing

High

Medium

Low

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

Cost and Effort

• Pseudo-random simulation
Writing monitors

• Simulation with assertions
Identifying properties
Writing assertions

• Equivalence checking
Correlating logic segments

• Model checking
Writing assertions

• Theorem proving
Training (~ 6 months)
Identifying assumptions
Creating sub-goals

Equivalence checking

Theorem proving

Model checking

Symbolic simulation

Simulation with Assertions

Pseudo-random simulation

Low

Medium

High

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

Scalability

• Simulation based methods
Scale easily to large designs
Any model can be simulated !

• Theorem proving
Any type of design

• Symbolic simulation
BDD blowup for large designs
Limited to RTL and below

• Model checking
State space explosion

Equivalence checking
Theorem proving

Model checking
Symbolic simulation

Simulation with Assertions

Pseudo-random simulation

High

Medium

Low

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

Evaluating Verification Techniques

LLMSymbolic simulation
MMHEquivalence checking
LMHModel checking
MHHTheorem proving

HMMSimulation w/ assertions
HLLPseudo random simulation

ScalabilityCost and EffortCoverageMetric
Technique

• Well accepted techniques in industry
Simulation with assertions
Equivalence checking

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

Overview

• Simulation and debugging methods

• Formal verification methods

• Comparative analysis of verification techniques

• Model formalization for SoC verification

• Conclusions

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

New Verification Challenges for SoC Design

• Design complexity
Size
− Verification either takes unreasonable time (eg. Logic simulation)
− Or takes unreasonable memory (eg. Model Checking)

Heterogeneity
− HW / SW components on the same chip
− Interface problems
− Interdependence of both design teams

• Possible directions
Methodology
− Unified HW/SW models
− Model formalization
− Automatic model transformations

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

System Level Methodology

• Well defined specification
Complete
Just another model

• Well defined system models
Several possible models
Well defined semantics
Formal representation

• Model verification
Design decisions => transformations
Formally defined transformations
Automatic model generation possible
Equivalence by construction

System Specification
model

Intermediate models

Cycle accurate
implementation model

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

System Level Models

• Models based on time granularity of computation and communication
• A system level design methodology is a path from model A to F

Computation

Communication

A B

C

D F

Un-
timed

Approximate-
timed

Cycle-
timed

Un-
timed

Approximate-
timed

A. System specification model
B. Component model
C. Bus-arbitration model
D. Bus-functional model
E. Cycle-accurate computation model
F. Implementation model

E

Cycle-
timed

Source: Lukai Cai, D. Gajski. “Transaction level modeling: An overview”, ISSS 2003

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

Model Definition

• Model = < {objects}, {composition rules} >
• Objects

Behaviors
− tasks / computation / function

Channels
− communication between behaviors

• Composition rules
Sequential, parallel, FSM
Behavior / channel hierarchy
Behavior composition also creates
execution order
− Relationship between behaviors in the

context of the formalism
• Relations amongst objects

Connectivity between behaviors and
channels

B2 B3

B1

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

Model Transformations (1/2)

• Design Decision
Map behaviors to PEs

• Model Transformations
Rearrange object composition
− Distribute computation over PEs

Replace objects
− Import IP components

Add / Remove synchronization
− Transform sequential composition to

parallel and vice-versa

a*(b+c) = a*b + a*c
Distributivity of multiplication

over addition

analogous to……

B1

B2
B3=

Distribution of behaviors (tasks)
over components

PE IP

B2 B3

B1

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

Model Transformations (2/2)

• Design Decision
Map channels to buses

• Model Transformations
Rearrange object composition
− Group channels according to bus

mapping
− Slice complex data into bus words

Replace objects
− Import bus protocol channels

a+b+c+d = (a+b) + (c+d)
Associativity of addition

analogous to……

=

Mapping of channels to buses

PE IP PE IP

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

Model Refinement

• Definition
Ordered set of transformations < tm, … , t2, t1 > is a refinement
− model B = tm(… (t2(t1(model A))) …)

• Equivalence verification
Each transformation maintains functional equivalence
The refinement is thus correct by construction

• Derives a more detailed model from an abstract one
Specific sequence for each model refinement
Not all sequences are relevant

• Refinement based system level methodology
Methodology := < {models}, {refinements} >

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

System Verification through Refinement

• Set of models
• Designer Decisions => transformations

Select components / connections
− Import behaviors / protocols

Map behaviors / channels
− Synchronize behaviors / slice data

• Transformations preserve equivalence
Same partial order of tasks
Same input/output data for each task
Same partial order of data transactions
Equivalent replacements

• All refined models will be “equivalent” to
input model

Still need to verify
First model
Correctness of replacements

Refinement
Tool

t1
t2
…
tm

Model A

Model B

Designer
Decisions

Library of
objects

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

Conclusion

• Variety of verification techniques available
Several tools from industry and academia
Each technique works well for specific kind / level of models

• Challenges for verification of large system designs
Simulation based techniques take way too long
− Time to market issues

Most formal techniques cannot scale
− Memory requirement explosion
− Too much manual effort required

• Modeling is pushed to system level
• Future design and verification

Complete and executable functional specification model
Well defined semantics for models at different abstraction levels
Well defined transformations for design decisions
− Verify transformations
− Automate refinements

• Formalism helps system verification !

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

References

• Devadas, Ma, Newton, “On the verification of sequential machines at different
levels of abstraction”, 24th DAC, pp.271-276, June 1987

• Clarke, Grumberg, Peled, “Model Checking” , MIT Press

• K.L. McMillan, “Symbolic Model Checking: An approach to the State Explosion
Problem” , Kluwer Academic 1993

• McFarland, “Formal Verification of Sequential Hardware: A tutorial”, IEEE
Transaction on CAD, pp. 633-653, May 1993

• Thomas Kropf, “Introduction to Formal Hardware Verification” Springer, 1999

• Gordon, “Specification and Verification of Hardware”, University of Cambridge,
October 1992

• Lionel Bening, Harry Foster, “Principles of Verifiable RTL Design”, Kluwer 2000

Verify 2003

Thank You !

