ESE Front End 2.0

D. Gajski, S. Abdi, Y. Hwang, L. Yu, H. Cho, I. Viskic Center for Embedded Computer Systems University of California, Irvine

http://www.cecs.uci.edu

Technology Advantages

- No basic change in design methodology required
 - ESE supported design follows present design process
- Productivity gain of more than 1000X demonstrated
 - Designers do not write models
- Simple design update: 1-day change
 - No rework for new design decisions
- High error-reduction: Automation + verification
 - Error-prone tasks are automated
- Simplified globally-distributed design
 - Fast exchange of design decisions and easy impact estimates
- Benefit through derivatives designs
 - No need for complete redesign
- Better market penetration through customization
- Shorter Time-to-Market through automation

Model Accuracy vs. Execution Time

PCAM: Pin/Cycle Accurate Model

Exec. Time (MP3)

Time and accuracy trade off among different models

ESE Front End Tool Flow

Platform Architecture

Application Spec

TLM Generation Features

- Processing Elements (PEs)
 - Any number of processes mapped to any PE
 - Any number of bus connections
- Connectivity
 - Point-to-point links
 - Shared bus architecture
 - Multi-hop transactions
 - NoC platforms
- Bridges and routers
 - Any size, number and partition of FIFOs
 - Any number of bus connections
 - Static and dynamic routing
- Memories
 - Any number of bus connections
 - Local (inside PE) and shared memories

Timing Estimation Technique

- DFG scheduling to compute basic block delay
- RTOS model added for PEs with multiple processes

Timing Estimation Features

- Retargetable Processor Models
 - Any type of control/datapath pipelining
 - Any number of pipelined datapaths
 - Multi-cycle units, forwarding, chaining
 - Branch prediction
 - VLIW and SuperScalar
- Statistical/Dynamic Cache Models
- RTOS models
- Integration with high level synthesis for custom HW
- Estimation reports
 - Basic block level, function level and transaction level

ESE: Platform and Application Capture

ESE: TLM Generation and Estimation

MP3 Decoder Application

Functional block diagram (major blocks only)

- Application features
 - 12K lines of C code
 - IMDCT and DCT are compute intensive
 - Candidates for HW implementation
 - Left channel and right channel are data independent
 - Concurrent execution possible

MP3 Platforms

- MP3 Decoder on Xilinx Multimedia FPGA board
 - Microblaze soft-core with 0/1/2/4 HW components

Results: Functional TLM Generation and Simulation

Design	SystemC	Manual	Func. TLM	
	LoC	Coding	Generation	Simulation
M1	2095	2 weeks	0.63 s	0.01 s
M2	2894	3 weeks	0.66 s	0.01 s
M3	3148	4 weeks	0.66 s	0.01 s
M4	3653	4 weeks	0.74 s	0.01 s
Average	2948	~3 weeks	~ 0.7 s	0.01 s

- Functional TLM generation in seconds vs. weeks of manual coding
 - Huge productivity gain
- Functional TLM simulation in fraction of a second
 - Early application development and debugging

Results: Estimation Quality

Error %= (1 - Estimated cycles/ Board Cycles)*100

ISM Error

Cache size	M1		
Cache Size	Board	ISM Error	
0K/0K	27215K	39.48%	
2K/2K	8914K	18.38%	
8K/4K	5828K	3.55%	
16K/16K	4413K	-16.32%	
32K/16K	4384K	-16.60%	
Average	N/A	18.86%	

Timed TLM Error

Cache Size	M1	M2	M3	M4
0K/0K	6.27%	9.00%	18.18%	18.61%
2K/2K	6.68%	-7.16%	-15.79%	-9.35%
8K/4K	4.74%	9.13%	-1.66%	-0.18%
16K/16K	-13.83%	4.66%	2.63%	3.65%
32K/16K	-13.89%	-8.29%	1.57%	2.29%
Average	9.08%	7.65%	7.97%	6.82%

- TLM estimation applicable to all designs
 - ISM only available for SW
- TLM estimation error < ½ of ISM error
 - Reliable design exploration with timed TLMs

Results: Timed TLM Generation and Simulation

71 s ~ 1 min	0.36 s ~ 0.2 s	3.6 h	18 h
47 s	0.25 s	N/A	18 h
50 s	0.22 s		18 h
31 s	0.01 s	3.6 h	16 h
Timed TLM Generation	Timed TLM Simulation	ISM Sim.	CA Sim.

- Timed TLM generated in minutes vs. hours of CA/ISM simulation
 - Early SW/HW performance estimation
- Timed TLM simulation in < 1 sec.
 - Extensive design exploration

ESE Advantages

- Platform and Application can be easily captured using GUI
- Functional TLMs are automatically generated for development and testing of application code
- Timed TLMs are automatically generated for early design exploration
- Legacy SW and HW IPs can be easily added for design reuse and upgrade
- ESE allows concurrent development of platform SW, HW and application code

Acknowledgments

- We would like to acknowledge the previous R&D teams who contributed many concepts and methods used in ESE 2.0
 - SpecCharts/SpecSyn ('92): F. Vahid, S. Narayan,
 J. Gong, S. Bakshi
 - SpecC/SCE ('00) team: R. Doemer, J. Zhu,
 A. Gerstlauer, J. Peng, D. Shin, L. Cai, H. Yu
- We also want to thank P. Chandraiah for MP3 reference code