Functional Testing of Microprocessors with Graded Fault Coverage

Rajesh Kannah'
ATI Research Silicon Valley Inc,
Chennali.
rkannah @ ati.com

Abstract

The goal of this paper is to reduce the test application
time for microprocessors. Since functional fault model
is used for testing microprocessors, test development
time is greatly reduced. But functional test
generation leads to a large number of tests. The size of
the test set is an important factor, as it determines both
the storage for test instructions in the test equipment, as
well as the test application time. The problem becomes
still more serious when the processor is embedded as a
core in a system—on—chip. Hence, in this paper, we try
to address the problem of reducing the number of tests.
We use the available structural information about the
microprocessors to drop some of the functional tests.
Some valid assumptions about the faults that are
present in the microprocessor, e.g., only single stuck at
faults are present, is made to reduce the number of
tests. We develop fault—-grading concepts and use them
to reduce the number of tests. We generate tests for
Intel 8086, Motorola 68000 microprocessors using
functional testing procedures and reduce the number
of tests using our fault grader.

1. Introduction

The . rapid advances in very large scale integrated
circuit technology have resulted in extremely complex
processors. As the size of general and special purpose
processors increase rapidly, generating high quality
tests for them is becoming a serious problem in
industry. Unfortunately, in addition to the complexity
of microprocessors, the limited accessibility of their
internal logic makes them very difficult to test
[2].The classical approach of deriving tests based on
the gate or flip—flop level description of
microprocessors, is inadequate for several reasons. The
large amount of logic, combined with the fact that the
microprocessors may not be designed with DFT
techniques, makes it impractical to use gate level

C.P. Ravikumar
Department of Electrical Engineering,
Indian Institute of Technology,
New Delhi 110016.

rkumar@ee.iitd.ernet.in

sequential ATPG to derive tests. Physical failures in
integrated circuits result in logic behavior which can
not be modeled by stuck—at faults [3]. The most
compelling reason is that internal details of
commercial microprocessors are rarely made available
to the user who must, nevertheless, attempt to derive
tests for them. Another serious problem with sequential
ATPG is that it takes too much time for test
generation.

Thatte and Abraham [4] proposed a graph model at
register transfer level to represent microprocessor and
used functional level fault models for instruction level
test generation. They represented the microprocessor by
a set of functions such as i) register decoding function
ii) instruction execution iii) data transfer and data
storage function and iv) data manipulation functions. A
functional fault model is then developed for each of
these functions and tests are generated to detect all the
faults in the fault model. Brahme and Abraham [2]
takes a more detailed view of the instruction execution
process and a comprehensive fault model is developed.
They had shown that codewords used as data patterns
bound to registers result in interesting property that all
the faults in instruction execution function can be
categorized into three categories. The fault model is
general and can be used for any microprocessor and the
process of test generation can be easily automated.
Tests can be generated without the detailed knowledge
of how the instruction execution and control function is
implemented.

Although this functional test generation method is
efficient in terms of test development time, it results in
large number of tests which leads to more test
application time. Large number of tests demands a high
storage capacity of the testing equipment. Hence, to
reduce the number of tests, we use the available
structural information to drop some functional tests.
We make some valid assumptions about the faults that
are present in the microprocessors e.g., only single

[=3

stuck at faults are present, to reduce the tests. We use

! Rajesh Kannah was a student in the M.Tech (Computer Technology) program at IIT Delhi when this work was carried out.

1081-7735/00 $10.00 © 2000 IEEE

204

a—priori knowledge of fault occurrence also, to reduce
the number of tests. We define fault grading as grading
of faults according to probabilities by which they can
occur in the circuit. Given the graded faults, we define
graded fault coverage (GFC) as summation of
probabilities of faults caught by test set to probabilities
of all faults in the fault set. Our objective is to find the
smallest number of tests, which gives the highest GFC,
given the constraint that number of tests should not
exceed a limit. As the number of tests will become
prohibitive if the microprocessor is embedded in a
SOC, even small amount of reduction in the number of
tests, will be desirable[5]. As the industry practices are
moving towards SOC, reduction of size of test set and
hence testing time, becomes more relevant.

In section 2, functional testing of the
microprocessors is explained. In section 3, we introduce
fault—grading concepts and apply that to reduce the
number of tests which leads to reduced test application
time. We present the use of structural information to
reduce testing time. In section 4, we present the results
for Intel 8086 and Motorola 68000 microprocessors.
Results presented show that significant reduction in
number of tests is possible using fault grading concepts.
The conclusion is presented in section 5.

2. Functional Testing for Microprocessors

Following [4], a microprocessor is represented as a
graph based on its architecture and instruction set.
Every user—accessible register is represented as a node.
Let R ={ R,Rz...,R.} be the set of registers and
I=(L,L,....I;} be the set of instructions of a sample
microprocessor. R includes all the registers which can
be explicitly modified by an instruction I; € 1. Let N=
{N,Ns,...,.N; } be the nodes of the graph. Then the
nodes of the graph represent either i) a register or ii)
a set of equivalent registers or iii) special nodes IN and
OUT. IN and OUT nodes represent communication
between microprocessor and external world. IN
represents the source of all data/control inputs to
microprocessor, while OUT represents the sink of all
data/control outputs. The nodes are connected by
directed edges. There exists a directed edge from node
A to node B if and only if there exists an instruction
that causes transfer of data or information from node A
to node B.

Faults affecting the microprocessors are classified
into the following fault classes [1,4].
1. Addressing faults affecting
function.

2. Addressing function affecting instruction decoding
and instruction execution function .

3. Faults in data storage function.

4. Faults in data transfer function.

register decoding

205

5. Faults in data manipulation function.

A functional fault model is then developed for each
of these functions. Fault models are general, in the
sense, it does not assume any particular implementation
of microprocessor. Fault model for microprocessor,
allows at any given time, the presence of any number of
faults but only in any one of the fault classes described
above. We are allowing a very general model for
microprocessors. Since we allow each function to be
faulty in a very general fashion, our assumption is not
as restrictive as the classical single stuck—at fault
assumption. Tests are generated for each of these
functional fault model using test procedures, except
data manipulation function for which we are assuming
tests are available.

3. Fault Grading of Functional Tests

In the previous section, we introduced the concept of
functional test generation for microprocessors. When a
conservative functional fault model is used for test
generation, test development time is greatly reduced.
But such a test generation method will yield a large
number of tests. As the size of the test set is large in the
case of functional test generation compared to structural
test generation, we try to address the problem of
reducing the number of tests. The size of the test set is
an important factor, as it determines both the storage
capacity for tests in the test equipment, as well as the
test application time. The problem becomes still more
serious when the processor is embedded as a core in a
system on chip. A large test set implies that test time is
large and often that the IC in question can only be
tested on expensive test equipment having very large
memories to store these tests. The available structural
information about the microprocessors is used to drop
some of the functional tests. We make some valid
assumptions about the faults that are present in the
microprocessor, e.g., only single stuck at faults are
present, to reduce the tests. Fault—grading concepts are

developed and used to reduce the number of tests.
Fault—grading is the grading of faults according to
probabilities of their occurrence in the circuit under
test. Given with graded faults, we define graded fault
coverage (GFC) as the summation of probabilities of
faults caught by test set to probabilities of all faults.
Let p; be the probability of occurrence of fault f in the
circuit under test(CUT). Then we define graded fault

coverage as follows,
Ot; = pr if test vector t detects fault f
= 0 otherwise
GFC = ¥ ¥ &t
teT feFr

> pr

feF

M

where T is the test set, Fris the set of faults caught by
test set T, and F is set of modeled faults. The definition
of GFC reduces to the conventional definition of fault
coverage(FC), if py is equal to 1. Our objective is to find
the smallest number of tests which give the highest
GFC, given the constraint that number of tests should
not exceed a limit. From the definition of graded fault
coverage, it is clear that GFC = FC.

Example: Let f), >, f5, fs, fs, fs be the faults in a CUT.
Let pa= 0.1, pn=0.02, p3=0.9, pu=0.8, ps=0.01,
prs = 0.03. Let ty, to, t3, ts be the four tests. Let t, detect
(fi , f5, fs), ta detect f3, t; detect fi, and t, detects fs.
Given that required fault coverage 2 90%, we require
all the four tests. If the required graded fault coverage =
90%, number of tests required are two (t;, t;). Hence,
using fault grading, we reduce the number of tests by
50%.

Returning to the microprocessor example, we have
used fault grading concepts to reduce the number of
tests generated for testing the data storage and data
transfer function. Once we come up with the functional
faults, we can find the graded fault coverage for a given
number of tests, we can choose a particular set of tests
that maximises the graded fault coverage.

3.1. Modified Algorithm for Testing Register
Decoding Function

Under a fault in register decoding function, when
decoding R; may result in one of the following i) no
register is decoded ii) A set of registers in addition to or
instead of R; is accessed. The number of tests
generated by original functional test procedure can be
reduced by using available structural information. We
use single stuck at fault assumption in microprocessors
to reduce the number of tests. We present the modified
register decoding algorithm. This procedure is
guaranteed to detect all single stuck at faults in register
deciding function.

procedure ModifiedRegisterDecode:
begin
Step 1: Initialize queue Q with all the registers so that
R; lies ahead of R; if and only if I(R;) < I(R;); Initialize
the set A as empty.
Step 2: Delete the register R; on top of Q and add it to
set A.
Step 3: repeat
i) For each Rie A s.t., HD(i,j) =1 where HD(i,j) be the
hamming distance between i & j

WRITE(R;) with data ONE
ii) WRITE(R;) with data ZERO
iii) For each Rie A s.t., HD(i,j) =1

206

READ(R)) s.t., register R, will be read before register
Ry (Rs,Ro€ A), if and only if I(R.) <1(Ry)
iv) READ(R;)
v) Delete R; from front of Q and add it to set A

until Q = empty.

Step 4: Repeat Steps 1,2, and 3 with complementary
data.
end

In this procedure, we limit the number of registers
that can be modified, using the single stuck fault
assumption. Let Ry, Ry, Ry,...,Ris be the registers in a
microprocessor. Assume that each register Ry is given
4-bit binary code. Consider testing for register
decoding function. In the original procedure when Rj
can be erroneously decoded into any of the registers in
register set. In the modified algorithm, Ri; can
erroneously decoded into Ry, R, Ry, Ry1.

Lemma 1:

The modified test procedure for register decoding
function provides a speed—up of O(n/log n) when n
registers are tested.

Proof:

The original procedure will generate WRITE/READ
operations on k+1 registers when Ry is added to set A.
Thus, the number of WRITE/READ operations
generated by this procedure is 23" 2(k+1) =2(n*+n-2)
i.e., complexity of the test sequence is O(n*). The
modified procedure will have the complexity of 23>
2(H(k)+1), where, H(k) is the number of integers which
are at hamming distance of 1 from k. It is easy to see
that H(k)= I_log k] ..The number of WRITE/READ
operations generated by modified procedure is 23,*' 2(
|-log k +1) i.e, complexity of test sequence is O(nlogn).
Hence, the modified test procedure for register
decoding function provides a speed-up of O(n/logn)
when n registers are tested.

3.2. Modified Algorithm for Testing Instruction
Execution

Addressing faults affecting the execution of an
instruction I, may cause one or more of the following
fault effects:
1. One or more microorders are not activated by the
microinstructions of I.
2. Microorders are erroneously activated by
microinstructions of 1.
3. A different set of microinstructions is activated
instead of, or in addition to, the microinstructions of 1.
This fault model is general, as it allows for partial
execution of instructions and for execution of "new"
instructions, not present in the instruction set of the
microprocessor. Missing microorders are generally easy
to detect, as any instruction that does not activate all its

the

microorders will produce incorrect result. To detect the
execution of additional microorders, it is essential that
the effect of fault shows up as erroneous data in the
internal registers. We tackle the problem by associating
codewords with each register (except program counter).
The property of codewords should satisfy that any
single microorder operating on codewords should either
produce an noncodeword, or load a register R; with a
codeword cw; of a different register.

We again use single stuck fault model to reduce
the number of tests. We preserve the tests for READ
WRITE sequences generated by ReadTypeO
ReadTypel , ReadType2, WriteTest procedures. We
make an attempt to drop some of the tests for
instruction execution function generated by
InstructionTest procedure. Instead of reading all the
registers before and after executing the instruction, we
will read a particular set of registers that will be
modified, because of faults in the execution process of
the instruction.

procedure ModifyInstructionTest
begin
for every instruction I
A={D}; B={Rq, Ri, R,-1), where n be the number
of registers in the processor
begin
From the opcode of the instruction , find the
instructions which are at hamming distance (HD)=1
from I and find the registers they will affect. Add
these registers in a set A.
for every RieB
WRITE (R;) with cw; execute I
for every Ric A
READ(R;)
B=A;
end
end

Assume there are m instructions, n be the number of
registers. The procedure in section 2.4.2.3 generate nm
WRITE, nm READ, and m execute instructions.
Whereas modified procedure generate YH(k) WRITE,

2H(k) READ, and m execute instructions. Hence, the

modified test procedure for instruction execution
function provides a speed—up of
(2nm+m)/2(CH(k)+m)) when m instructions are

tested.

3.3. Modified Test for Data Storage and Data
Transfer

In this section, we present a method to reduce the
number of tests generated for data transfer function.
We grade the bridge faults between two lines in a

207

storage element and data transfer path. We use the
geometric probability distribution function to model this
problem. The probability of a bridge fault between
i"™ and j" lines is taken to be 1/2" wheni #j.
We take the probability of faults between two
immediate neighbors to be 0.5. Let I, I, I, , Lkbea
sequence of instructions such that E(I,), E(LL),E(L), .
E(Iy) form a directed path from the IN node to the
OUT node in the graph model of the microprocessor.
Such a sequence is said to be IN/OUT transfer.

We have developed a test procedure that grades the
faults in T(ly), T(I,), Td;) ... T(Iy) and in registers
D), D(I), D(5),...,D(k.,), where T(Iy) is the transfer
path associated with the k™ instruction and D(I,) is the
destination register of the instruction I, . Let each
transfer path be w lines wide. A test for the transfer
paths and the registers involved in an IN/OUT transfer
consists of repeating the IN/OUT transfer for different
interconnect test patterns. In the modified procedure,
we first find the probability of each fault for the
considered set of faults. Then, we find the set of faults
that each interconnect test pattern will catch. We
finally find the particular set of interconnect test
patterns that maximize the graded fault coverage.

procedure ModifyDataTransfer

begin

Step 1: Find the probability of each fault in the fault set.
Step 2: Determine the faults detected by each
interconnect test pattern. :

Step 3: Find the graded fault coverage for different
intersconnect test combinations using eqn. 1.

Step 4: Choose the combination of interconnect patterns
to be written in internal registers such that graded fault
coverage is maximum and number of tests are
minimum. Exhaustive algorithm is used to solve.
The number of interconnect test patterns are 2(rlog nl
+1). .. Even exhaustive algorithm will need O(n)
time.

Step 5: Execute the each IN/OUT transfer with
interconnect test patterns obtained from Step 4.

end

4. Results

In this section, results obtained from the functional test
generation procedures for Intel 8086, Motorola 68000
microprocessors are presented. We also have generated
the reduced test set using modified test generation
algorithms. We have used fault grading concepts and
the available structural information to reduce the size of
the test set. Results for testing READ,WRITE and Data
Transfer from register to alu are not presented. For
them, we preserve the tests generated by original
functional testing procedure.

4.1. Tests for Intel 8086

In table 1, we have shown the results for cases which
have GFC = 90%. Total number of tests required to test
READ, WRITE, and Data transfer from register to
ALU =29143. For a given graded fault coverage, the
total number of tests for the microprocessor can be
reduced. For example, if the required graded fault
coverage is greater than 94%, the total number of tests
without fault grading(FG) = 40539 and number of tests
with fault grading = 32091 i.e., we reduced the size of
the test set by 21%.

Table 1. Results for Intel 8086 microprocessor

With With GFC | Reduct
Testing out FG (%) | ifon (%)
function FG
Register 532 232 100 | 56.30
decode
Instruction 2890 910 100 | 68.51
execution
Data transfer 500 300 94 .41 40.00
Data transfer 500 400 99.77 20.00
ALU to 17090 10254 94.41 | 40.00
register
ALU to 17090 13672 99.77 | 20.00
register

Table 2. Results for Motorola 68000 microprocessor

With With GFC Reduc
Testing out FG (%) tion
function FG (%)
Register 716 212 100 70.30
decode
Data transfer 450 225 93.83 50.00
Data transfer 450 300 | 99.68 33.33
Data transfer 450 375 99.99 16.66
ALU to 45048 22704 93.83 50.00
register
ALU to 45048 30272 99.68 33.33
register
ALU to 45048 | 37840 99.99 16.66
register

208

4.2. Tests for Motorola 68000

In table 2, we have shown the results for cases which
have GFC = 90%. Total number of tests required to test
READ, WRITE, Instruction execution, and Data
transfer from register to alu =54667.If the required
graded fault coverage is greater than 93%, the size of
the test set is reduced by 31% with the use of fault
grading.

5. Conclusions

In this paper, functional test generation algorithms for
microprocessors are presented. We developed
algorithms to reduce testing time of microprocessors
using fault grading and the available structural
information. The microprocessor is modeled as a graph
and represented by a set of functions i) register
decoding ii) instruction decoding and instruction
execution function i) data storage and data transfer
function and iv) data manipulation function . Tests for
faults in the above functions is generated except iv. The
complexity of test sequence for register decoding
function is reduced from O(n’) to O(n logn) using single
stuck at fault assumption. The number of test vectors
for instruction decoding and instruction execution
function is reduced using single stuck at fault
assumption. The size of the test vector set for data
storage and data transfer function is reduced using fault
grading. Tests for Intel 8086 and Motorola MC68000
microprocessors are generated using functional testing
procedures. We reduced the number of tests generated
by the functional testing using our fault grader. We
obtained 21% reduction in the size of test set for Intel
8086 and 31% reduction for Motorola 68000.

References:

[11 Abramovici M., Breuer M.A., and Friedman A.D,,
"Digital systems testing and testable design", Jaico
Publishing house, First edition ,1997.

[2] Brahme D., and Abraham J.A., "Functional testing of
microprocessors,” IEEE transactions on Computers, vol ¢=33,
pp 475 —485, June 1984.

[3] Galiay J., Crozet Y., and Vergniault M., "Physical versus
logical fault models in MOS LSI circuits”, IEEE transactions
on computers, vol c—=29 ,pp 527 =531, June 1980.

[4] Thatte S.M.,and Abraham J.A., "Test generation of
microprocessors”, 1EEE transactions on computers, vol c-29
,pp 429 —441, June 1980 .

[5] Zorian Y., Marinnisen E.K., and Dey S., "Testing
embedded core-based system chips", IEEE Computer, pp.
52-59 , June 1999.

