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Technology advantages

• No basic change in design methodology required
• ES methodology follows present manual design process

• Productivity gain of more than 1000X demonstrated
• Designers do not write models

• Simple change management: 1-day change
• No rework for new design decisions

• High error-reduction: Automation + verification
• Error-prone tasks are automated

• Simplified globally-distributed design
• Fast exchange of design decisions and easy impact estimates

• Benefit through derivatives designs
• No need for complete redesign

• Better market penetration through customization
• Shorter Time-to-Market through automation

Technology Advantages
This new ESE methodology does not require any changes in the present corporate 
methodology and offers three orders of magnitude of productivity gain because of 
automatic model generation, synthesis and verification.. It reduces bugs since the 
mundane tasks of generating models and verifying them is automatic.
It also allows simple  change management of few hours for small changes and few 
days for large changes. Since all the models and changes are made automatically it 
is easy to ship those models around the world for design, checking and upgrades. 
However, the main advantage lies in the fact that every system or product can be 
easily upgraded with only few days of work. This type of customization allows 
better market penetration and shorter time-to-market.
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ES Environment (ESE)
The ESE consists of a front-end and a back-end supported by two interfaces.
The front-end consists of System Capture, which is a graphical user interface for 
capturing the definition of the platform architecture and product application code. 
Platform Development tool generates timed Transaction-Level Models (TLMs) of 
the platform architecture executing the product application defined by the capture 
tool. These timed TLMs provide reliable performance metrics and are used for early 
exploration of design choices.
In the back-end, the HW Development component is used to generate cycle-
accurate or RTL description of the HW components which can be further refined by 
commercially available tools for ASIC or FPGA manufacturing. SW Development
generate firmware necessary to run communication and application SW on the 
platform.
Validation User Interface is used to debug and validate developed SW and HW. 
Decision User Interface is used by the designer, to estimate the quality metrics and 
make decisions such as component selection, task scheduling, mapping of SW 
functions to HW components and others. 
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Input: Transaction Level Model (TLM)
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Transaction Level Model (TLM)
The ESE front-end automatically generates the transaction level model of the 
system for debugging and validation of SW and reference C code for HW. This 
model is also used for application SW development as well as for design of custom 
HW and interfaces. This way SW and HW can be developed concurrently. It 
simulates very fast so that productivity of developers increases by an order of 
magnitude (from days to hours).
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TLM Features

• Universal Bus Channel (UBC)
• Bus is modeled as universal channel with send/recv, read/write functions
• Well defined functions for routing, synchronization, arbitration and transfer

• SW modeling
• Application SW is modeled as processes in C
• A RTOS model or real RTOS is used for dynamic scheduling of processes
• Communication with peripherals, memory or other IP is done using UBC 

• HW modeling
• Application HW is modeled as processes written in C
• Communication with processor, memory or other IP is done using UBC

• Memory modeling
• Memory is modeled as array in C
• Memory controller is modeled by function in UBC

TLM Features
TLM models the bus using a universal bus channel (UBC). The UBC provides 
different types of functions like Send, Receive, Memory Read/Write and Memory 
service. Application processes executing on different components of the platform 
use UBC functions to communicate amongst themselves. UBC functions implement 
routing of messages, process synchronization, bus arbitration and data transfer in an 
abstract, application independent manner. 

SW is modeled as a set of C processes. If there are more than 1 processes, then a 
dynamic scheduler is required to schedule them on the host CPU. In TLM, a model 
of the RTOS may be used for this purpose. This RTOS model emulates the actual 
RTOS scheduler, but runs at a much higher speed. Communication between SW 
application processes and other processes or memory mapped to peripherals is 
enabled by the UBC interface to the SW processor. 

HW modeling is also done using C processes and is similar to SW modeling, with 
the exception that there is no RTOS model for the HW. Each HW process is 
synthesized with a different controller, so all scheduling is static.

Memory is modeled as an array in C. A special memory access function in UBC is 
used to control access to this array (and hence models the memory controller). 
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Cycle-Accurate Software Synthesis
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Cycle-Accurate Software Synthesis
There are primarily two steps in SW synthesis. The first part is the insertion of a 
real RTOS to replace the OS model of the TLM. The second part is the 
transformation of UBC function calls with RTOS and platform specific C code. The 
transformed application code is compiled and linked with the RTOS and hardware 
abstraction layer (HAL) libraries to create the final binary that executes on the CPU.

For SW performance estimation purpose, the application SW can also be developed 
using commercially available tools, such as Instruction Set Simulators (ISS) that are 
compiled and inserted into the TLM. ESE will upgrade the TLM by inserting the 
Instruction Set Simulator and compiled binaries. Similarly, users can develop 
custom operating system and insert it into the model. Obviously, cycle-accurate HW 
and SW models run  much slower and should be inserted selectively. Instead timed 
TLMs generated by ESE front-end may be used for fast and accurate performance 
estimation.
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SW Synthesis Issues

• Compiler selection
• The designer specifies which compiler is used for the SW

• Library selection
• Libraries are selected for SW support such as file systems, string 

manipulation etc. 
• Prototype debugging requires selection of additional libraries

• RTOS selection and targeting
• Designer selects an RTOS for the processor 
• RTOS model is replaced by real RTOS and SW is re-targeted

• Program and data memory
• Address range for SW program memory is assigned
• Address range for data memory used by program is assigned
• For large programs or data, off-chip memory may be allocated

SW Synthesis Issues
If the intended target is a FPGA board, the SW must be configured so that it can be 
input to FPGA design tools, such as Xilinx Embedded Development Kit or Altera
SOPC Builder. A compiler is selected for the SW. Often times, SW application will 
require additional libraries such as file system libraries or string manipulation. All 
such libraries must be selected and added to the SW description. Similarly, if the 
prototype is to be debugged, most FPGA providers include debug libraries and 
JTAG interfaces for the processors that come with the board. These libraries may 
also be selected if debugging is required. The purpose of library selection is to 
estimate the lower bound of required program memory and allows appropriate 
address range selection. 

The model of the RTOS is replaced with the actual RTOS. Therefore, all function 
calls in the application must be replaced by appropriate function calls to the actual 
RTOS library. Hence, the SW is retargeted for RTOS. Based on all this input, a 
default address range of the SW program and data is created. This address range is 
passed to the compiler and FPGA design tool for creating the final address map for 
each bus in the system. If on chip memory is not sufficient, off-chip memories may 
be selected for both program and data. 
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Cycle-Accurate Hardware Synthesis
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Cycle-Accurate Hardware Synthesis
The HW components can be designed using standard C to RTL synthesis tools such 
as those provided by Forte. However, most commercial and academic RTL 
synthesis tools have constraints on interface and SystemC coding style. ESE 
automatically generates SystemC code for synthesis with Forte. This SystemC code 
includes the user C processes and models custom HW bus interfaces using cycle 
accurate SystemC synthesizable by Forte. Using automatic bridge generation 
feature of ESE, it is possible to generate RTL interface between system buses and 
custom HW bus supported by RTL synthesis tool. Therefore, ESE provides a 
seamless integration of commercial C to RTL synthesis tools in the back-end. 
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HW Synthesis Issues

• IP insertion
• C model of HW is replaced with pre-designed RTL IP, if available

• RTL synthesis tool selection
• RTL synthesis tool must be selected for custom HW design

• SystemC code generation
• C/SystemC code for input to RTL synthesis tool is generated

• Synthesis directives
• RTL architecture and clock cycle time is selected
• UBC calls transformed into synthesizable cycle accurate SystemC

• HDL generation
• RTL synthesis result in cycle accurate synthesizable Verilog code

HW Synthesis Issues
If a HW component may be replaced by an available IP, then no RTL synthesis is 
required for that component. This case is applicable if the C model of the HW is 
simply an abstract representation of an existing IP which the designer intends to use 
in the system. If no such IP is available, commercial C to RTL tools may be used to 
generate the custom HW. ESE generates the required SystemC code for the 
supported RTL synthesis tools such as Forte. The user can also select synthesis 
directives such as RTL architecture for NISC and target clock speed. The send/recv
function calls to UBC from C processes are automatically transformed into 
equivalent cycle accurate SystemC code for RTL synthesis. The result of RTL 
synthesis is Verilog code that can be input to logic synthesis tools such as Design 
Compiler, XST or Synplicity.
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Cycle-Accurate Interface Synthesis
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Cycle-Accurate Interface Synthesis
In the final step ESE automatically synthesizes the interfaces for communication 
between components. This way  users can test the communication between newly 
developed cycle-accurate HW and SW. This is the final step in the development of
the system on a chip or a prototype in a FPGA. 
Once the SW and HW components are debugged and tested on the CA level, users 
can switch back to TLM for development of application SW. Similarly, upgrading 
the system could also start on the transaction level.
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Interface Synthesis Issues

• Synchronization
• UBC has unique flag for each pair of communicating processes
• Flag access is implemented as polling or interrupt

• Arbitration
• Selected from library or synthesized to RTL based on policy

• Bridge
• Selected from library or synthesized using universal bridge generator

• Addressing
• All communicating processes are assigned unique bus addresses 

• SW communication synthesis
• UBC functions are replaced by RTOS functions and assembly instructions

• HW communication synthesis
• DMA controller in RTL is created for each custom HW component
• Send/Recv operations are replaced by DMA transfer states

Interface Synthesis Issues
Interface synthesis consists of implementing the abstract communication methods of 
the UBC. The abstracted flag-based synchronization in UBC is implemented as an 
interrupt-based, polling-based or other user defined scheme. If the CPU does not 
have capacity for required interrupts, an interrupt controller is used. The designer 
may synthesize an arbiter or select one from the library. 

Bridges are automatically generated in ESE for connecting cores with incompatible 
interface protocols. The RTL implementation of the Bridge can be obtained from 
the Bridge Generator tool in ESE by providing a set of parameters, such as the bus 
protocols, size of internal buffer etc. 

A unique address is given to every process in the model for sending or receiving 
data. In the SW application code, the UBC calls for send/recv are synthesized into 
RTOS function calls for interrupt handling and C code for data transfer. 

For HW interface synthesis a DMA controller is added to acts as an interface 
between the HW and the system bus. A send or receive call in HW application is 
translated into DMA setup, start and done states.
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Pin/Cycle-Accurate Model
The ESE back-end generates the pin accurate model of the system for FPGA 
download. This model includes all the SW code, including application, libraries and 
RTOS. I also contains all the HW components as synthesizable Verilog. Depending 
on the prototype target, ESE generates files that will be needed by the respective 
FPGA design tools. These files and the model is exported to the FPGA design 
environment where the designer compiles the SW and performs logic synthesis for 
the HW components. Finally, a bit-stream is generated that directly programs the 
FPGA with the prototype. This programmed FPGA typically has a hyper-terminal 
user interface that can be used to debug the prototype.
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MP3 Player Prototyping with ESE Back-end

• TLM Input
• TLM is generated by ESE front-end for MP3 application and platform

• Interface synthesis
• Polling or interrupt mechanism is selected for synchronization
• Arbiter is selected for busses with multiple masters
• Bridge between CPU bus and peripheral bus is created by Bridge Generator

• SW synthesis
• Compiler/RTOS for SW is selected and addresses are generated for memories

• HW synthesis
• RTL is generated for custom HW cores by C RTL tools like Forte and NISC

• Export to FPGA design tools
• Files are generated for creating complete project for FPGA tools

• FPGA download and test
• FPGA design tools create bit-stream for programming the board
• MP3 player prototype runs directly on FPGA board

MP3 Player Prototyping with ESE Back-end
To demonstrate the ESE support for large size application and heterogeneous multi-
processor platforms, we selected four MP3 decoder designs. The TLMs for these 
platforms and application mapping were generated automatically using the ESE 
front-end. The above steps were followed to generate the PCAM using the ESE 
back-end. The PCAM was downloaded to a Xilinx prototyping board and tested.
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MP3 Decoder Application

• Functional block diagram (major blocks only)

• Application features
• 12K lines of C code
• IMDCT and DCT are compute intensive 

– Candidates for HW implementation
• Left channel and right channel are data independent

– Concurrent execution possible

MP3 Decoder Application
To demonstrate the usefulness of ESE, an MP3 decoder application was chosen. 
The block diagram above shows the IMDCT and DCT transforms that are applied 
during the stereo decoding on the left and right channels of the MP3 input. These 
function blocks are the most time consuming part of the decoding and are hence 
ideal for implementation using custom HW for faster decoding. The C model is also 
used to create test benches with golden PCM output files. These test benches are 
used later to verify the ESE generated PCAMs in both the simulation model and the 
board prototype.
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MP3 Player TLM (SW+4HW)

• MP3 encoder mapped to SW (MicroBlaze), DCT and IMDCT to HW
• Mem1 (on OPB bus) for program, Mem2 (on LMB bus) for data
• Custom HWs on DoubleHdshk (DH) bus, with bridge to OPB
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MP3 Player TLM (SW+4HW)
The MP3 application is primarily implemented in SW on MicroBlaze processor. 
The above TLM figure shows the most complex MP3 design done with ESE. Some 
compute intensive parts of the application have been mapped to HW. These include 
the left and right DCTs and the left and right IMDCTs. The CPU generates decoded 
data that passes through the DCT and IMDCT and finally sent to speaker input. 
Communication is therefore from CPU to DCT/IMDCT HWs and back. Since the 
filters and IMDCT are to be designed as custom HW with a proprietary 
DoubleHandShk (DH Bus) interface, a bridge is inserted between CPU (OPB Bus) 
and the DH Bus. Mem1 holds the program running on CPU while Mem2 holds the 
data for the CPU. For optimization purposes, we use a direct connection between 
CPU and Mem2 using LMB bus supported on the Microblaze core. 
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Interface Synthesis

• Interrupt signals and connections are selected
• Arbiter is selected and request / grant pins are connected
• RTL code for Bridge is generated using BridgeGen

Interface Synthesis
A bridge between Microblaze OPB bus and DH bus is generated automatically with 
BridgeGen.

Communication between the CPU and the HW components must pass through the 
bridge. Since this communication is synchronized, we need a method to implement 
synchronization between CPU and Bridge. Since Microblaze has an available 
interrupt input, we use it for synchronization with Bridge. The Bridge acts as a slave 
device and generates the interrupt that is input to Microblaze.

On the DH bus, HW components must communicate with the bridge. Therefore, 
they are assigned to be masters on the bus since the bridge is a slave on DH bus. 
Thus, an arbiter is selected to perform first come first serve (FCFS) arbitration 
between HW1, HW2, HW3 and HW4 on bus 2.
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SW synthesis

• Compiler, RTOS and libraries are selected for SW
• Default addresses for all addressable memory/bus is generated by ESE

SW synthesis
SW synthesis includes selection of compiler, RTOS and libraries for the Microblaze
processor. The compiler used is mb-gcc, the RTOS is xilkernel, provided by Xilinx, 
and file system and debug libraries (also from xilinx) are selected. The default 
address map for program memory on Mem1 and data memory on Mem2 is 
generated by ESE. Also, addressable registers inside the bridge are assigned 
addresses on Bus1. Similar addressing is done for HW components and Bridge on 
Bus2.
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HW synthesis

• RTL code for HW components is generated using C RTL tools

HW Synthesis
HW components for the MP3 design are synthesized using NISC compiler. ESE 
integrates other commercial tools such as Forte as well. SystemC code and 
constraints are automatically generated for each HW component automatically by 
ESE. It is also possible to import pre-designed IPs into ESE designs. Therefore, ESE 
can be used for incorporating legacy designs or for upgrades to next generation 
product.
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Export to FPGA Design Tools

• Platform and SW specification files are created for FPGA design tools
• C code for Microblaze and Verilog for HWs and Bridge is exported

Export to FPGA Design Tools
The model is now ready to be exported to FPGA design tools. Depending on the 
design tools, ESE will generate all the files needed to create a project for FPGA 
prototyping. Once the design tools are launched, the designer only needs to compile 
all the SW for each CPU in the platform and synthesize the ESE generated Verilog
for all the HW components. In this case, the target board is Xilinx and the platform 
model is exported to Xilinx Platform Studio. Thus the design is handed off for 
FPGA designers and prototype testers. 
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Benefit: FPGA Prototype in 1 Week

• Bit stream from FPGA design environment is downloaded to board
• Implemented prototype is tested with MP3 music files

FPGA Prototype in 1 Week
The Xilinx Platform studio creates the bit stream needed for programming the 
board, which is downloaded using a PC cable connection. The MP3 player 
prototype is now ready to be tested on board. Using ESE, system level design 
decisions can be implemented quickly and synthesizable models for SW and HW 
generated automatically. Therefore, months of development effort in system 
prototyping can be reduced to less than a week with ESE.
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Design Quality: Manual

• Area
• % of FPGA slices and BRAMS

• Performance
• Time to decode 1 frame of MP3 data
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MP3 Manual Design Quality
In order to establish benchmark for ESE designs, 4 manual designs for MP3 decoder 
were developed. SW+0 refers to a purely software implementation where all 
reference C code for MP3 decoder mapped to Microblaze processor. SW+1 is the 
design with one DCT implemented in custom HW with remaining MP3 code on 
Microblaze. SW+2 implements both left and right channel DCTs in HW. Finally 
SW+4 implements both left and right channel DCTs and IMDCTs in custom HW. 
The above chart shows the number of FPGA slices and BRAMs needed to 
implement the 4 designs. It also plots the time to decode 1 frame of MP3 data by 
each design. 

It can be seen that as more HW components are added, the area increases while 
decoding time comes down. By adding HW DCTs we get SW+1 and SW+2, which 
increase the design cost, but give only marginal improvements in performance. 
Once the IMDCTs are also moved to HW, we get SW+4 which has the highest area, 
using almost all the available slices on the FPGA. However, it gives the best 
performance of all the designs, with more than twice the decoding speed as the pure 
SW implementation.
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Design Quality: ESE

• Area
• ESE designs use fewer FPGA slices and more BRAMs than manual HW

• Performance
• ESE designs execute at same speed as manual designs
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MP3 ESE Design Quality
The same partitioning and platform as manual MP3 designs was used to implement 
MP3 decoder with ESE. It can be seen that ESE designs use more BRAMs but 
fewer FPGA slices than manual design. This is because the ESE generated HW 
components used more memory intensive controllers than the manual designs. The 
execution speed of ESE designs were comparable to manual design. Therefore, ESE 
can automatically generate prototypes for multi-core platforms with the same 
quality as manual design.
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Development Time: ESE vs. Manual

• ESE drastically cuts RTL and Board development time
• Manual development includes months of RTL coding
• Models can be developed at Spec level with ESE
• TLM, RTL and Board models are generated automatically by ESE

ESE

Manual

Development Time: ESE vs. Manual
Traditional design practice starts with RTL and embedded SW coding for selected 
platforms. The reference C specification model is used for developing test bench to 
verify the cycle accurate models. For MP3 platforms with HW components, the 
RTL development time was in the order of months. As a result, board prototypes for 
these designs took between 40 to 60 days.

ESE drastically cuts prototype development time by automatically generating TLM 
and RTL models. With ESE, the final board prototypes for MP3 designs were 
available in less than a week after the specification model was finalized. 
Consequently, ESE results in significant savings in design cost and shorter 
development cycles. 
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Validation Time: ESE vs. Traditional

• ESE cuts validation time from hours to seconds
• No need to verify RTL models for every design change
• Designers can perform high speed validation with TLM and board
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Validation Time: ESE vs. Traditional
As a consequence of traditional cycle accurate modeling, designers must make 
design optimizations and changes on RTL and low level SW code. Each change 
needs to be verified using time consuming cycle accurate simulations. Each cycle 
accurate simulation cycle took 15 to 18 hours for MP3 designs. This is a significant 
component of design time. Although at speed on-board verification is faster than 
even reference C simulation, bugs found in on-board testing are difficult to trace 
back to RTL.

ESE removes the burden of cycle accurate simulations by moving the design 
abstraction to TLM. ESE generated TLMs execute at the same speed as reference C 
simulation. Design changes are made at the transaction level and can hence be 
verified and debugged using the automatically generated high speed TLMs. TLMs 
are easier to debug and maintain because their code size is at least an order of 
magnitude less than RTL.

Automatic RTL generation is also less likely to introduce bugs in the design 
compared to manual RTL optimizations. This has been true in the past when the 
modeling abstraction moved from gate level to RTL with the use of logic synthesis 
tools. Therefore, ESE reduces verification time from an order of several hours or 
even days to a few seconds. As a results, designers can use ESE to make platform 
and application optimizations at a higher level, automatically generate TLMs and 
verify the optimizations in a few seconds.
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ESE Back-end Advantages

• HW synthesis in ESE removes the need to code and debug 
large RTL HDL models 

• Transducer and interface synthesis allows flexibility to include
heterogeneous IP in the design

• SW driver synthesis removes the need for SW developers to 
understand HW details

• SW and HW application can be easily upgraded at TL and 
validated on board

• C and graphical input of TL model allows even non-experts to 
develop and test HW/SW systems with ESE 

ESE Back-end Advantages
There are numerous advantages of using ESE. The product specification and 
implementation is easily captured with proprietary GUI. All models are generated 
automatically after proper design decisions are made by the users. This saves 
enormous amount of time in learning modeling languages and writing and 
interfacing appropriate models. SW, HW and interface synthesis allow design 
optimization at higher abstraction level as well as easy IP import.

Product upgrades are simplified because ESE allows convenient reuse of legacy 
application code and design decisions. 

ESE allows parallel development of SW, HW and application code and their 
integration. Prototype ready cycle accurate models are generated automatically from 
TLMs leading to significant savings in model development and verification time.
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